
State-Space Models
Generative AI and Foundation Models

Spring 2024

Department of Mathematical Sciences

Ernest K. Ryu

Seoul National University

1

Background: Matrix exponential

For 𝐴 ∈ ℂ𝑛×𝑛, define

(It can be shown that this power series is globally convergent.)

If 𝐴 ∈ ℂ𝑛×𝑛 is diagonalizable, i.e., there is an invertible 𝑉 ∈ ℂ𝑛×𝑛 such that

then,

2

Background: Matrix exponential

The matrix exponential arises as the solution to the ODE:

Then, the solution is

More generally, let 𝐴 ∈ ℂ𝑛×𝑛 and 𝐵 ∈ ℂ𝑛×𝑘. Let 𝑢 𝑡 ∈ ℂ𝑘 for 𝑡 ≥ 0 be given. Then, the ODE

is solved by the variation of parameters formula

3

Background: ODE discretization

Let 𝐴 ∈ ℂ𝑛×𝑛 and 𝐵 ∈ ℂ𝑛×𝑘, and consider the linear time-invariant ODE

For any 𝑡 ≥ 0 and Δ𝑡 ≥ 0, the solution satisfies

An ODE discretization (integrator) is a scheme for approximating this formula.

4

Background: ODE discretization

Forward Euler discretization:

derived from

5

Background: ODE discretization

Backward Euler discretization:

derived from

However, the HiPPO paper uses

6A. Gu, T. Dao, S. Ermon, A. Rudra, and C. Ré, HiPPO: Recurrent memory with optimal polynomial projections, NeurIPS, 2020.

Background: ODE discretization

Bilinear discretization:

derived from

However, the HiPPO paper uses

7A. Gu, T. Dao, S. Ermon, A. Rudra, and C. Ré, HiPPO: Recurrent memory with optimal polynomial projections, NeurIPS, 2020.

Background: ODE discretization

Generalized Bilinear Transformation (GBT) with 𝛼 ∈ 0,1

derived from

8

Background: ODE discretization

Zero-order hold (ZOH)

derived from

and the approximation that 𝑢 𝑠 = 𝑢 𝑡 for 𝑠 ∈ 𝑡, 𝑡 + Δ𝑡 .

If A is invertible,

9

Background: Inner product spaces

Inner product of vectors 𝑥, 𝑦 ∈ ℝ𝑑

For 𝑓 ∶ ℝ → ℝ and 𝑔:ℝ → ℝ, define the inner product with respect to a measure 𝜇 as

In this class, the measure 𝜇 will always have density 𝜔.

In other words, 𝑑𝜇 𝑥 = 𝜔 𝑥 𝑑𝑥 (with 𝜔 𝑥 ≥ 0 everywhere) and

10

Background: Inner product spaces

We say 𝑓, 𝑔 are orthogonal (with respect to 𝜇) if

We define a function norm ⋅ 𝜇 as

We say 𝑓 is normalized (with respect to 𝜇) if

11

Background: Orthogonal polynomials

Orthogonal polynomials with respect to 𝜇 are a sequence of polynomials 𝑃𝑛 𝑛=0
∞ such that

We say 𝑃𝑛 𝑛=0
∞ are orthonormal polynomials if every 𝑃𝑛 is normalized, i.e., if 𝑃𝑛 𝜇 = 1 for

𝑛 = 0,1,2, ….

The measures of primary interest are

12

(Legendre)

(Laguerre)

(Chebyshev)

Background: Orthogonal polynomials

In fact, every measure induces a unique sequence of orthonormal polynomials. This can be

found by orthogonalizing the monomial basis with Gram–Schmidt with respect to ⋅,⋅ 𝜇.

Example) Laguerre orthonormal polynomials:

13

Background: Orthogonal polynomials

Let 𝑃𝑛 𝑛=0
∞ , orthogonal polynomials with respect to 𝜇, and 𝑓 be given.

The best degree- 𝑁 − 1 polynomial approximation of 𝑓, precisely defined as the solution to

can be obtained by

14

Background: Orthogonal polynomials

Pseudo-proof) Assume

Then,

gives us the formula to compute 𝑐0, 𝑐1, …. If , then

is minimized with 𝑐𝑖
′ = 𝑐𝑖 for 𝑖 = 0,… ,𝑁 − 1.

15

∎

Example) Polynomial approximation

The following is an example of approximating a step function with Legendre polynomials.

16

RNNs vs transformers language models

RNNs have an advantage over transformers in one regard.

• More efficient inference (sequence generation).

• Generation cost depends linearly on sequence length.

Transformers outperform classical (LSTM- or GRU-based) RNNs for two main reasons.

• TF allows efficient parallel computation during training.

• Classical (non-linear) RNNs are inherently sequential. We return to this point later.

• RNN hidden state is unable to faithfully retain sequence information.

• Long shot-term memory is not long enough.

17

Memory units

What if we add memory units to RNNs so that they can maintain longer memory of the input

sequence, longer than the hidden state of LSTMs?

Assume 𝑓ℓ ℓ=1
𝐿 or 𝑓 𝑡 𝑡∈ 0,𝑇 is an input sequence. A transformer architecture has no

compression or memory mechanism; the 𝑞ℓ ℓ=1
𝐿 , 𝑘ℓ ℓ=1

𝐿 , 𝑣ℓ ℓ=1
𝐿 vectors derived from

𝑓ℓ ℓ=1
𝐿 are all accessible from all time-steps.

Use the notation 𝑓≤ℓ = 𝑓1, … , 𝑓ℓ and 𝑓≤𝑡 = 𝑓 𝜏 𝜏∈ 0,𝑡 to denote the inial part of the signal.

Assume 𝑐ℓ ∈ ℂ𝑁 or 𝑐 𝑡 ∈ ℂ𝑁 is a “summary” or “memory” of 𝑓≤ℓ or 𝑓≤𝑡.
How do we know the summary is good?

18

Memory units with online function
approximation
Conceptually, we say 𝑐 𝑡 ∈ ℂ𝑁 is a good summary of 𝑓≤𝑡 if there is a reconstruction

mechanism

𝑐 𝑡 ↦ መ𝑓≤𝑡

such that መ𝑓≤𝑡 ≈ 𝑓≤𝑡.

Online function approximation has two goals:

1. Find 𝑐(𝑡) ∈ ℝ𝑁 that is a good summary of 𝑓≤𝑡.

2. Update 𝑐(𝑡) online.

19A. Voelker, I. Kajić, and C. Eliasmith, Legendre memory units: Continuous-time representation in recurrent neural networks, NeurIPS, 2019.

High-order polynomial projection
operators (HiPPO) framework

20

For every 𝑡 ≥ 0, let 𝜇(𝑡) be a time-varying measure supported on [0, 𝑡]. (So 𝜔 𝑡, 𝑥 > 0 only

on 𝑥 ∈ 0, 𝑡 and 𝜔 𝑡, 𝑥 = 0 for 𝑥 ∉ 0, 𝑡 .)

We seek to find some polynomial 𝑔(𝑡) of degree at most 𝑁 − 1 that minimizes the

approximation error :

We let 𝑐 𝑡 ∈ ℝ𝑁 be the coefficients of orthonormal polynomials {𝑃𝑖
𝑡
} defined with respect

to the measure 𝜇(𝑡):

A. Gu, T. Dao, S. Ermon, A. Rudra, and C. Ré, HiPPO: Recurrent memory with optimal polynomial projections, NeurIPS, 2020.

On-line calculation of 𝑐(𝑡)

Re-computing 𝑐(𝑡) at every time 𝑡 would be infeasible.

For the measures 𝜇 𝑡 of interest, incredibly, the dynamics of 𝑐(𝑡) can be described by the

ODE

In the following, we derive the above ODE with uniform measure (HiPPO-LegS):

21

Legendre Polynomials

The Legnedre Polynomials 𝑃𝑛 𝑛=0,1,… are defined by the following conditions:

These conditions give n+1 equations, determining a unique polynomial of deg n.

There are other ways to define Legendre Polynomials, e.g. solutions to Legendre’s differential

equation:

Examples)

22

Properties of Legendre Polynomials

The Legnedre polynomial 𝑃𝑛 satisfies:

for 𝑛 ≥ 0 (with 𝑃−1
′ = 0), which implies

where the sum stops at 𝑃0 or 𝑃1.

23

Properties of Legendre Polynomials

Also,

for 𝑛 ≥ 0, which (by adding 𝑃𝑛
′ 𝑥 to both sides) implies

Now we apply (Leg2) twice on RHS to get:

where the sum stops at 𝑃0.

24

Derivation for HiPPO-LegS

Recall, 𝑑𝜇𝑡 𝑥 = 𝜔 𝑡, 𝑥 𝑑𝑥 by

and let

where 𝑃𝑛 are basic Legendre polynomials. Then {𝑔𝑛 𝑡,⋅ }𝑛∈ℕ form an orthonormal basis with

respect to the measure 𝜇𝑡.

25

Derivation for HiPPO-LegS

26

First,

results in

Moreover,

Derivation for HiPPO-LegS
Then for fixed 𝑛, we have

as

27

Derivation for HiPPO-LegS

28

Gathering the results for all 𝑛, we have

where

Summary: LegS

Scaled Legendre (LegS) measure assigns

uniform weight to entire history:

Summary of LegS HiPPO update:

29where 𝑃𝑛 𝑛∈ℕ is the Legendre polynomials

Summary: LegT
Translated Legendre (LegT) measures assigns

uniform weight to 𝑡 − 𝜏, 𝑡 , most recent history:

(The second equality holds if we assume that 𝑓 𝑥 = 0 for 𝑥 < 0.)

Summary of LegT HiPPO update:

30where 𝑃𝑛 𝑛∈ℕ is the Legendre polynomials

Summary: LagT

Translated Laguerre (LagT) measures uses

the exponentially decaying measure, assigning

more importance to recent history.

The second equality holds if we assume that 𝑓 𝑥 = 0 for 𝑥 < 0.

Summary of LagT HiPPO update:

31where 𝐿𝑛 𝑛∈ℕ are the Laguerre polynomials

Summary: Translated Fourier

The Fourier basis 𝑒2𝜋𝑖𝑛𝑥 (for 𝑛 = 0,… , 𝑁 − 1) can be seen as an orthogonal polynomials

basis 𝑧𝑛 with respect to the uniform measure on the unit circle 𝑧 ∈ ℂ 𝑧 = 1 . By a change

of variable 𝑧 ↦ 𝑒2𝜋𝑖𝑥 (and thus changing the domain from the unit circle to 0,1), we obtain

the usual Fourier basis 𝑒2𝜋𝑖𝑛𝑥. The complex inner product is defined as

Summary of translated Fourier HiPPO update:

32

Discretization of HiPPO-LegS

The simplest forward Euler discretization with 𝑡 = Δ𝑡 ⋅ 𝑘, 𝑐𝑘 = 𝑐 Δ𝑡 ⋅ 𝑘 , and 𝑓𝑘 = 𝑓 Δ𝑡 ⋅ 𝑘
gives us

So,

(Other discretization schemes lead to slightly different ҧ𝐴𝑘 and ത𝐵𝑘.)

33

Discretization of HiPPO-LegS

The GBT discretization with 𝛼 ∈ 0,1 , 𝑡 = Δ𝑡 ⋅ 𝑘, 𝑐𝑘 = 𝑐 Δ𝑡 ⋅ 𝑘 , and 𝑓𝑘 = 𝑓 Δ𝑡 ⋅ 𝑘 gives us

So,

34

HIPPO+RNN architecture

𝐴𝑡 and 𝐵𝑡 are not trainable.

If we randomly initialize 𝐴𝑡 and 𝐵𝑡 and train

it, this would be no different from a standard

RNN.

35

RNN without HiPPO

36

HIPPO+RNN architecture

37

Background: Continuous-time Fourier
transform and convolution theorem
Continuous-time forward and inverse Fourier transform:

Continuous-time convolution:

Convolution theorem) Convolution (in 𝑡) is pointwise multiplication in Fourier domain (in 𝜔)

38

Background: Discrete Fourier transform

Discrete forward and inverse Fourier transform:

Given 𝑓 ∈ ℝ𝐿, computing 𝐹 ∈ ℂ𝐿, requires 𝒪 𝐿 log 𝐿 operations using the FFT, a divide-and-

conquer algorithm. (Naïve implementation of sum above requires 𝒪 𝐿2 operations.)

39

Background: Discrete circular convolution

For 𝑓, 𝑔 ∈ ℝ𝐿, the discrete circular convolution is defined as

where 𝑔 𝑛 −𝑚 = 𝑔 𝑛 −𝑚 + 𝐿 if 𝑛 −𝑚 < 0, i.e., we wrap around the index if the index is

out of bounds. Computing requires 𝒪 𝐿2 operations with a direct

implementation of the definition.

Convolution theorem)

Using the convolution theorem, can be evaluated with 𝒪 𝐿 log 𝐿 operations.

40

Background: Discrete non-circular
convolution
For 𝑓, 𝑔 ∈ ℝ𝐿, the discrete (non-circular) convolution is defined as

where 𝑔 𝑛 −𝑚 = 0 if 𝑛 −𝑚 < 0, i.e., the value is 0 when the index is out of bounds.

The discrete non-circular convolution doesn’t have its own nice convolution theorem.

However, 𝑓 ∗ 𝑔 can be evaluated with 𝒪 𝐿 log 𝐿 operations using

41

Linear State-Space Layers (LSSL)

RNN and Transformers are seq2seq models that transform a sequence 𝑢𝑛 𝑛=0
𝐿−1 to 𝑦𝑛 𝑛=0

𝐿−1

every layer.

Linear State-Space Layer (LSSL) defines a sequence-to-sequence (or function-to-function)

transformation based on HiPPO-style linear dynamical systems.

Each layer maps 𝑢 𝑡 𝑡∈ 0,𝑇 ↦ 𝑦 𝑡 𝑡∈ 0,𝑇 via

42
A. Gu, I. Johnson, K. Goel, K. Saab, T. Dao, A. Rudra, and C. Ré, Combining recurrent, convolutional, and continuous-time models with linear state space

layers, NeurIPS, 2021.

Continuous-time LSSL

Consider

for 𝑡 ∈ 0, 𝑇 with initial condition 𝑥 0 = 0 ∈ ℝ𝑛, which implies 𝑦 0 = 0.

So 𝐴 ∈ ℝ𝑛×𝑛, 𝐵 ∈ ℝ𝑛×1, and 𝐶 ∈ ℝ1×𝑛.

The solution is

where

43

Initialization of 𝐴 and 𝐵

Initialization of 𝐴 is very important. 𝐴 is initialized to so-called HiPPO LegS matrix

In the original HiPPO paper, LegS defines a linear time variant dynamical system, but the

convolution formulation of LSSL requires a linear time invariant dynamical system.

Nevertheless the LegS initialization is used.

𝐵is randomly initialized.

44Further interpretation of 𝐴-initialization is provided in: A. Gu, I. Johnson, A. Timalsina, A. Rudra, and C. Ré, How to train your HiPPO: State space models

with generalized orthogonal basis projections. ICLR, 2023.

Continuous-time to discrete-time LSSL

Use bilinear discretization:

So the continuous-time dynamical system is discretized to

45

Discrete-time LSSL

Consider

for 𝑘 = 0,… , 𝐿 − 1 with initial condition 𝑥−1 = 0 ∈ ℝ𝑛.

So ҧ𝐴 ∈ ℝ𝑛×𝑛, ത𝐵 ∈ ℝ𝑛×1, and 𝐶 ∈ ℝ1×𝑛.

The solution is

Alternatively,

where

46

Computation of 𝒦𝐿

Naïve Computation of 𝒦𝐿:

𝑂 𝑁2𝐿 cost 𝑂 𝐿 steps 𝑂 𝑁 + 𝐿 memory

Efficient Computation of 𝐾 using work-preserving prefix-scan:

𝑂 𝑁2𝐿 cost 𝑂 log 𝐿 steps 𝑂 𝑁𝐿 memory

Prefix-scan: Standard algorithm for cumulative sums

𝑥 ∈ ℝ𝑛 ↦ 𝑐𝑢𝑚𝑠𝑢𝑚 𝑥 = 𝑦 i.e., , 𝑦𝑖 = σ𝑗≤𝑖 𝑥𝑗

More generally, 𝛼1, ⋯ , 𝛼𝐿 and binary associative operator ⊗ and an identity element,

𝛽𝑖 = 𝛼1 ⊗⋯⊗𝛼𝑖 can be efficiently computed with prefix-scan. More on this later.

47

Multi-head LSSL (MH-LSSL)

• LSSL defines a linear transformation {𝑢𝑘}𝑘=0
𝐿−1 ↦ {𝑦𝑘}𝑘=0

𝐿−1. Since 𝑢𝑘 , 𝑦𝑘 ∈ ℝ𝐻, we really

have

{𝑢𝑘
1
, … , 𝑢𝑘

𝐻
}𝑘=0
𝐿−1 ↦ {𝑦𝑘

1
, … , 𝑦𝑘

𝐻
}𝑘=0
𝐿−1

• 𝐴 ∈ ℝ𝑁×𝑁 is shared globally (not trained).

• Each “head” 1,… ,𝐻 has individual 𝐵 1 , … , 𝐵 𝐻 ∈ ℝ𝑁×1.

• Each “head” ℎ = 1,… ,𝐻 has 𝑀 channels each 𝐶 ℎ,1 , … , 𝐶 ℎ,𝑀 ∈ ℝ1×𝑁.

• Full architecture uses position-wise GeLU nonlinearity. (Otherwise architecture is linear.)

• The 𝑀𝐻 channels are projected back down to 𝐻 channels with a position-wise linear

layer.

48

Multi-head LSSL (MH-LSSL)

49

Stacked LSSL

• Layer norm and residual connection is used. (Both post-norm and pre-norm.)

• Unlike TF, position-wise MLP is not used.

50

Stacked LSSL

51

Trainable parameters (for “LSSL-fixed”)

𝐶 is trainable.

𝐴, 𝐵, and ∆𝑡 is are fixed and not trained. This allows Krylov matrix to be pre-computed.

𝐾 ҧ𝐴, ത𝐵 = ത𝐵, ҧ𝐴 ത𝐵, ҧ𝐴 2 ത𝐵, ҧ𝐴 3 ത𝐵,… , ҧ𝐴 𝐿−1 ത𝐵 ∈ ℝ𝑁×𝐿

So we have

𝒦𝐿 = 𝐶𝐾 ҧ𝐴, ത𝐵

52

Computational cost

Computational cost for LSSL-fixed:

• Parameters: 𝒪 𝐻𝑀𝑁 in C

• Training: 𝒪 𝐵𝐿 log 𝐿 𝐻𝑀 for convolution. (𝒦𝐿 is pre-computed and fixed.)

• 𝒪 𝐵𝐿 log 𝐿 𝐻𝑀 for

• Memory: 𝒪 𝐿𝐻𝑁 to store the Krylov matrix. 𝒪 𝐵𝐿𝐻 for inputs/outputs.

• Inference: 𝒪 𝐻𝑀𝑁2 for matrix-vector multiplication by ҧ𝐴.

53

LSSL is both recurrent & convolutional

Also, LSSL trained on one sampling rate can be used on audio with another sampling rate.

XXX

54

