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CLIP
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Consider a dataset of image-caption 

pairs 𝑋𝑖 , 𝐶𝑖 𝑖=1
𝑁 . 

Contrastive Language Image Pre-training 

(CLIP) find an image encoder 𝑓𝜃 ∶ 𝒳 →
ℝ𝑑 and text encoder 𝑔𝜙 ∶ 𝒞 → ℝ𝑑 be the 

text encoder. Such that 𝑓𝜃 𝑋 ⋅ 𝑔𝜙 𝐶 > 0

if 𝑋 and 𝐶 are related and

𝑓𝜃 𝑋 ⋅ 𝑔𝜙 𝐶 < 0 or 𝑓𝜃 𝑋 ⋅ 𝑔𝜙 𝐶 ≈ 0 if 

𝑋 and 𝐶 are not related.



InfoNCE loss

Let 𝑋𝑖, 𝑌𝑖 𝑖=1
𝑁 be IID data pairs sampled from 𝑝 ⋅,⋅ .  We call

the InfoNCE (Noise Contrastive Estimation) loss.

Note that

is equivalent as a loss function as it differs only by a constant factor (1/𝑁) and a constant 

term (log𝑁).
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MI ≥ InfoNCE

Let 𝐼 𝑋; 𝑌 = 𝐼 𝑌; 𝑋 denote the mutual information between 𝑋 and 𝑌.

Theorem. Let 𝑋𝑖, 𝑌𝑖 𝑖=1
𝑁 be IID data pairs sampled from 𝑝 ⋅,⋅ . Then, for any 𝑓 ∶ 𝒳 × 𝒴 →

ℝ, we have

By symmetry, we also have

(When 𝑁 < ∞, the two InfoNCE losses are not exactly equal.)
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Proof. Let 𝑝 𝑥, 𝑦 be a joint probability density function on random variables 𝑋 and 𝑌. Let 𝑝𝑋
and 𝑝𝑌 be the marginals for X and 𝑌. Write 𝑝 𝑋 𝑌 for the conditional distribution of X
conditioned on 𝑌. Let 𝑞(𝑥|𝑦) be any conditional distribution. Then, 
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Now let ℎ(𝑥, 𝑦) be an arbitrary function such that                                        for all 𝑌. Let

and plug it into our bound to get

where (i) follows from Jensen's inequality and (ii) follows from the inequality log 𝑥 ≤ 𝑥/𝑒. 

Note that 𝑋 ∼ 𝑝𝑋 and 𝑌 ∼ 𝑝𝑌 means (𝑋, 𝑌) ∼ 𝑝𝑋 𝑋 𝑝𝑌(𝑌), i.e., 𝑋 and 𝑌 are sampled 

independently. This is different from sampling 𝑋, 𝑌 ∼ 𝑝 (except in the special case of 

𝑝(𝑥, 𝑦) = 𝑝𝑋 𝑥 𝑝𝑌(𝑥)).
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So far,  we have not made any assumptions on the dimensions of  𝑋 and 𝑌. Let 𝑋1 ∈ 𝒳 and 

𝑌 = 𝑌1, … , 𝑌𝑁 ∈ 𝒴𝑁. Let

i.e., sample a dependent pair 𝑋1, 𝑌1 ∼ 𝑝 and otherwise sample 𝑌2, … , 𝑌𝑁 independently.

Then,

since 𝑋1, 𝑌1 and (𝑌2, … , 𝑌𝑁 ) are independent. (Follows from the chain rule of mutual 

information.)
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Using the previous bound, we have

If we set

then we have

∎
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MI = InfoNCE at optimum as 𝑁 → ∞

Theorem. Let 𝑋𝑖, 𝑌𝑖 𝑖=1
𝑁 be IID data pairs sampled from 𝑝 ⋅,⋅ . Let

𝑓⋆ 𝑥, 𝑦 = log
𝑝 𝑥, 𝑦

𝑝𝑋 𝑥 𝑝𝑌 𝑦
+ constant

Then, ℒNCE → 𝐼 𝑋1; 𝑌1 as 𝑁 → ∞.

(The 𝑓⋆ is not the optimum/maximizer for finite sample (batch) size 𝑁, but it is optimal in the 

limit as 𝑁 → ∞ since it attains the MI upper bound.)
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Proof. Recall

First consider the denominator:
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Indeed, with 𝑋𝑖 , 𝑌𝑖 ∼ 𝑝 for 𝑖 = 1,… ,𝑁, 

∎

11



InfoNCE loss and CE loss

Consider the InfoNCE loss

Each term ℓNCE 𝑌∶, 𝑋𝑖 can be viewed as the cross entropy loss applied to classifying 𝑋𝑖 into 

𝑁 classes with ground truth label/class 𝑖 with prediction probabilities

ℙ class of 𝑋𝑖 = 𝑗 ∝ exp 𝑓 𝑋𝑖 , 𝑌𝑗

To put it differently, 𝐹 ⋅; 𝑌 = 𝑓 ⋅; 𝑌1 , 𝑓 ⋅; 𝑌2 , … , 𝑓 ⋅; 𝑌𝑁 is the pre-softmax neural network 

for classifying an input 𝑥. Remember,

ℓCE 𝐹 𝑥 , 𝑖 = − log
exp 𝐹𝑖 𝑥

σ𝑗=1
𝑘 exp 𝐹𝑗 𝑥
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CLIP

Consider a dataset of image-caption pairs 

𝑋𝑖, 𝐶𝑖 𝑖=1
𝑁 . Let 𝑓𝜃 ∶ 𝒳 → ℝ𝑑 be the image  

encoder and 𝑔𝜙 ∶ 𝒞 → ℝ𝑑 be the text encoder.

Contrastive Language Image Pre-training 

(CLIP) maximizes 
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CLIP approximates MI 

Roughly, CLIP trains embeddings in ℝ𝑑 such that 𝑓𝜃 𝑋 ⋅ 𝑔𝜙 𝐶 is large if 𝑋 and 𝐶 are 

related (𝐶 describes the contents of image 𝑋) and small if 𝑋 and 𝐶 are not related.

By the data processing inequality

By our previous analysis, we have

By our previous analysis the bound is attained (𝐼 𝑋; 𝐶 = 1/2 ℒNCE)  if 𝑁 → ∞ and
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Are joint embeddings universal?

Is the approximation

possible? The RHS is, in general, a very complicated function jointly depending on 𝑋 and 𝐶
while the inner product structure of LHS feels like a separable-ish structure.

To rephrase the question, given that 𝑓𝜃 and 𝑔𝜙 are, in some sense, universal approximators, 

is

a universal approximator of any function ℎ 𝑋, 𝐶 ? The answer is yes, if 𝑑 is large.
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Universality of joint embeddings I

Let 𝒳 and 𝒴 be locally compact Hausdorff (LCH) spaces. LCH spaces include the space of 
images, usually represented as ℝ𝑛, and the space of sentences, discrete spaces usually 
represented as 𝒱∗.

Let ℱ ⊂ 𝒞 𝒳;ℝ and 𝒢 ⊂ 𝒞 𝒴;ℝ be dense sub-vector spaces in the topology of uniform 
convergence on compacta. Then the Stone–Weierstrass theorem tells us that

which forms an algebra, is dense in the topology of uniform convergence on compacta. In 
other words, if we have a joint embedding 𝑓𝜃 ∶ 𝒳 → ℝ𝑑 and 𝑔𝜙 ∶ 𝒴 → ℝ𝑑, then ℎ𝜃,𝜙 𝑥, 𝑦 =
𝑓𝜃 𝑥 ⋅ 𝑔𝜙 𝑦 is a universal approximator if 𝑑 → ∞ and 𝑓𝜃 𝑥 and 𝑔𝜙 𝑦 has depth ≥ 2 and 
width→ ∞.
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Universality of joint embeddings II

Assume 𝐿2 𝒳;ℝ and 𝐿2 𝒴;ℝ be separable Hilbert spaces. (Essentially all Hilbert spaces 

arising in “real life” are separable.)

Then, 𝐿2 𝒳;ℝ ⊗ 𝐿2 𝒴;ℝ = 𝐿2 𝒳 ×𝒴;ℝ , i.e.,

is dense. In other words, ℎ𝜃,𝜙 𝑥, 𝑦 = 𝑓𝜃 𝑥 ⋅ 𝑔𝜙 𝑦 is a universal approximator if 𝑑 → ∞ and 

𝑓𝜃 𝑥 and 𝑔𝜙 𝑦 has depth ≥ 2 and width→ ∞.

17


