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Depth-𝐿 residual network

Consider the depth-𝐿 residual network

where 𝑧0, … , 𝑧𝐿 ∈ ℝ
𝐷, 𝜃 ∈ ℝ𝑃 , and 𝑓 ∶ ℝ𝐷 × ℝ𝑃 ×ℕ → ℝ𝐷.

Note that the trainable parameter 𝜃 is shared across all layers.
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Loss function

Consider the loss function

For simplicity, assume 𝑁 = 1 and write

So ℒ is the output scalar loss value.
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Neural ODE

The Neural ODE is a continuous-depth (or infinite-depth) analog:

where 𝑧 𝑠 ∈ ℝ𝐷 for 𝑠 ∈ [0,1], 𝜃 ∈ ℝ𝐷, and 𝑓 ∶ ℝ𝐷 ×ℝ𝑃 × 0,1 → ℝ𝐷. We refer to 𝑠 as 

pseudo-time. Assume 𝑓 is continuous in (𝑧, 𝜃, 𝑠) and continuously differentiable in (𝑧, 𝜃). We 

will represent 𝑓(𝑧, 𝜃, 𝑠) as a neural network.

We say 𝑧 𝑠 𝑠∈[0,1] is a solution to this ODE if

4R. T. Q. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, Neural ordinary differential equations, NeurIPS, 2018.



Forward-solve of Neural ODE

Option 1. Implement a simpler Euler discretization

set Δs

for 𝑘 = 0,… ,
1

Δ𝑠
− 1

𝑧𝑘+1 = 𝑧𝑘 + Δ𝑠 𝑓 𝑧𝑘, 𝜃, 𝑘Δ𝑠

endfor

return 𝑧 1

Δ𝑠

Option 2. Call an ODE solver. (Often the better option, since ODE solvers are quite 

sohpisticated and can solve the ODE to high accuracy.)

5



Loss function for Neural ODE

Generally, Consider the loss function

where ℎ𝜃 𝑋𝑖 is the solution to the ODE at pseudo-time 𝑠 = 1with initial condition 𝑧 0 = 𝑋𝑖
at pseudo-time 𝑠 = 0.

For simplicity, assume 𝑁 = 1 and write

So ℒ is the output scalar loss value.
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Backprop warmup

As a warmup exercise, let’s work out backpropagation of the discrete-depth ResNet.

Assume the forward pass has been performed, i.e., 𝑧1, … , 𝑧𝐿 have been sequentially computed and 

their values been stored in memory. For notational simplicity, 

Then,
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Backprop warmup

The formula can be implemented in a backward for loop:

𝑎𝐿 =
𝜕ℒ

𝜕𝑧𝐿
𝑔 = 0

for ℓ = 𝐿, 𝐿 − 2,… , 1

𝑔 += 𝑎ℓ
𝜕𝑓 𝑧ℓ−1,𝜃,ℓ−1

𝜕𝜃

𝑎ℓ−1 = 𝑎ℓ
𝜕𝑧ℓ

𝜕𝑧ℓ−1

endfor

return 𝑔
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Backpropagation for neural ODE

We start with a warmup exercise. The full derivation of the continuous-depth backprop will 

be carried out soon. For 𝑠, 𝑡 ∈ [0,1], define the flow operator (also called the time evolution 

operator) ℱ𝑠,𝑡 ∶ ℝ𝐷 → ℝ𝐷 as

Then

for any 𝑠 ∈ 0,1 .

9



Forward and backward flow operator

The flow operator can evolve the initial condition forward in pseudo-time (𝑡 > 𝑠) and also 

backwards in pseudo-time (𝑡 < 𝑠) since the ODE can be solved both forwards and 

backwards in pseudo-time. 

In fact, if 𝑧(1) is known, then the initial condition 𝑧 0 = ℱ1,0(𝑧 1 ) can be recovered 

through solving the ODE 

Obtaining 𝑧 0 from 𝑧 1 is no more difficult than Obtaining 𝑧 1 from 𝑧 0 . This wasn’t the 

case for discrete-depth ResNet; knowing 𝑧𝐿 does not allow one to recover z0 or 𝑧𝐿−1.
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Integral form of the flow operator

Both when 𝑠 < 𝑡 and 𝑠 > 𝑡, we have the integral form
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Backprop for Neural ODE: Warmup

Define

and

for 𝑠, 𝑡 ∈ [0,1]. Then, we have the chain rule

for 𝑠, 𝑡 ∈ [0,1]. So 
𝜕ℒ

𝜕𝑧(𝑠)
represents the infinitesimal change in ℒ if the neural ODE started at pseudo-

time 𝑠 with initial value 𝑧 𝑠 + 𝛿, where 𝛿 is an infinitesimal perturbation.
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Backprop for Neural ODE: Warmup

Let

Then

and 𝑎 𝑠 𝑠∈ 0,1 can be solved by solving the ODE backwards in pseudo-time. We provide an ODE

solver with “initial condition” 𝑎 1 =
𝜕ℒ

𝜕𝑧 1
and solves for 𝑎 𝑠 𝑠∈[0,1]. We then return

13



We now show

Proof) This follows from

14
∎



Backprop for Neural ODE

Ultimately, we want 
𝜕ℒ

𝜕𝜃
. (Previous derivation was for 

𝜕ℒ

𝜕𝑋
.) However, infinitesimal changes of 𝜃 to 𝜃 + 𝛿

affects the update via

𝑧 𝑠 + 𝜖 ≈ 𝑧 𝑠 + 𝜖𝑓(𝑧 𝑠 , 𝜃 + 𝛿, 𝑠)

and making sense of this precisely and correctly is tricky.

Therefore, we employ a technique of converting 𝜃 into an initial condition (rather than a parameter) of 

an augmented ODE.
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Backprop for Neural ODE

Theorem. (Adjoint state method) Consider the neural ODE

with initial condition 𝑧 0 . Assume 𝑧 𝑠 𝑠∈[0,1] has been solved in a “forward pass”. Let ℒ ∶ ℝ𝐷 → ℝ be 

loss function depending on 𝑧 1 . The solution to the ODE

yields 
𝜕ℒ

𝜕𝜃
= 𝑏(0).
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Proof) Augment the ODE as follows:

Define the augmented notation

Then
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For 𝑠, 𝑡 ∈ [0,1], define the augmented flow operator ℱ𝑎𝑢𝑔
𝑠,𝑡 ∶ ℝ𝐷+𝑃 → ℝ𝐷+𝑃 as 

Then define

where (i) defines 
𝜕ℒ

𝜕𝑧(𝑠)
and 

𝜕ℒ

𝜕𝜑(𝑠)
and (ii) defines 𝑎(𝑠) and 𝑏(𝑠).
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In other words,

and

The meaning of 𝑎 𝑠 =
𝜕ℒ

𝜕𝑧(𝑠)
is the same as what we saw in the warmup derivation.

The meaning of 𝑏 𝑠 =
𝜕ℒ

𝜕𝜑(𝑠)
is the infinitesimal change in ℒ if the neural ODE started at pseudo-time 

𝑠 with initial value 𝑧 𝑠 and parameter 𝜃 + 𝛿, where 𝛿 is an infinitesimal perturbation. Since ℒ

ultimately only depends on 𝑧(1), we have 
𝜕ℒ

𝜕𝜑(1)
= 0. The gradient we wish to obtain is 

𝜕ℒ

𝜕𝜃
=

𝜕ℒ

𝜕𝜑(0)
.

By the same reasoning as before, we have

Multiplying out this leads to the stated result.
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Backprop for Neural ODE v.1

Finally, we are ready to describe the algorithm to perform backpropagation with the neural ODE.

1. With initial condition 𝑧(0), call an ODE solver to compute and store 𝑧 𝑠 𝑠=0
1 .

2. With initial condition 𝑎 1 =
𝜕𝐿

𝜕𝑧(1)
, and 𝑏 1 = 0, call an ODE solver (backwards in pseudo-

time) to compute 𝑎 0 , 𝑏 0 . Return 𝑏 0 =
𝜕ℒ

𝜕𝜃
.

Note that step 2 uses with 𝑧 𝑠 𝑠∈[0,1] computed from step 1. However, storing the entire 

trajectory 𝑧 𝑠 𝑠∈[0,1] can be inefficient in terms of memory usage.
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Backprop for Neural ODE v.2

A more efficient backprop method for

1. With initial condition 𝑧(0), call an ODE solver to compute and store 𝑧 1 .

2. With initial condition 𝑧 1 , 𝑎 1 =
𝜕𝐿

𝜕𝑧(1)
, and 𝑏 1 = 0, call an ODE solver (backwards in 

pseudo-time) to compute 𝑧 0 , 𝑎 0 , 𝑏 0 . Return 𝑏 0 =
𝜕𝐿

𝜕𝜃
.

Recomputing 𝑧 𝑠 𝑠∈[0,1] anew from 𝑧(1) together with the computation of 𝑎 𝑠 𝑠∈[0,1] and 

𝑏 𝑠 𝑠∈[0,1] is much more memory efficient, although it does require slightly more computation.
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ODE solver uses autograd(backprop)

To solve,

The ODE solver is provided with functions that can evaluate

,                                 and                               .

The evaluation of                                  and                               themselves requires the use

of autograd or backprop, since they are derivatives. Since backprop requires a scalar

output, we use
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Flow models

A flow model is a generative model with samples 𝑋 = ℎ𝜃 𝑍 with 𝑍 ∼ 𝑝𝑍, where the “prior 

distribution”, often a simple IID Gaussian vector. Crucially, ℎ𝜃 is invertible.

Sampling requires evaluation of 𝒉𝜽.

Training is done via maximum likelihood on 𝑋. Therefore, we must be able to compute

log 𝑝𝜃
(gen)

𝑋 and its stochastic gradients efficiently.

Training requires evaluation of 𝒉𝜽
−𝟏.
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FFJORD: Flow model with Neural ODE

Free-form Jacobian of Reversible Dynamics (FFJORD) samples 𝑋 with

Once trained, i.e., once 𝜃 is fixed, sample 𝑋 ∼ 𝑝𝜃
(gen)

by:

1. Sample 𝑍 ∼ 𝑝𝑍.

2. Call an ODE solver with initial condition 𝑍. (So 𝑋 = ℎ𝜃 𝑍 = ℱ0,1 𝑍 .)

24
W. Grathwohl, R. T. Q. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud, FFJORD: Free-form continuous dynamics for scalable reversible generative 

models, ICLR, 2019.



FFJORD: Flow model with Neural ODE

Given data 𝑋1, … , 𝑋𝑁, FFJORD is trained by solving the maximum likelihood estimation 

problem (equivalently, minimizing the sum of negative log likelihoods):

Training requires stochastic gradients, unbiased estimates of 

25



FFJORD: Flow model with Neural ODE

Theorem. Let 𝑝𝑠 be the density function of 𝑧 𝑠 . Then,

The solution also has an integral form

(Note, the integrand does not involve 𝑝𝑠 𝑧 𝑠 .)
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The other statements follow the fundamental theorem of calculus. 

Proof of Theorem) We now show 

The proof will utilize Jacobi’s formula and the change of variables formula for random variables.

Jacobi’s formula) Let 𝐴 be an 𝑛 × 𝑛 matrix with eigenvalues 𝜆1, … , 𝜆𝑛. Consider the limit 𝜀 → 0. Then

𝐼 + 𝜀𝐴 =ෑ

𝑖=1

𝑛

1 + 𝜀𝜆𝑖 = 1 + 𝜀෍

𝑖=1

𝑛

𝜆𝑖 + 𝑂 𝜀2

Therefore, 

lim
𝜀→0

𝜕

𝜕𝜀
𝐼 + 𝜀𝐴 = Tr 𝐴

27Actually, our Jacobi’s formula is a special case of the more general Jacobi’s formula.



Change of variables for RV

Let ℎ ∶ ℝ𝑛 → ℝ𝑛 be an invertible function such that both ℎ and ℎ−1 are differentiable. Let 𝑍
be a continuous random variable with probability density function 𝑝𝑍 and let 𝑋 = ℎ 𝑍 have 

density 𝑝𝑋. Then 

𝑝𝑋 𝑥 = 𝑝𝑍 𝑧
𝜕ℎ−1

𝜕𝑥
𝑥 =

𝑝𝑍 𝑧

𝜕ℎ
𝜕𝑧

𝑧

where 𝑥 = ℎ 𝑧 .

Invertibility of ℎ is essential; it is not a minor technical issue.
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Proof of 

(i) Change of variables formula with 

𝑧 𝑡 + 𝜀 = ℱ𝑡,𝑡+𝜀 𝑧 𝑡

(ii) L'Hôpital's rule

(iii) Jacobi’s formula

29
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FFJORD: Flow model with Neural ODE

Corollary. We get log 𝑝𝑋 𝑋 = log 𝑝1 𝑧 1 by solving the forward pseudo-time ODE

or the backward pseudo-time ODE

where ∇ ⋅ denotes the divergence. (Recall, 𝑝𝑍 𝑧 0 = 𝑝0 𝑧 0 .)
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Exact log-likelihood computation v.1

The following is an exact log-likelihood computation for FFJORD:

1. Given a data 𝑋, solve the ODE ሶ𝑧 𝑠 = 𝑓 𝑧 𝑠 , 𝜃, 𝑠 in reverse pseudo-time with initial 

condition 𝑧 1 = 𝑋 to obtain 𝑧 𝑠 𝑠∈[0,1].

2. Given 𝑧 𝑠 𝑠∈[0,1], solve the ODE ሶℓ 𝑠 = − ∇𝑧 ⋅ 𝑓 𝑧 𝑠 , 𝜃, 𝑠 in reverse pseudo-time 

with initial condition ℓ 1 = 0 to obtain log 𝑝𝜃
(gen)

𝑋 = log 𝑝𝑍 𝑧 0 − ℓ 0 .

Problem: We must store 𝑧 𝑠 𝑠∈[0,1], which is memory inefficient.
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Exact log-likelihood computation v.2

Improvement: Just solve for 𝑧 𝑠 and ℓ 𝑠 together by using an ODE solver in reverse

pseudo-time.

Problem: Tr
𝜕𝑓

𝜕𝑧
= ∇ ⋅ 𝑓 requires 𝐷 backprop calls to evaluate, when 𝑓 𝑧 𝑠 , 𝜃, 𝑠 ∈ ℝ𝐷 and 

𝑧 ∈ ℝ𝐷. We want to avoid computing divergences.
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Background: Hutchinson’s trace 
estimator
Let 𝜈 ∈ ℝ𝐷 be a random vector such that

i.e.,                                 .

One example is 𝜈1, … , 𝜈𝐷 ∼ 𝒩 0,1 IID Gaussian.

Another example is 𝜈1, … , 𝜈𝐷 drawn as IID Rademacher (1/2 Bernoulli) random variables. In 

what follows.

33
M. F. Hutchinson, A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines, Communications in Statistics - Simulation 

and Computation, 1990.



Background: Hutchinson’s trace 
estimator
Let 𝐴 ∈ ℝ𝐷×𝐷. Then 

So 

and 𝜈⊤𝐴𝜈 serves as an unbiased estimator of Tr 𝐴 .

34
M. F. Hutchinson, A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines, Communications in Statistics - Simulation 

and Computation, 1990.



Stochastic estimate of log-likelihood

We can express the likelihood as 

and we can an unbiased estimate of the likelihood.
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Directional derivative 

Tr
𝜕𝑓

𝜕𝑧
= ∇ ⋅ 𝑓 requires 𝐷 backprop calls to evaluate. The Hutchinson estimator reduces the 

backprop cost. The directional derivative

𝜈⊤
𝜕𝑓

𝜕𝑧
𝜈 =

𝜕𝑔

𝜕𝜈
=
𝜕𝑔

𝜕𝑧
𝜈

where 𝑔 = 𝜈⊤𝑓, can be valuated with a single call to backprop:

36

z = torch.randn((D,), requires_grad=True)
theta = torch.randn((D,), requires_grad=False)
v = torch.randn((D,), requires_grad=False)

f = . . .
g = torch.dot(v, f)
grad = torch.autograd.grad(outputs=g, inputs=z)[0]
grad_v = torch.dot(grad, v)



Stochastic log-likelihood computation

Instead of the trace of the Jacobian (the divergence), use the Hutchinson trace estimator 

and solve for 𝑧 𝑠 and ෠ℓ 𝑠 together by using an ODE solver in reverse pseudo-time.

(For an 𝑋, we sample a random 𝜈 and keep the 𝜈 fixed throughout the ODE solve.)

Problem: We have computed a stochastic estimate of log-likelihood, but we need the 

gradient of the log likelihood. 
37



Stochastic gradient of log-likelihood v.1

Since                                                         is computed by solving an ODE in reverse pseudo-

time, we compute its gradient                          using the adjoint state method.

Step 1. In reverse pseudo-time, solve the ODE

to compute and store 𝑧 𝑠 𝑠∈[0,1].
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Stochastic gradient of log-likelihood v.1

Step 2. In forward pseudo-time, using 𝑧 𝑠 𝑠∈[0,1], solve the ODE

to compute                        . Proof is left to homework.
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Stochastic gradient of log-likelihood v.2

Storing 𝑧 𝑠 𝑠∈[0,1] is inefficient. Also, the value of                                                   is not 

actually used in Step 2. 

Step 1. In reverse pseudo-time, solve the ODE

to compute 𝑧 0 .
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Stochastic gradient of log-likelihood v.2

Step 2. In forward pseudo-time, using 𝑧 0 , solve the ODE

to compute                        .
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Mixed partial derivatives

Computation of                                  and                                 require computing mixed

partial derivatives. Modern deep learning libraries such as PyTorch support the computation 

of higher order derivatives. 

42

z = torch.randn((D,), requires_grad=True)
theta = torch.randn((D,), requires_grad=True)
v = torch.randn((D,), requires_grad=False)

f = . . .
g = torch.dot(v, f)
grad = torch.autograd.grad(outputs=g, inputs=z, create_graph=True)[0]
directional_derivative_v = torch.dot(grad, v)

grad_z, grad_theta = torch.autograd.grad(directional_derivative_v, [z, theta])



Training FFJORD
while not converged:

𝑋 from dataset

𝑧 0 by solving 

𝑔 = 0

for _ = 0,… , 𝐾 (𝐾 ≥ 1 is a hyper parameter, batch size for 𝜈)

𝜈 from IID Gaussian or Rademacher

solve   

𝑔 += 𝑏 1

endfor

call optimizer with 𝑔

endwhile 43

This version has batch size 1.

We can also use a larger batch size (use 

more 𝑋’s) before calling the optimizer with 

stochastic gradient 𝑔.


