
Backpropagation and
Hardware-Aware AI

Generative AI and Foundation Models

Spring 2024

Department of Mathematical Sciences

Ernest K. Ryu

Seoul National University

1

Backprop ⊆ autodiff

Autodiff (automatic differentiation) is an algorithm that automates gradient computation. In
deep learning libraries, you only need to specify how to evaluate the function.
Backprop (back propagation) is an instance of autodiff.

Gradient computation costs roughly 5 × the computation cost* of forward evaluation.

To clarify, backprop and autodiff are not

• finite difference or

• symbolic differentiation.

Autodiff ≈ chain rule of vector calculus

2*Depends on computational structure of function. 5X difference is mostly true for neural networks used in deep learning.

Autodiff example

This complicated gradient computation is

simplified by autodiff.

PyTorch demo

3

The power of autodiff

Autodiff is an essential yet often an underappreciated feature of the deep learning libraries.

It allows deep learning researchers to use complicated neural networks, while avoiding the

burden of performing derivative calculations by hand.

Most deep learning libraries support 2nd and higher order derivative computation, but we will

only use 1st order derivatives (gradients) in this class.

Autodiff includes forward-mode, reverse-mode (backprop), and other orders. In deep

learning, reverse-mode is most commonly used.

4

Autodiff by Jacobian multiplication

Consider 𝑔 = 𝑓𝐿 ∘ 𝑓𝐿−1 ∘ ⋯ ∘ 𝑓2 ∘ 𝑓1, where 𝑓ℓ: ℝ
𝑛ℓ−1 → ℝ𝑛ℓ for ℓ = 1,⋯ , 𝐿.

Chain rule: 𝐷𝑔 = 𝐷𝑓𝐿 𝐷𝑓𝐿−1 ⋯ 𝐷𝑓2 𝐷𝑓1

Forward-mode: 𝐷𝑓𝐿(𝐷𝑓𝐿−1(⋯(𝐷𝑓2𝐷𝑓1) ⋯))

Reverse-mode: (((𝐷𝑓𝐿 𝐷𝑓𝐿−1) 𝐷𝑓𝐿−2) ⋯) 𝐷𝑓1

Reverse mode is optimal* when 𝑛𝐿 ≤ 𝑛𝐿−1 ≤ ⋯ ≤ 𝑛1 ≤ 𝑛0. The number of neurons in each
layer tends to decrease in deep neural networks for classification. So reverse-mode is often
close to the most efficient mode of autodiff in deep learning.

5

𝑛𝐿 × 𝑛𝐿−1 𝑛𝐿−1 × 𝑛𝐿−2 𝑛2 × 𝑛1 𝑛1 × 𝑛0

*Can be proved with dynamic programming. Cf. “matrix chain multiplication”.

Backprop for MLP
Consider the MLP

where 𝑥 ∈ ℝ𝑛0, 𝐴ℓ ∈ ℝ𝑛ℓ×𝑛ℓ−1, 𝑏ℓ ∈
ℝ𝑛ℓ, and 𝑛𝐿 = 1.

6

Backprop can be computed with:

for ℓ = 𝐿, 𝐿 − 1,… , 1.

Backprop for MLP

Backprop requires two steps.

Forward pass: Evaluate the

intermediate node values.

Backward pass: Evaluate

gradient in reverse order of

computation.

7

forward pass
y_list = [X_data]
y = X_data
for ell in range(L):
y = sigma(A_list[ell]@y+b_list[ell])
y_list.append(y_next)

backward pass
dA_list = []
db_list = []
dy = y-Y_data
for ell in reversed(range(L)):
A, b, y= A_list[ell], b_list[ell], y_list[ell]
db = dy*sigma_prime(A@y+b).T
dA = (sigma_prime(A@y+b)*dy.T)@y.T
dy = (dy*sigma_prime(A@y+b).T)@A
dA_list.insert(0,dA)
db_list.insert(0,db)

General graph-form backprop

Consider a computation graph 𝐺 = 𝑉, 𝐸 .

• 𝐺 is required to be a finite directed acyclic graph (DAG). (No self-loops.)

• 𝑖 ∈ 𝑉 is an input node if 𝑣 ↛ 𝑖 for all 𝑣 ∈ 𝑉. An input node 𝑖 has its value 𝑦𝑖 provided but

has no evaluation function, i.e., 𝑓𝑖 = ∅.

• For a non-input node 𝑣 ∈ 𝑉, the value is 𝑦𝑣 and it is computed by 𝑓𝑣, which takes in as

input all 𝑢 ∈ 𝑉 such that 𝑢 → 𝑣. I.e., .

.

• 𝑜 ∈ 𝑉 is an output node if 𝑜 ↛ 𝑣 for all 𝑣 ∈ 𝑉. Assume there is only one output node.

• Goal of backprop is to compute for all input nodes 𝑖.

8

Forward pass given v.value for input nodes
for v in V :
if v.notInput:
v.value = v.fn([u.value for u->v])

Topological ordering of DAGs

DAGs are used to indicate precedence among events. A topological sort (top-sort) of a

directed acyclic graph (DAG) 𝐺 = 𝑉, 𝐸 finds an ordering 𝑣1, … , 𝑣 𝑉 such that 𝑣𝑖 ↛ 𝑣𝑗 for

any 𝑖 ≥ 𝑗. (All edges go forward with respect to the ordering.) Such an order is called a

linear topological order.

9DAG representing the constraints of a dressing routine.

(Top-sort is different from the usual

“sorting” in which an array is sorted

under a total order.)

Graph-form forward evaluation

Since 𝐺 is acyclic, 𝑦𝑣 can be sequentially evaluated with a linear topological order.

The values for [u.value for u->v] will be ready if we process for v in V in a linear

topological order.

In practice, the computation graph 𝐺 = 𝑉, 𝐸 is built during the forward evaluation.

10

Forward pass given v.value for input nodes
for v in V : # In linear topological order
if v.notInput:
v.value = v.fn([u.value for u->v])

Forward evaluation example

11

Backprop theorem

Backprop theorem) Assume 𝑓𝑣 is differentiable for all non-input node 𝑣. Let 𝑜 be the output

node and define 𝜕𝑦𝑜/𝜕𝑦𝑜 = 1. Define

Then, (i) this formula is well defined when it is evaluated in a reverse topological ordering

(ii) it correctly computes the derivative 𝜕𝑦𝑜/𝜕𝑦𝑖 when 𝑣 = 𝑖 is an input node.

For input node 𝑖, of course, is defined by

12

Backprop theorem

Backprop theorem) Assume 𝑓𝑣 is differentiable for all non-input node 𝑣. Let 𝑜 be the output

node and define 𝜕𝑦𝑜/𝜕𝑦𝑜 = 1. Define

Then, (i) this formula is well defined when it is evaluated in a reverse topological ordering

(ii) it correctly computes the derivative 𝜕𝑦𝑜/𝜕𝑦𝑖 when 𝑣 = 𝑖 is an input node.

If 𝑣 is not an input node, the meaning of is somewhat tricky. For now, we define

through the formula of theorem.

Later, we will understand generally through edge severing.

13

Graph-form backward pass code I

Again, assume there is only one output node. Let v.grad correspond to 𝜕𝑦𝑜/𝜕𝑦𝑣.

The value of w.grad will be ready if we process for v in V in a reversed linear topological order.

14

Forward pass given u.value for source nodes
for v in V : # In linear topological order
v.value = v.fn([u.value for u->v])

for v in V : # .zero_grad()
v.grad = 0

Backward pass
for v in V : # In reversed linear topological order
for w such that v->w :
v.grad += w.grad @ w.fn.grad(v)
v queries all outgoing edges

Graph-form backward pass example I

15

Graph-form backward pass code II

A slightly more efficient alternative is

Formal proof that the two implementations are the same in hw.

16

Forward pass given u.value for source nodes
for v in V :
v.value = v.fn([u.value for u->v])

for v in V : # .zero_grad()
v.grad = 0

for v in V : # In reversed linear topological order
for u such that u->v :
u.grad += v.grad @ v.fn.grad(u)
v sends grad through all incoming edges

Graph-form backward pass example II

17

no_grad inputs

In general, however, we cannot or do not want to perform backproparation with respect to

all neural network inputs. Examples include:

• Image input to classifier. (Usually. Exceptions exist.)

• Text input into tokenizer. (Tokenizer is not differentiable.)

We want backpropagation to differentiate with respect to a subset of inputs while holding

other inputs fixed.

18

Param vs. fixed-input and graph coloring

Within 𝐺 = 𝑉, 𝐸 , further distinguish input nodes into: parameter vs fixed-input.

(In PyTorch, these correspond to requires_grad=True and requires_grad=False.)

Goal is to compute 𝜕𝑦𝑜/𝜕𝑦𝑝 for parameter node 𝑝.

When building a computation graph, color all nodes as follows:

1. parameter is colored BLACK.

2. fixed-input is colored GREY.

3. if 𝑓𝑣 depends only on GREY inputs, then 𝑣 is GREY.

4. if 𝑓𝑣 depends on one or more BLACK inputs, then 𝑣 is BLACK.

19

Forward evaluation with graph coloring

20

Forward pass given v.value for input nodes
for v in V : # In linear topological order
if v.parameter :
v.color = BLACK

if v.fixedInput :
v.color = GREY

else :
v.value = v.fn([u.value for u->v])
if all([u.color == GREY for u->v]) :

v.color = GREY
else :

v.color = BLACK

Forward evaluation with MLP

21

Forward evaluation with ResNet

22

Forward evaluation with RNN

23

Backprop theorem

Backprop theorem) Assume that if 𝑢 → 𝑣 and 𝑢 and 𝑣 are BLACK, then 𝑓𝑣 is differentiable

with respect to 𝑦𝑢, i.e., 𝜕𝑓𝑣/𝜕𝑦𝑢 exists. Let 𝑜 be the output node and define 𝜕𝑦𝑜/𝜕𝑦𝑜 = 1.

Define

Then, (i) this formula is well defined when it is evaluated in a reverse topological ordering

(while skipping GREY nodes) (ii) it correctly computes the derivative 𝜕𝑦𝑜/𝜕𝑦𝑝 when 𝑣 = 𝑝 is

a parameter input node.

24

Backprop with MLP

25

Backprop with MLP

26

Backprop with ResNet

27

Backprop with ResNet

28

Backprop with ResNet

29

Backprop with RNN

30

Backprop with RNN

31

Meaning of intermediate partials

For a 𝑣 that is not an input node, what does mean?

Of course, it means how 𝑦𝑜 changes infinitesimally when 𝑦𝑣 changes infinitestimally right?

However, what does it mean to “change 𝑦𝑣”

when it is not an indepenent input?

How should the inputs to 𝑣 change as 𝑦𝑣 changes?

32

Intermediate partials with edge severing

Let 𝐺 = 𝑉, 𝐸 be a computation graph with non-input

(BLACK) node 𝑣 ∈ 𝑉. Then 𝜕𝑦𝑜/𝜕𝑦𝑣 can be understood by

severing all inputs to 𝑣 and considering it an input node.

33

Intermediate partials with edge severing

More precisely, construct a graph 𝐺′ = 𝑉, 𝐸′ as follows.

• 𝐺 and 𝐺′ share the same node set 𝑉.

• The edge set 𝐸 is 𝐸′ = 𝑢,𝑤 𝑢,𝑤 ∈ 𝐸,𝑤 ≠ 𝑣 . (Edges into 𝑣 are severed.)

• If 𝑖 is an input node in 𝐺, then set its value 𝑦𝑖 in 𝐺′ to be the same as the 𝑦𝑖 in 𝐺.

• For 𝑣, set its value 𝑦𝑣 in 𝐺′ to be the same as the 𝑦𝑖 in 𝐺.

• For all other nodes 𝑢, evaluate its value 𝑦𝑢 with the same evaluation funciton 𝑓𝑢.

Then of 𝐺′ (with 𝑣 an input) is the same as of 𝐺 (with 𝑣 not an input).

In this sense, we can understand as a derivative.

34

Micrograd lecture

Andrej Karpathy’s YouTube lecture:

https://youtu.be/VMj-3S1tku0?si=6l_OUqCp_C9lhFIU

A wonderful lecture spelling out how to implement backpropagation.

35

https://youtu.be/VMj-3S1tku0?si=6l_OUqCp_C9lhFIU

Stop-gradient

The stop-gradient operation allows information to flow through the edge during forward

evaluation, but stops the gradient flow during backpropagation.

36

Stop-gradient

Equivalently, the stop-gradient operation creates a node with fixed input that contains a

copy of the numerical value.

37

Stop-gradient

In PyTorch, the stop-gradient operator is achieved by detach().

In RL, the notation ⋅ is commonly used. (So 𝑦6 = 𝑓6 𝑦2, 𝑦4 , 𝑦5 in previous example.)

Mathematically, the stop gradient operation modifies the backprop formula to

38

Computation and memory cost of backprop

Consider an MLP with depth 𝐿 with uniform width 𝑤.

Backprop costs:

• 𝑤2𝐿 computation in forward pass,

• 𝒪 𝑤𝐿 memory to store intermediate values, and

• 𝒪 𝑤2𝐿 computation in backward pass.

39

Gradient checkpointing and
recomputation
Gradient checkpointing with interval 𝑘:

• Instead of storing 𝑦0, 𝑦1, 𝑦2, … , 𝑦𝐿, store 𝑦0, 𝑦𝑘 , 𝑦2𝑘 , ….

• To backprop from 𝑦 𝑠+1 𝑘 to 𝑦𝑠𝑘, load 𝑦𝑠𝑘 and recompute

𝑦𝑠𝑘+1, 𝑦𝑠𝑘+2, … . , 𝑦 𝑠+1 𝑘−1 and temporarily store them in

memory.

Backprop costs:

• 𝑤2𝐿 computation in forward pass,

• 𝒪
𝑤𝐿

𝑘
+ 𝑤𝑘 memory to store intermediate values, and

• 𝒪 𝑤2𝐿 computation in backward pass.

40

Gradient checkpointing and
recomputation
With 𝑘 = 𝐿, we have 𝒪 𝑤 𝐿 memory cost.

Trading off computation and memory. The computation cost of backprop doubles, but

memory usage is significantly reduced.

(n an MLP, parameters and their gradient require 𝒪 𝑤𝐿 memory to store, which outweighs

the 𝒪 𝑤𝐿 memory cost of plain backprop anyway. However, the ratio of intermediate

computed values to the number of parameters becomes much larger with convolutional and

attention layers, so the reduction to 𝒪 𝑤 𝐿 memory cost is much more meaningful.

41
T. Chen, B. Xu, C. Zhang, and C. Guestrin, Training deep nets with sublinear memory cost, arXiv, 2016.

A. Gruslys, R. Munos, I. Danihelka, M. Lanctot, and A. Graves, Memory-efficient backpropagation through time, NeurIPS, 2016.

Memory vs. computation

In deep learning, computational and hardware bottleneck primarily comes from memory,

rather than computation.

Computation cost includes

• Basic arithmetic and the evaluation of special functions such as exp or log.

Memory cost includes

• Size of GPU memory required to store neural network weights and other information.

• Memory IO. The reading from and writing to memory, especially HBM.

42

