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Practical reverse-time SDE

Simulating the reverse-time SDE

requires (i) sample from 𝑝𝑇 and (ii) evaluations of the score function# 𝛻𝑥 log 𝑝𝑡.

Solution:

(i) Design forward-time SDE, i.e., choose 𝑓, 𝑔, 𝑇, so that 𝑝𝑇 ≈ 𝒩 0, 𝜎𝑇
2𝐼 and 𝜎𝑇

2 is known.

(ii) Learn 𝛻𝑥 log 𝑝𝑡 𝑥 ≈ 𝑠𝜃 𝑥, 𝑡 via a neural network 𝑠𝜃 𝑥, 𝑡 .

We call 𝑠𝜃 𝑥, 𝑡 the score network.
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#Some call this the Stein score function, while some people argue that the name “score function” is confusing and should not be used as the Fisher score 

function is a similar but different object. In any case, DPM papers universally refer to this as the “score function”.



Score matching

To learn the score function, consider

where 𝜆 𝑡 > 0 is a weighing factor. However, we cannot use this as is, since 𝑝𝑡 is inaccessible. 

Alternatively, use the equivalent losses

1.

2.

where, 𝐶 are constants independent of 𝜃.
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Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, Score-based generative modeling through stochastic differential equations, 

ICLR, 2021.



proof
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(1)

P. Vincent, A connection between score matching and denoising autoencoders, Neural Computation, 2011.

The replacement of                         with                                requires justification. 

Called denoising score matching (DSM).



proof
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(1)

Conditional score function is implementable if 𝑓 and 𝑔 are nice.

Ornstein–Uhlenbeck process is one such example.



Hutchinson’s trace estimator

Let 𝜈 ∈ ℝ𝑛 be a random vector such that

i.e.,                                 .

One example is 𝜈1, … , 𝜈𝑛 ∼ 𝒩 0,1 IID Gaussian.

Another example is 𝜈1, … , 𝜈𝑛 drawn as IID Rademacher (±1 realization with probability 1/2) 

random variables.
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M. F. Hutchinson, A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines, Communications in Statistics - Simulation 

and Computation, 1990.



Hutchinson’s trace estimator

Let 𝐴 ∈ ℝ𝑛×𝑛. Then 

So 

and 𝜈⊤𝐴𝜈 serves as an unbiased estimator of Tr 𝐴 .
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M. F. Hutchinson, A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines, Communications in Statistics - Simulation 

and Computation, 1990.



proof
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(2)

where we use integration by parts and the Hutchinson estimator.
Called sliced score matching (SSM).



VE and VP forward SDEs

Two types Ornstein–Uhlenbeck processes are primarily considered for the forward SDE.

First, variance-exploding (VE)

Second, variance-preserving (VP)

In both cases, 
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General VE SDE

Let 𝜎𝑡 be a non-decreasing function of 𝑡.

General variance exploding (VE) SDE: 

Although the mean is preserved, the variance explodes (if 𝜎𝑡 explodes).

Relative to the noise, the original signal 𝑋0 is corrupted as 𝑡 → ∞.
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Conditional distribution and variance calculations follow from (5.50) and (5.51) of

S. Särkkä andA. Solin, Applied Stochastic Differential Equations, 2019.



General VP SDE

General variance preserving (VP) SDE:

In particular,

Var 𝑋𝑡 = 𝐼 + 𝑒− 0׬
𝑡
𝛽 𝑠 𝑑𝑠 Var 𝑋0 − 𝐼

and if Var 𝑋0 = 𝐼, then

Var 𝑋𝑡 = 𝐼

So variance is “preserved”.
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Conditional distribution and variance calculations follow from (5.50) and (5.51) of

S. Särkkä andA. Solin, Applied Stochastic Differential Equations, 2019.



Training with O-U and DSM

Using                           , the score function simplifies to

Define the scaled score network

Then the denoising score matching loss becomes
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Interpretation of scaled score network

𝜀𝜃 𝑋𝑡, 𝑡 predicts noise 𝜀 from noised data                            .

Usually, the deep neural network represents 𝜀𝜃 rather than 𝑠𝜃. (Empirically works better.)

To clarify, 𝜀𝜃 and 𝑠𝜃 only differ by a 𝑡-dependent (and 𝜃-, data-independent) scaling factor.

13



Training with O-U and DSM

Using the Ornstein–Uhlenbeck forward SDE and the denoising score matching loss (i),

we get the training routine:
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Blow-up at 𝑡 = 0

For both VP and VE SDEs, 𝜎0 = 0 and the loss blows up. Several ways to deal with this.

Option 1: Start the integral from a small 𝛿 > 0

Option 2: Choose 𝜆 𝑡 → 0 as 𝑡 → 0 so that 𝜆 𝑡 /𝜎𝑡
2 does not blow up. This makes the mean 

well-behaved, but the variance of the stochastic gradients may still blow up as 𝑡 → 0.

Option 3: Use importance sampling to reduce the variance as 𝑡 → 0.
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Training with SSM

Using the sliced score matching loss (ii)

we get the training routine:
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DSM vs SSM

SSM is more broadly applicable than DSM.

• SSM requires efficient sampling of 𝑋𝑡 given 𝑋0.

• DSM additionally requires evaluation of conditional density 𝑝𝑡|0 𝑋𝑡 𝑋0 .

(More precisely, the conditional score ∇𝑋𝑇 log 𝑝𝑡|0 𝑋𝑡 𝑋0 is required.)

SSM allows a broader range of forward-diffusions to be used. Useful in, say, DSB.#

When applicable, DSM performs better than SSM.

SSM requires mixed (2nd-order) derivatives, while DSM requires 1st-order derivatives. 

(Most modern DL libraries are capable of efficiently computing higher-order derivatives.)

17#V. De Bortoli, J. Thornton, J. Heng, and A. Doucet, Diffusion Schrödinger bridge with applications to score-based generative modeling, NeurIPS, 2021.



SDE Sampling with trained score

Once 𝑠𝜃 has been trained, we can generate new samples with the approximate the reserve-

time SDE

Usually, one uses the reverse-time Ornstein–Uhlenbeck process

18



SDE Sampling with trained score

Using a standard discretization (Euler–Maruyama), we get

Output is ത𝑋0 approximately distributed as 𝑝0.

Called DDPM sampling for reasons to be explained later.
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Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, Score-based generative modeling through stochastic differential equations, 

ICLR, 2021.



Samples via SDE
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Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, Score-based generative modeling through stochastic differential equations, 

ICLR, 2021.



ODE Sampling with trained score

Once 𝑠𝜃 has been trained, we can also use approximate reserve-time ODE

Usually, one uses the reverse-time ODE of Ornstein–Uhlenbeck process
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ODE Sampling with trained score

Using a standard discretization (Euler), we get

Output is ത𝑋0 approximately distributed as 𝑝0.

This is called DDIM sampling for reasons to be explained later.

22
Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, Score-based generative modeling through stochastic differential equations, 

ICLR, 2021.



SDE vs ODE sampling

There is a more general family of SDEs that include standard SDE (𝜆 = 0) and ODE (𝜆 = 1) 

sampling. (Only 𝜆 = 0 and 𝜆 = 1 seems to be useful in practice.)

SDE sampling produces higher fidelity (based in visual inspection) images. Why? 

Theoretically, not understood well. Intuitively, noise steps of SDE sampling corrects for any 

errors from inaccurate terminal distribution 𝑝𝑇, inaccurate score function, and discretization.

However, ODE sampling is useful for applications such as image interpolation, which can be 

used for image editing (more on this later), and for likelihood computation (based on the 

observation that the ODE sampling defines a flow model).
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(16) of Q. Zhang and Y. Chen, Diffusion normalizing flow, NeurIPS, 2021.

(27) C.-W. Huang, J. H. Lim, and A. Courville, A variational perspective on diffusion-based generative models and score matching, NeurIPS, 2021.



Image interpolation with ODE

Let 𝑋 1 and 𝑋 2 be images. Use the forward-time ODE

to obtain 𝑋𝑇
1

and 𝑋𝑇
2

, which will look like pure noise sampled from 𝒩 0, 𝜎𝑇
2 . Form

𝑋𝑇
𝜃 = 𝜃𝑋𝑇

1
+ 1 − 𝜃 𝑋𝑇

2

for 𝜃 ∈ 0,1 . Use the reverse-time ODE

to obtain 𝑋0
𝜃. This image will be a semantically meaningful interpolation of 𝑋 1 and 𝑋 2 .
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Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, Score-based generative modeling through stochastic differential equations, 

ICLR, 2021.
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Why?

If 𝑋 1 , 𝑋 2 ∼ 𝑝0, then 𝑋 1 , 𝑋 2 will have high likelihood under 𝑝0. Then 𝑋𝑇
1
, 𝑋𝑇

2
will look 

like samples from 𝒩 0, 𝜎𝑇
2 , i.e., 𝑋𝑇

1
, 𝑋𝑇

2
will have high likelihood under 𝒩 0, 𝜎𝑇

2 . Since 

𝒩 0, 𝜎𝑇
2 is a log-concave distribution, the interpolant 𝑋𝑇

𝜃 will also have high likelihood. So 

its corresponding 𝑋0
𝜃 will be a realistic image with high likelihood under 𝑝0.

Why does this work?


