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Diffusion models are SOTA

2P. Dhariwal and A. Nichol, Diffusion models beat GANs on image synthesis, NeurIPS, 2021.



Ordinary differential equation

Consider the ordinary differential equation (ODE)

which we also express as

where 𝑋 𝑡 , 𝑓 𝑋 𝑡 , 𝑡 ∈ ℝ𝑑. Then, 𝑋 𝑡 𝑡 is a deterministic curve.

We can think of the ODE as the limit

under Δ𝑡 → 0, where 𝑡 = 𝑘Δ𝑡. Precisely,                                 uniformly on compact intervals.
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Solution for ODE

𝑋 𝑡 𝑡=0
𝑇 solves ODE if it satisfies the

• differential form of the ODE

• or the integral form of the ODE

• Example: 
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Stochastic differential equation

Consider the stochastic differential equation (SDE)

where 𝑋𝑡 𝑡 , 𝑓 𝑋𝑡, 𝑡 ∈ ℝ𝑑, 𝑔 𝑡 ∈ ℝ𝑑×𝑑, and 𝑊𝑡 is a 𝑑-dimensional Brownian motion or 

Wiener process. 𝑋𝑡 𝑡 is a random process. (We can allow 𝑔 to also depend on 𝑋𝑡, but this 

makes the equations more complicated.)

We can think of the SDE as the limit

under Δ𝑡 → 0, where 𝑡 = 𝑘 Δ𝑡 and 𝑍0, 𝑍1, … ∼ 𝒩 0, 𝐼 . Precisely,                                    on 

compact intervals.

5B. Ø ksendal, Stochastic Differential Equations: An Introduction with Applications, 6th edition, Springer, 2003.



Example: Forward
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Solution for SDE

𝑋𝑡 𝑡=0
𝑇 is a solution path for SDE if 𝑋𝑡 𝑡=0

𝑇 is nice# with probability distribution defined by 

where the Itô stochastic integral is defined as

where 𝑍1, 𝑍2, … ∼ 𝒩 0, 𝐼 are IID.

7
#right-continuous with left limits (càdlàg)



Solution for SDE

For a given fixed path 𝑋𝑡 𝑡=0
𝑇 , we cannot determine whether it was generated as an 

instance of the SDE. (Given a fixed sequence 00110011, can you determine whether it was 

generated as 8 independent Bernoulli random variables?)

Rather, we can talk about whether a distribution of paths solve the SDE. A “solution” of an 

SDE is a probability distribution of 𝑋𝑡 𝑡=0
𝑇 (the joint distribution over all 𝑋𝑡 for 𝑡 ∈ 0, 𝑇 ).

For diffusion probabilistic models, we will consider a weaker notion: The marginal probability 

distributions 𝑝𝑡 𝑡=0
𝑇 such that 𝑋𝑡 ∼ 𝑝𝑡 for all 𝑡 ∈ 0, 𝑇 .

Our question of interest is: How does 𝑝𝑡 evolve as a function of time 𝑡?
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Fokker–Planck equation 1D

The time evolution of 𝑝𝑡 under the SDE                                              is governed by the 

Fokker–Planck (FP) equation.

For 𝑑 = 1, the FP equation is

More precisely, this means

for all 𝑡 > 0 and 𝑥 ∈ ℝ. This is a partial differential equation (PDE).
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Integration by parts

Let 𝜑 ∶ ℝ → ℝ and 𝑓 ∶ ℝ → ℝ. Assume 𝜑 and 𝑓 are sufficiently smooth and decay sufficiently 

quickly as 𝑥 → ∞. Then

Let 𝜑 ∶ ℝ𝑑 → ℝ𝑑 and 𝑓 ∶ ℝ𝑑 → ℝ. Assume 𝜑 and 𝑓 are sufficiently smooth and decay 

sufficiently quickly as 𝑥 → ∞. Then

(The usual integration by parts has boundary terms, but they vanish under the decay 

assumption.)

10https://en.wikipedia.org/wiki/Integration_by_parts#Higher_dimensions



Derivation of FP equation

Let 𝑑 = 1. Let 𝑝𝑡 𝑡=0
𝑇 be a family of pdfs such that 𝑋𝑡 ∼ 𝑝𝑡 for 0 ≤ 𝑡 ≤ 𝑇. For any 𝜑 ∈ 𝒞𝑐

∞ ℝ
(set of smooth compactly supported functions on ℝ), we have

Therefore,

11∎



Fokker–Planck equation (multi-dim)

The multi-dimensional Fokker–Planck equation is
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Example SDE: Ornstein–Uhlenbeck
process
Example:

If 𝑋0 ∼ 𝒩 0, 𝜎2/𝛽

With direct calculations, we can verify that 𝑝𝑡 satisfies the FP equation.
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Corruption via Ornstein–Uhlenbeck
The Ornstein–Uhlenbeck process

with 𝛽 ≥ 0 and 𝜎 > 0 adds noise to the a datapoint 𝑋0. As 𝑇 → ∞, all information is lost.

Since                                                                 , we have 𝑋𝑇 is approximately distributed as 

𝒩 0,
𝜎2

2𝛽
𝐼 if 𝛽 > 0 and 𝑇 ≈ ∞.

Q) Samping 𝑋𝑇 ∼ 𝒩 0,
𝜎2

2𝛽
𝐼 is easy. Can we reverse the SDE to sample 𝑋0?
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Forward-time ODE

To simulate

for 0 < 𝑡, set 𝑋0 = 𝑋 0 and compute

for sufficiently small Δ𝑡 and set 𝑡 = 𝑘Δ𝑡.
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Reverse-time ODE

To simulate

for 0 < 𝑡 < 𝑇, set 𝐾 = ⌊𝑇/Δ𝑡⌋ and 𝑋𝐾 = 𝑋 𝑇 and compute

for sufficiently small Δ𝑡 and set 𝑡 = 𝑘Δ𝑡.

Reversing time for ODEs is easy.

(Mapping from 𝑋 0 to 𝑋 𝑇 is, after all, a one-to-one map.)
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Forward-time SDE

To simulate

for 0 < 𝑡, sample 𝑋0 ∼ 𝑝0 and compute

for sufficiently small Δ𝑡 and set 𝑡 = 𝑘Δ𝑡, where 𝑍1, 𝑍2, … ∼ 𝒩 0, 𝐼 .
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Reverse-time SDE

To simulate

for 0 < 𝑡 < 𝑇, set 𝑋⌊𝑇/Δ𝑡⌋ = 𝑋𝑇, and compute

This does not work!

Rewinding time in SDEs takes more care
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Reverse-time SDE

Example:

See code
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Anderson’s reverse-time SDE theorem

Instead, given the forward-time SDE

the corresponding reverse-time SDE is

where ഥ𝑊𝑡 is the reverse-time Brownian motion and 𝑝𝑇 is the pdf of 𝑋𝑇 defined by the 

forward-time SDE.

Alternatively, define 𝑌𝑡 𝑡=0
𝑇 via 

(Note that                    .) If we set ത𝑋𝑇−𝑡 = 𝑌𝑡, then                         .

20B. D. O. Anderson, Reverse-time diffusion equation models, Stochastic Processes and their Applications, 1982.



Reverse-time SDE

To simulate the reverse-time SDE,

for 0 < 𝑡 < 𝑇, sample ത𝑋𝑇 ∼ 𝑝𝑇, set 𝐾 = ⌊𝑇/Δ𝑡⌋ and ത𝑋𝐾 = ത𝑋𝑇, and compute

where 𝑍1, … , 𝑍𝐾 ∼ 𝒩 0, 𝐼 . More concisely, 

21B. D. O. Anderson, Reverse-time diffusion equation models, Stochastic Processes and their Applications, 1982.



Example: Reverse

See code
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Marginal vs. joint distributions

Note that Anderson’s theorem is claiming [              for all 0 ≤ 𝑡 ≤ 𝑇], which is a weaker 

statement than                             .

The latter                               asserts that the two processes have equal (joint) distributions, 

while the former [              for all 0 ≤ 𝑡 ≤ 𝑇] asserts that the marginal distributions are equal 

for all 𝑡.

Diffusion probabilistic models are concerned with the marginal distributions.
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Anderson’s theorem proof

Let 𝑑 = 1. Let 𝑝𝑡 𝑡=0
𝑇 be marginal densities of the forward SDE

Remember that 𝑝𝑡 𝑡=0
𝑇 satisfies the FP equation
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Anderson’s theorem proof

Let 𝑞𝑡 𝑡=0
𝑇 be marginal densities of 

Then 𝑞𝑡 𝑡=0
𝑇 satisfies the FP equation

Let 𝑝𝑡 𝑡=0

𝑇
be marginal densities of the reverse-time SDE

Since 𝑝𝑡 = 𝑞𝑇−𝑡, the densities 𝑝𝑡 𝑡=0

𝑇
satisfies
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Anderson’s theorem proof

If we plug in ҧ𝑝𝑡 𝑡=0
𝑇 = 𝑝𝑡 𝑡=0

𝑇 into

we get the FP equation for 𝑝𝑡 𝑡=0
𝑇

In other words, we have verified that ҧ𝑝𝑡 𝑡=0
𝑇 = 𝑝𝑡 𝑡=0

𝑇 solves the FP equation for ҧ𝑝𝑡 𝑡=0
𝑇 , 

which proves ҧ𝑝𝑡 𝑡=0
𝑇 = 𝑝𝑡 𝑡=0

𝑇 provided that the solution to the PDE is unique. We omit the 

uniqueness argument.

26
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Sample generation via SDE

Let 𝑋0 ∼ 𝑝0, where 𝑝0 corresponds to the MNIST or ImageNet dataset.

Then the forward-time SDE produces 𝑋𝑇 ∼ 𝑝𝑇.

If we can sample ത𝑋𝑇 ∼ 𝑝𝑇 and run the reverse-time SDE

tis would be a generative model producing images 𝑋0 ∼ 𝑝0.

27



Sample generation via SDE
Consider the Ornstein–Uhlenbeck forward-time SDE

Remember that

If 𝑇 is sufficiently large, 𝑝𝑇 ≈ 𝒩 0, 𝜎𝑇
2𝐼 .

Consider the reverse-time counterpart 

(It would be better to sample 𝑋𝑇 ∼ 𝑝𝑇 exactly, but we do not know 𝑝𝑇 because we do not 

know 𝑝0 = 𝑝data.) 
28



Sample generation via SDE

Set 𝐾 = 𝑇/Δ𝑡 and sample 𝑋𝐾 ∼ 𝒩 0, 𝜎𝑇
2𝐼 . Using a standard discretization (Euler–

Maruyama), we get

Output is ത𝑋0 approximately distributed as 𝑝0.

Interestingly, there is randomness in the generation process.

To clarify, this is not yet implementable since we do not have access to             .
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Reverse-time ODE

Let 𝑝𝑡 𝑡=0
𝑇 be the marginal density functions of the forward-time SDE 

and reverse-time SDE

Then, 𝑝𝑡 𝑡=0
𝑇 is also the marginal density functions of the following reverse-time ODE

This ODE defines a flow model, a one-to-one mapping between 𝑋𝑇 and 𝑋0.

Proof) Same reasoning as Anderson’s theorem with the Fokker–Planck equation.

30
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Sample generation via ODE

Consider the particular forward-time SDE

If 𝑇 is sufficiently large, 𝑝𝑇 ≈ 𝒩 0, 𝜎𝑇
2𝐼 . Consider the reverse-time ODE 

31
Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, Score-based generative modeling through stochastic differential equations, 

ICLR, 2021.



Sample generation via ODE

Set 𝐾 = 𝑇/Δ𝑡 and sample 𝑋𝐾 ∼ 𝒩 0, 𝜎𝑇
2𝐼 . Using a standard discretization (Euler), we get

Output is ത𝑋0 approximately distributed as 𝑝0.

Only source of randomness is in the initial generation of 𝑋𝐾.

To clarify, this is not yet implementable since we do not have access to             .

32
Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, Score-based generative modeling through stochastic differential equations, 

ICLR, 2021.



Sample generation via (discretized) SDE

33J. Ho, A. Jain, and P. Abbeel, Denoising diffusion probabilistic models, NeurIPS, 2020.



Sample generation via (discretized) SDE

34J. Ho, A. Jain, and P. Abbeel, Denoising diffusion probabilistic models, NeurIPS, 2020.


