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Pepper the
aussie pup

CLIP

Consider a dataset of image-caption
pairs {(X;, C) 4.

Contrastive Language Image Pre-training
(CLIP) find an image encoder fy : X —
R? and text encoder gy : € —» R be the
text encoder. Such that fy(X) - g4(C) >0
if X and C are related and

fo(X) - g (C) < 0o0r fo(X) - gy(C) = O if
X and C are not related.
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INfONCE loss

Let {(X;,Y;)})_, be lID data pairs sampled from p(:,-). We call
f(X:,Y;)

LNcE = Z 0g
N Z L, ef (XaYs)

1=1
the INfoNCE (Noise Contrastive Estimation) loss.

Note that
ef(X' Y;)

LNCE = Zlog 1€f(X@,Y)

IS equivalent as a loss function as it differs only by a constant factor (1/N) and a constant
term (log N).



MI > InfoONCE

Let I(X;Y) = I(Y; X) denote the mutual information between X and Y.

Theorem. Let {(X;, Y,)}}_, be IID data pairs sampled from p(-,-). Then, forany f : X x Y -

R, we hav
, We have of (X3,Y3)

%Zﬁﬁ”ﬁm

N
1
I(Xl;Yl) Z E — 10g
({z’layi)’]\\}p N;

By symmetry, we also have

N
1
I(Xl,Yl) Z E — log
@&mﬁ)N;;

(When N < o, the two InfoNCE losses are not exactly equal.)

ef(Xj 3YPJ)
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Proof. Let p(x, y) be a joint probability density function on random variables X and Y. Let py
and py be the marginals for X and Y. Write p(X|Y) for the conditional distribution of X
conditioned on Y. Let q(x|y) be any conditional distribution. Then,

I XY
I(X;Y)= E |log—2%Y) }
X Y)~p | px(X)py(Y)
- i
. logp( 1Y)
xXYV)~p L Px(X) |
[ q(X|Y)] [ p(X\Y)]
= E log + E log
X, Y)~p L Px(X) ] (xY)p (X |Y)
[ q(X|Y)] [ [ p(XIY)} }
= E log + E E log ‘Y
xYV)~p L Px(X) ] Yepy [Xep(]Y) q(X]Y)
[ q(X|Y)]
= E lo + E |D 1Y 1Y
. 8 (X MY{ kL(p(- | Y)llq(-|Y))]
- .
> 1qu( 'Y)
(X,Y)~p px (X)




Now let h(x, y) be an arbitrary function such that zZ(y)= E [e’“X’Y)} <ocoforallY. Let

h(@.y) IS
and plug it into our bound to get
I(X;Y)> E [pM(X,Y)—- E [logZ(Y)
(X,Y)~p (X,Y)~p
= E [MXY)- E [logZ(Y)]
(X,Y)~p Y ~py

(X,Y)~p Y~py
(ii)
> E [MX)Y)-- E [Z2(Y)]
(X,Y)~p € Y~py
- E [WXY)]-- E [ve’Y)}
(X>Y)Np € X~px
Y ~py

where (i) follows from Jensen's inequality and (ii) follows from the inequality log(x) < x/e.
Note that X ~ py and Y ~ py means (X,Y) ~ pxy(X)py(Y), i.e., X and Y are sampled
iIndependently. This is different from sampling (X,Y) ~ p (except in the special case of
p(x,y) = px(xX)py (x)).



So far, we have not made any assumptions on the dimensions of X and Y. Let X; € X and
Y = (Y, ..., Yy) € YV, Let

p(X1,Y) =p(X1, Y1) [ [ pv (V2),

1=2

l.e., sample a dependent pair (X,Y;) ~ p and otherwise sample Y, ..., Yy independently.
Then,
I(X; Y1) =I1(X;Y) = I[(X;Y1,Ye,..., YN)

since (X;,Y;) and (Y5, ..., Yy ) are independent. (Follows from the chain rule of mutual
iInformation.)



Using the previous bound, we have

1
I(X1;Y) > E [h(X1,Y)] — - E [eh(xl,Y)}
(X1,Y1)~p € Xi1~px
Yiny, iIQ,...,N Yvyijy, izl,...,N
If we set
ef(Xlayl)

h(X1,Y) =1+ log

1 N X1,Y;
then we have ¥ 2= €l )

I(X1; Y1) = I(X1;Y)

| ef (X1,Y1) | [ el (X1,Y1)
> 1+ E log — E
[ ] [ 1 N X1,Y;) 7
g - log ef (X1,Y1) B . szzl ef (X1,Y5)
X,.,Y1)~ 1 5N f(X1,Y5) X1~ 15N
Yifv(pyl, z'1:)2,.l.).,N | N 2= Tl gy 2, N LN 2= C
[ ef(Xlayl) ]
= E log
L NV X1,Y;
Y’\‘(;(;’l}?:);pN szzlef( 1,¥5)
N
= E — lo
(X;,Y:)~p,i=1,....N [N ; = % zj\le ef(Xi,Y;)




M| = InfoNCE at optimum as N — oo

Theorem. Let {(X;,Y;)}}_, be IID data pairs sampled from p(-,-). Let

X,
f.(x,y) = log Px,y) + constant

px ()py (¥)

Then, Lycg = I(X4;Y;) as N — oo,

(The f, is not the optimum/maximizer for finite sample (batch) size N, but it is optimal in the
limit as N — oo since it attains the Ml upper bound.)



N
fi(X4,Y5) X,Y)
Proof. Recall £ . — 1§, - X, Y)=1lo P(X, + constant
1=1 N g=I
First consider the denominator:
N
- Zef*(X YY) pconstant i Z p(X“Y;T)
N 2 px (Xopy (Y))
_ constanti p(XHYv?/) constant_ Z Xi, J
NPX(Xi)pY(Y;) v (Y;)
3#%
N-1 1 <& pX,Y))
_ constant - iy L g
= O/N) 4 T T Y e Ko )
J#t
X,Y)
_>econstant E [ p( ’ ]
mex px (X)py (Y)
Y ~py
— Constant// (CU)pY(y) dﬂ?dy
Yy pX
— constant/ f T y dﬂ:dy
constant 10

— €



Indeed, with (X;,Y;) ~ pfori=1,...,N,

»CNCE — Z log N
N 1 %ZJ: ef*(X"}/}>

o p(X;,Y3)
px (X3)py (Y3)

p(Xh Y1)
[log px (X1)py (Y1)

2
2| -
3

R~ E
(XlaYI)Np

= ](Xl;Y1>
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INfONCE loss and CE loss

ef (Xi,Ys)

S ef(XiXs)

>y

N
Consider the InfoNCE loss ~ Lnce = Y log

=
~

g

et
= Ince(Y,X5)

Each term #ycg (Y., X;) can be viewed as the cross entropy loss applied to classifying X; into
N classes with ground truth label/class i with prediction probabilities

P(class of X; = j) « exp (f(Xi: Y]))

To put it differently, F(;;Y) = (f (5 Y1), f (5 Y2), ..., f (5 Yy)) is the pre-softmax neural network
for classifying an input x. Remember,

exp(Fi(x))
Z;§=1 exp (P} (x))

CE(F(x),i) = —log
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exp(fo(Xi) - 9o

(

Ci)/7)

Consider a dataset of image-caption pairs -
{(X;, CHIY,. Let fy : X > R? be the image —
encoder and g4 : € - R? be the text encoder. Image N
Contrastive Language Image Pre-training N
(CLIP) maximizes
N N
1 exp(fo(Xi) - 9¢(Cs)/7) 1
Lnce(0,0) = =) log +—) log
N o 7 S Tim ep(fo(Xi) - 94(Cy)/7) N

112

al exp(fo(Xi) - 9o(Ci)/T)
2B N e o(Xe) - gol )] 2

i=1 % Zj\le exp( fo(

exp(fo(Xi) - g

6(Ci)/T)

S exp(fo(X

i) - 96(Ci)/T)

X;) - 94
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CLIP approximates Ml

Roughly, CLIP trains embeddings in R? such that f,(X) - Jd¢(C) is large if X and C are
related (C describes the contents of image X) and small if X and C are not related.

By the data processing inequality
I(X;C) > I(fo(X);C) > I(fo(X);94(C))

By our previous analysis, we have
1
I(X:C) 2 I(f6(X); 94(C)) = SE[Lnce]
By our previous analysis the bound is attained (I1(X;C) = (1/2)Lycg) if N - o and

p(X,C)
p(X)p(C)

for (X) - go+ (C) + constant = 7log = 7logp(C| X) — 7logp(C)
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Are joint embeddings universal?

|s the approximation
for(X) - go- (C) + constant ~ 7logp(C' | X) — 7log p(C)

possible? The RHS is, in general, a very complicated function jointly depending on X and C
while the inner product structure of LHS feels like a separable-ish structure.

To rephrase the question, given that fg and g4 are, in some sense, universal approximators,

IS d
fo(X) - 9s(C) = (fo(X))r(96(C))x

k=1
a universal approximator of any function h(X, C)? The answer is yes, if d is large.
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Universality of joint embeddings |

Let X and Y be locally compact Hausdorff (LCH) spaces. LCH spaces include the space of
Images, usually represented as R", and the space of sentences, discrete spaces usually

represented as V*.

Let F c C(X;R) and G c C(Y; R) be dense sub-vector spaces in the topology of uniform
convergence on compacta. Then the Stone—Welerstrass theorem tells us that

d
{ka('r)gk'(y)f]-?"'?f]fEF?Ql?"'7gk€g7d€N}CC(XXy;R)
k=1

which forms an algebra, is dense in the topology of uniform convergence on compacta. In
other words, if we have a joint embedding f : X - R% and g, : Y - R?, then hg 4 (x,y) =
fo(x) - g4 (y) is a universal approximator if d — co and fy(x) and g4 (y) has depth = 2 and
width— oo,
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Universality of joint embeddings |

Assume L*(X; R) and L?(Y; R) be separable Hilbert spaces. (Essentially all Hilbert spaces
arising in “real life” are separable.)

Then, L2(X;R) ® L2(Y; R) = L2(X X Y; R), i.e.,

d
{ka(fﬁ)gk(y) ‘ fir oo fe € LHA;R), g1,- . gk € L2 (V;R), d € N} C L*(X x Y;R)
k=1

is dense. In other words, hg 4 (x,y) = fo(x) - g4 (¥) is a universal approximator if d — oo and
fo(x) and g4 () has depth > 2 and width— oo.
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