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Score network architecture
𝑠! 𝑋", 𝑡 is trained as a single U-Net architecture with time 𝑡 injected into intermediate layers.

2
J. Ho, A. Jain, and P. Abbeel, Denoising diffusion probabilistic models, NeurIPS, 2020.
Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, Score-based generative modeling through stochastic differential equations, 
ICLR, 2021.
P. Dhariwal and A. Nichol, Diffusion models beat GANs on image synthesis, NeurIPS, 2021.



Score network architectural components
• GELU, SiLU, Swish activations
• U-Net

• Includes convolutional layers and skip connections
• Time embedding
• Additional residual connections in residual blocks
• Attention layers
• GroupNorm
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U-Net

4O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional networks for biomedical image segmentation, Medical Image Computing and Computer-
Assisted Intervention, 2015.

The U-Net architecture:
• Reduce the spatial dimension 

to obtain high-level (coarse 
scale) features

• Upsample or transpose 
convolution to restore spatial 
dimension.

• Use residual connections 
across each dimension 
reduction stage.



Time embeddings
Score networks use time embedding similar to the positional encoding of transformer 
architectures. Time embeddings provide time information and the score networks (the 
residual blocks) learn to appropritately utilize the informaiton.
 

5A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, NeurIPS, 2017.



Residual block
A building block of overall architecture.

Time embedding (𝑡#$%) injected into the 
scale-shift (SS) block. SS performs 

scale ⊙ 𝑌 + shift

where 𝑌 is the output of GroupNorm and 
scale; shift  is the output of the MLP 

processing 𝑡#$%.

Same 𝑡#$% is injected into all residual 
blocks. The different residual blocks can 
learn to use 𝑡#$% differently.
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Pixel-wise multi-head self-attention
Pixel-wise multi-head encoder-only self-attention layers are used. Layer design due to #.

Each pixel (which has many channels) gets its own query, key, and value vectors. 

Different from vision transformers (ViT)% in 2 main ways. 
• ViT are patch-wise self-attention.
• In U-Nets, attention layers are interleaved with convolution layers. ViTs are attention-only 

architectures.

7

#X. Chen, N. Mishra, N. Rohaninejad, and P. Abbeel, PixelSNAIL: An improved autoregressive generative model, ICML, 2018.
#J. Ho, A. Jain, and P. Abbeel, Denoising diffusion probabilistic models, NeurIPS, 2020.
%A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. 
Houlsby, An image is worth 16x16 words: Transformers for image recognition at scale, ICLR, 2021.
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GroupNorm
Batch normalization normalizes across batches and pixels (but not across channels).
Group normalization (GroupNorm) normalizes across a group of channnels and pixels
(but not across batch elements).

9Y. Wu and K. He, Group normalization, ECCV, 2018.

H
, W

C N

Batch Norm
H

, W

C N

Layer Norm

H
, W

C N

Instance Norm

H
, W

C N

Group Norm



GN for convolutional layers
Input: 𝑋 batch size × channels × vertical dim × horizontal dim

output: GN!,#(𝑋). shape GN!,# 𝑋 = shape(𝑋)

GN!,# for conv. layers acts independently over batch elements. Group count parameter 𝐺.
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GN normalizes over each group of convolutional filters. So :𝜇 and :𝜎. per group. However, The mean and 
variance are explicitly controlled through the per-channel (not per-group) learned parameters 𝛽 and 𝛾.
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Score network architecture
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Discrete- to continuous-time diffusion
Publication dates:
• NCSN (NeurIPS 19)
• DDPM (NeurIPS 20)
• DDIM (ICLR 21)
• SDE Diffusion (ICLR 21)

After the dust settled, people now understand that
• NCSN is a discretization of SDE sampling of VE SDE.
• DDPM is a discretization of SDE sampling of VP SDE.
• DDIM is a discretization of ODE sampling of VP SDE. (One specific instance of DDIM.)
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Tweedie’s formula: 1st order
Consider the random variable

(We don’t assume 𝑝& is Gaussian.) Then, 

If 

with 𝛾 ≠ 0, then 

13B. Efron, Tweedie’s formula and selection bias, Journal of the American Statistical Association, 2012.



Tweedie’s formula: 2nd order
Consider the random variable

(We don’t assume 𝑝& is Gaussian.) Then, 

If 

with 𝛾 ≠ 0, then 

14B. Efron, Tweedie’s formula and selection bias, Journal of the American Statistical Association, 2012.



Reverse cond. distribution ≈ Gaussian
Consider the random variable

By definition, 𝑝'|& = 𝒩 𝑋, 𝜎)𝐼  is Gaussian. (We don’t assume 𝑝& is Gaussian.) In general, 
𝑝&|' is not a Gaussian, but 𝑝&|' is approximately Gaussian in the limit of 𝜎 → 0.

If

with 𝛾 ≠ 0, then, in the limit of 𝜎 → 0, 

15



Reverse cond. distribution ≈ Gaussian

16

h.o.t. = higher-order term



DDPM
Forward model:

So,

and, after some calculations, this implies

17J. Ho, A. Jain, and P. Abbeel, Denoising diffusion probabilistic models, NeurIPS, 2020.



DDPM
Forward model:

Reverse model:

True:

Learned:

J. Ho, A. Jain, and P. Abbeel, Denoising diffusion probabilistic models, NeurIPS, 2020.

(for small 𝛽!)

Note, for small 𝛽!

Choice of "𝛽! is further motivated in Ho, 
Jain, Abbeel paper.



DDPM loss
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DDPM training
Training is analogous to the continuous-time (SDE) setup.
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DDPM sampling
The true distribution of 𝑋* is
If 𝑇 and 𝛽+, … , 𝛽* are chosen such that >𝛼* ≈ 0, then 𝑝* ≈ 𝒩 0, 𝐼 .

Sampling from the learned distribution

Sample 𝑋" via the approximation of 𝒫 𝑋" 𝑋",+ . It is an approximation because 𝒫 𝑋" 𝑋",+  
is not exactly Gaussian and because the scaled score network 𝜀! is not exact. 21



Reinterpreting DDPM sampling
Consider the case                            . We can equivalently express DDPM sampling as

Equivalence follows from direct calculations.
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Reinterpreting DDPM sampling
Since,                                                    , Tweedie’s formula tells us

Also, using

𝑝 𝑥",+ 𝑥", 𝑥- =
𝑝 𝑥" 𝑥",+, 𝑥- 𝑝 𝑥",+ 𝑥-

𝑝 𝑥" 𝑥-
=
𝑝 𝑥" 𝑥",+ 𝑝 𝑥",+ 𝑥-

𝑝 𝑥" 𝑥-
we can compute
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Reinterpreting DDPM sampling
Using these identities, we can reinterpret DDPM sampling as

At each step, (i) estimate 𝑋- and (ii) sample >𝑋",+ conditioned on >𝑋" and >𝑋- = E𝑋-. 
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DDPM = discretization of VP SDE
DDPM forward process in the limit 𝛽" → 0

𝑋".+ = 1 − 𝛽"𝑋" + 𝛽"𝑍" ≈ 1 −
𝛽"
2

𝑋" + 𝛽"𝑍"

Consider the general VP forward-time SDE

With Δ𝑡 = 1, the Euler–Maruyama discretization is 

𝑋".+ = 1 −
𝛽 𝑡
2

𝑋" + 𝛽 𝑡 𝑍"

and the two agree.
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DDPM = discretization of VP SDE
DDPM sampling in the limit of slowly varying 𝛽" and 𝛽" → 0

Here, we identify 𝛽 𝑡 = 𝛽" and argue that

26



DDPM = discretization of VP SDE
Reverse-time VP SDE

With Δ𝑡 = −1, the Euler–Maruyama discretization is

and the two agree.
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DDPM loss via variational lower bound

28

The score-matching DDPM loss can be obtained as a variational lower (upper) bound.

Let 𝑋/:1 denote 𝑋/, 𝑋/.+, … , 𝑋1 . Let 𝑞 denote the forward process and 𝑝! the learned 
reverse process. Then,



DDPM loss via VLB

29

Instead of minimizing the negative log-likelihood, minimize a variational lower (upper) bound 
(VLB). Follow the VLB derivation using Jensen’s inequality, standard for VAEs, to get the 
upper bound:

Next, take the expectation with respect to 𝑋- on both sides.
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DDPM loss via VLB
So we arrive at 

Note that 𝐿* is independent of 𝜃. 𝐿- is often ignored because it is cumberson and it does 
not seem to significantly affect the results. So we consider the loss

𝐿 =N
"2)

*

𝐿",+
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DDPM loss via VLB
In the homework, you will show

Remember that

Using KL-divergence calculations that you will carry out in the homework, we have
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∥

∥

∥

∥

2

=
T
∑

t=2

βt

2(1− βt)(1− ᾱt)
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DDIM

Denoising Diffusion Implicit Models (DDIM) is a discrete-time diffusion probabilistic model 
based on non-Markovian “forward” process.
Specifically we have

For us, the 𝜌" = 0 case is most interesting as it corresponds to ODE sampling.

33J. Song, C. Meng, and S. Ermon, Denoising diffusion implicit models, ICLR, 2021.

The graphical models of DDPM generation (left) and DDIM generation (right).



DDIM marginals = DDPM marginals
The transition kernel 𝑋- ↦ 𝑋* and 𝑋-, 𝑋".+ ↦ 𝑋" are chosen so that the marginals of DDIM 
match the marginals of DDPM:

Proof by induction:

To be precise, this shows that the conditional marginals, conditioned on 𝑋-, match.
This implies that the marginals, conditioned on nothing, also match.
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DDIM training = DDPM training
Since DDIM and DDPM have the same conditional marginals, their conditional and 
unconditional score functions are the same.

DDIM trains the error (score) network 𝜀! 𝑋", 𝑡 that predicts 𝜀" given

where 𝑍+, … , 𝑍"is are IID unit Gaussians.

Training of DDPM and DDIM are identical.
(Training requires “forward-time” corruption.)

Sampling of DDPM and DDPM differ.
(Sampling refers to “reverse-time” sampling.)
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DDIM sampling
Unbiased estimator of 𝑋- given 𝑋":

DDIM sampling is done with
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Deterministic DDIM sampling
When 𝜌" = 0,only generation of >𝑋* is random, and the subsequent steps are deterministic.
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Deterministic DDIM sampling
We can express the 𝜎" = 0 generation in one line as follows.

Equivalence follows from direct calculations.
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DDIM = discretization of VP ODE
Consider the general VP forward-time SDE

Since DDIM and DDPM share the same marginals, the forward process of DDIM can also 
be viewed as a discretization of VP ODE.
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DDIM = discretization of VP ODE
DDIM sampling in the limit of slowly varying 𝛽" and 𝛽" → 0
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DDIM = discretization of VP ODE
The corresponding reverse-time VP ODE is

With Δ𝑡 = −1, the Euler discretization is

and the two agree.
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