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Score network architecture

𝑠𝜃 𝑋𝑡, 𝑡 is trained as a single U-Net architecture with time 𝑡 injected into intermediate 

layers.
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J. Ho, A. Jain, and P. Abbeel, Denoising diffusion probabilistic models, NeurIPS, 2020.

Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, Score-based generative modeling through stochastic differential equations, 

ICLR, 2021.

P. Dhariwal and A. Nichol, Diffusion models beat GANs on image synthesis, NeurIPS, 2021.



Score network architectural components

• GELU, SiLU, Swish activations

• U-Net

• Includes convolutional layers and skip connections

• Time embedding

• Additional residual connections in residual blocks

• Attention layers

• GroupNorm
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U-Net

4
O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional networks for biomedical image segmentation, Medical Image Computing and Computer-

Assisted Intervention, 2015.

The U-Net architecture:

• Reduce the spatial dimension 

to obtain high-level (coarse 

scale) features

• Upsample or transpose 

convolution to restore spatial 

dimension.

• Use residual connections 

across each dimension 

reduction stage.



Time embeddings

Score networks use time embedding similar to the positional encoding of transformer 

architectures. Time embeddings provide time information and the score networks (the 

residual blocks) learn to appropritately utilize the informaiton.

5A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, NeurIPS, 2017.



Residual block

A building block of overall architecture.

Time embedding (𝑡emb) injected into the 

scale-shift (SS) block. SS performs 

scale⊙ 𝑌 + shift

where 𝑌 is the output of GroupNorm and 

scale; shift is the output of the MLP 

processing 𝑡emb.

Same 𝑡emb is injected into all residual 

blocks. The different residual blocks can 

learn to use 𝑡emb differently.
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Pixel-wise multi-head self-attention

Pixel-wise multi-head encoder-only self-attention layers are used. Layer design due to #.

Each pixel (which has many channels) gets its own query, key, and value vectors. 

Different from vision transformers (ViT)% in 2 main ways. 

• ViT are patch-wise self-attention.

• In U-Nets, attention layers are interleaved with convolution layers. ViTs are attention-only 

architectures.

7

#X. Chen, N. Mishra, N. Rohaninejad, and P. Abbeel, PixelSNAIL: An improved autoregressive generative model, ICML, 2018.
#J. Ho, A. Jain, and P. Abbeel, Denoising diffusion probabilistic models, NeurIPS, 2020.
%A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. 

Houlsby, An image is worth 16x16 words: Transformers for image recognition at scale, ICLR, 2021.
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GroupNorm

Batch normalization normalizes across batches and pixels (but not across channels).

Group normalization (GroupNorm) normalizes across a group of channnels and pixels

(but not across batch elements).

9Y. Wu and K. He, Group normalization, ECCV, 2018.
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GN for convolutional layers

Input: 𝑋 batch size × channels × vertical dim × horizontal dim

output: GN𝛽,𝛾(𝑋). shape GN𝛽,𝛾 𝑋 = shape(𝑋)

GN𝛽,𝛾 for conv. layers acts independently over batch elements. Group count parameter 𝐺.

ො𝜇 ∶, 𝑔 =
1

(𝐶/𝐺)𝑃𝑄


𝑐=1

𝐶/𝐺



𝑖=1

𝑃



𝑗=1

𝑄

𝑋[∶, 𝑔 − 1 𝐶/𝐺 + 𝑐, 𝑖, 𝑗] 𝑔 = 1,… , 𝐺

ො𝜎2 ∶, 𝑔 =
1

(𝐶/𝐺)𝑃𝑄


𝑐=1

𝐶/𝐺



𝑖=1

𝑃



𝑗=1

𝑄

𝑋 ∶, 𝑔 − 1 𝐶/𝐺 + 𝑐, 𝑖, 𝑗 − ො𝜇 ∶, 𝑔 2 𝑔 = 1,… , 𝐺

GN𝛾,𝛽 𝑋 ∶, 𝑐, 𝑖, 𝑗 = 𝛾 𝑐
𝑋 ∶, 𝑐, 𝑖, 𝑗 − ො𝜇 ∶, 𝑐 − 1 /𝐺 + 1

ො𝜎2 ∶, 𝑐 − 1 /𝐺 + 1 + 𝜀
+ 𝛽 𝑐

𝑐 = 1,… , 𝐶
𝑖 = 1,… , 𝑃
𝑗 = 1,… , 𝑄

GN normalizes over each group of convolutional filters. So ො𝜇 and ො𝜎2 per group. However, The mean and 
variance are explicitly controlled through the per-channel (not per-group) learned parameters 𝛽 and 𝛾.
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Score network architecture
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Discrete- to continuous-time diffusion

Publication dates:

• NCSN (NeurIPS 19)

• DDPM (NeurIPS 20)

• DDIM (ICLR 21)

• SDE Diffusion (ICLR 21)

After the dust settled, people now understand that

• NCSN is a discretization of SDE sampling of VE SDE.

• DDPM is a discretization of SDE sampling of VP SDE.

• DDIM is a discretization of ODE sampling of VP SDE. (One specific instance of DDIM.)
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Tweedie’s formula: 1st order

Consider the random variable

(We don’t assume 𝑝𝑋 is Gaussian.) Then, 

If 

with 𝛾 ≠ 0, then 

13B. Efron, Tweedie’s formula and selection bias, Journal of the American Statistical Association, 2012.



Tweedie’s formula: 2nd order

Consider the random variable

(We don’t assume 𝑝𝑋 is Gaussian.) Then, 

If 

with 𝛾 ≠ 0, then 

14B. Efron, Tweedie’s formula and selection bias, Journal of the American Statistical Association, 2012.



Reverse cond. distribution ≈ Gaussian

Consider the random variable

By definition, 𝑝𝑌|𝑋 = 𝒩 𝑋, 𝜎2𝐼 is Gaussian. (We don’t assume 𝑝𝑋 is Gaussian.) In general, 

𝑝𝑋|𝑌 is not a Gaussian, but 𝑝𝑋|𝑌 is approximately Gaussian in the limit of 𝜎 → 0.

If

with 𝛾 ≠ 0, then, in the limit of 𝜎 → 0, 

15



Reverse cond. distribution ≈ Gaussian

16

h.o.t. = higher-order term



DDPM

Forward model:

So,

and, after some calculations, this implies

17J. Ho, A. Jain, and P. Abbeel, Denoising diffusion probabilistic models, NeurIPS, 2020.



DDPM

Forward model:

Reverse model:

True:

Learned:

J. Ho, A. Jain, and P. Abbeel, Denoising diffusion probabilistic models, NeurIPS, 2020.

(for small 𝛽𝑡)

Note, for small 𝛽𝑡

Choice of ෨𝛽𝑡 is further motivated in Ho, 

Jain, Abbeel paper.



DDPM loss
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DDPM training

Training is analogous to the continuous-time (SDE) setup.
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DDPM sampling

The true distribution of 𝑋𝑇 is

If 𝑇 and 𝛽1, … , 𝛽𝑇 are chosen such that ത𝛼𝑇 ≈ 0, then 𝑝𝑇 ≈ 𝒩 0, 𝐼 .

Sampling from the learned distribution

Sample 𝑋𝑡 via the approximation of 𝒫 𝑋𝑡 𝑋𝑡−1 . It is an approximation because 𝒫 𝑋𝑡 𝑋𝑡−1
is not exactly Gaussian and because the scaled score network 𝜀𝜃 is not exact. 21



Reinterpreting DDPM sampling

Consider the case                            . We can equivalently express DDPM sampling as

Equivalence follows from direct calculations.
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Reinterpreting DDPM sampling

Since,                                                    , Tweedie’s formula tells us

Also, using

𝑝 𝑥𝑡−1 𝑥𝑡 , 𝑥0 =
𝑝 𝑥𝑡 𝑥𝑡−1, 𝑥0 𝑝 𝑥𝑡−1 𝑥0

𝑝 𝑥𝑡 𝑥0
=
𝑝 𝑥𝑡 𝑥𝑡−1 𝑝 𝑥𝑡−1 𝑥0

𝑝 𝑥𝑡 𝑥0

we can compute

23



Reinterpreting DDPM sampling

Using these identities, we can reinterpret DDPM sampling as

At each step, (i) estimate 𝑋0 and (ii) sample ത𝑋𝑡−1 conditioned on ത𝑋𝑡 and ത𝑋0 = 𝑋0. 
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DDPM = discretization of VP SDE

DDPM forward process in the limit 𝛽𝑡 → 0

𝑋𝑡+1 = 1 − 𝛽𝑡𝑋𝑡 + 𝛽𝑡𝑍𝑡 ≈ 1 −
𝛽𝑡
2

𝑋𝑡 + 𝛽𝑡𝑍𝑡

Consider the general VP forward-time SDE

With Δ𝑡 = 1, the Euler–Maruyama discretization is 

𝑋𝑡+1 = 1 −
𝛽 𝑡

2
𝑋𝑡 + 𝛽 𝑡 𝑍𝑡

and the two agree.
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DDPM = discretization of VP SDE

DDPM sampling in the limit of slowly varying 𝛽𝑡 and 𝛽𝑡 → 0

Here, we identify 𝛽 𝑡 = 𝛽𝑡 and argue that

26



DDPM = discretization of VP SDE

Reverse-time VP SDE

With Δ𝑡 = −1, the Euler–Maruyama discretization is

and the two agree.
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DDPM loss via variational lower bound

28

The score-matching DDPM loss can be obtained as a variational lower (upper) bound.

Let 𝑋𝑖:𝑗 denote 𝑋𝑖 , 𝑋𝑖+1, … , 𝑋𝑗 . Let 𝑞 denote the forward process and 𝑝𝜃 the learned 

reverse process. Then,



DDPM loss via VLB

29

Instead of minimizing the negative log-likelihood, minimize a variational lower (upper) bound 

(VLB). Follow the VLB derivation using Jensen’s inequality, standard for VAEs, to get the 

upper bound:

Next, take the expectation with respect to 𝑋0 on both sides.
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DDPM loss via VLB

So we arrive at 

Note that 𝐿𝑇 is independent of 𝜃. 𝐿0 is often ignored because it is cumberson and it does 

not seem to significantly affect the results. So we consider the loss

𝐿 =

𝑡=2

𝑇

𝐿𝑡−1
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DDPM loss via VLB

In the homework, you will show

Remember that

Using KL-divergence calculations that you will carry out in the homework, we have
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DDIM

Denoising Diffusion Implicit Models (DDIM) is a discrete-time diffusion probabilistic model 

based on non-Markovian “forward” process.

Specifically we have

For us, the 𝜌𝑡 = 0 case is most interesting as it corresponds to ODE sampling.

33J. Song, C. Meng, and S. Ermon, Denoising diffusion implicit models, ICLR, 2021.

The graphical models of DDPM generation (left) and DDIM generation (right).



DDIM marginals = DDPM marginals

The transition kernel 𝑋0 ↦ 𝑋𝑇 and 𝑋0, 𝑋𝑡+1 ↦ 𝑋𝑡 are chosen so that the marginals of DDIM 

match the marginals of DDPM:

Proof by induction:

To be precise, this shows that the conditional marginals, conditioned on 𝑋0, match.

This implies that the marginals, conditioned on nothing, also match.
34



DDIM training = DDPM training

Since DDIM and DDPM have the same conditional marginals, their conditional and 

unconditional score functions are the same.

DDIM trains the error (score) network 𝜀𝜃 𝑋𝑡, 𝑡 that predicts 𝜀𝑡 given

where 𝑍1, … , 𝑍𝑡is are IID unit Gaussians.

Training of DDPM and DDIM are identical.

(Training requires “forward-time” corruption.)

Sampling of DDPM and DDPM differ.

(Sampling refers to “reverse-time” sampling.)
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DDIM sampling

Unbiased estimator of 𝑋0 given 𝑋𝑡:

DDIM sampling is done with
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Deterministic DDIM sampling

When 𝜌𝑡 = 0,only generation of ത𝑋𝑇 is random, and the subsequent steps are deterministic.
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Deterministic DDIM sampling

We can express the 𝜎𝑡 = 0 generation in one line as follows.

Equivalence follows from direct calculations.
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DDIM = discretization of VP ODE

Consider the general VP forward-time SDE

Since DDIM and DDPM share the same marginals, the forward process of DDIM can also 

be viewed as a discretization of VP ODE.
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DDIM = discretization of VP ODE

DDIM sampling in the limit of slowly varying 𝛽𝑡 and 𝛽𝑡 → 0
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DDIM = discretization of VP ODE

The corresponding reverse-time VP ODE is

With Δ𝑡 = −1, the Euler discretization is

and the two agree.
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