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Langevin MCMC
(Markov chain Monte Carlo)

Consider

𝑝 𝑥 = 𝑒𝑉 𝑥 /𝑍

where 𝑉 𝑥 is nice and 𝑍 = ℝ𝑑׬ 𝑒
𝑉 𝑥 𝑑𝑥 is the normalization constant. Assume 𝑍 < ∞.

The marginals of

converge to the stationary distribution              as 𝑡 → ∞.#

(If 𝑋0 ∼ 𝑝 then 𝑋𝑡 ∼ 𝑝. Follows from directly verifying the Fokker–Planck equation.)

2T.-S. Chiang, C.-R. Hwang, and S. J. Sheu, Diffusion for global optimization in ℝ𝑛, SIAM Journal on Control and Optimization, 1987.



Langevin MCMC

In principle, if we train 𝑠𝜃 𝑋 ≈ ∇𝑋 log 𝑝data 𝑋 perfectly, then Langevin MCMC with 𝑠𝜃 𝑋

eventually generates samples from 𝑝data. Will the following work? (It doesn’t.)

Step 1. Train 𝑠𝜃 with loss

ℒ 𝜃 = 𝔼𝑋∼𝑝data 𝑠𝜃 𝑋 − ∇𝑋 log 𝑝data 𝑋 2

using SSM (or DSM).

Step 2. Run Langevin MCMC with small 𝛥𝑡:
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Langevin v.1 (doesn’t work)

Train score network via sliced score matching (SSM).

Output: 𝑠𝜃 ≈ ∇ log 𝑝data?
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Problem 1 of Langevin

Manifold hypothesis) If 𝑝data does not have full support (data resides on a low-dimensional 

manifold), then log 𝑝data 𝑋 = −∞ out of support. The learning 𝑠𝜃 𝑋 ≈ ∇𝑋 log 𝑝data 𝑋 is an 

ill-posed problem.

Resolution is to perturb data with Gaussian noise with small variance 𝜎2 and learn the 

perturbed distribution ෤𝑝data.

(We give up on sampling from 𝑝data. Try to sample from ෤𝑝data instead.)
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Langevin SSM v.2 (doesn’t work)

Output: 𝑠𝜃 ≈ ∇ log ෤𝑝data?
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Langevin DSM v.2 (doesn’t work)

We can also use denoising score matching (DSM).

Output: 𝑠𝜃 = −
1

𝜎
𝜀𝜃 ≈ ∇ log ෤𝑝data?

Here, we use
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Problem 2 of Langevin

Slow mixing of Langevin) The Langevin MCMC sampling

takes too long to converge (even though convergence is guaranteed with infinite iterations).

Resolution is to start with large “temperature” 𝜏 ≫ 1 and gradually reduce it to 𝜏 = 1.
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Sampling with annealed Langevin

The Langevin MCMC with temperature 𝜏 ≥ 1

corresponds to the SDE

The stationary distribution is

At high temperature, stationary distribution becomes nicer (closer to unimodal), so sampling 

is easier. At 𝜏 = 1, the sampling is harder, but the gradual reduction in 𝜏 means 𝑝𝜏 changes 

gradually, so annealing allows us to eventually sample from 𝑝1.
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With 𝑉 𝑥 = −𝑥2 𝑥 − 2 𝑥 + 2 , we have 𝑒𝑉 𝑥 /𝜏

10

𝜏 = 100 𝜏 = 25

𝜏 = 5 𝜏 = 1



Sampling with annealed Langevin

11Z. Li, Y. Chen, and F. T. Sommer, Learning energy-based models in high-dimensional spaces with multi-scale denoising score matching, arXiv, 2019.



Sampling with annealed Langevin

One advantage of this approach is that the learned score network 𝑠𝜃 𝑋 is time independent, 

so it is, in principle, simpler. However, empirical performance is not good.#

Annealed Langevin dynamics can work well in Bayesian statistics, where 𝑉 𝑥 or the score 

function ∇𝑉 𝑥 is precisely known.

In diffusion probabilistic models, however, the score function must be learned.

This is difficult due to problem 3.

12#Z. Li, Y. Chen, and F. T. Sommer, Learning energy-based models in high-dimensional spaces with multi-scale denoising score matching, arXiv, 2019.



Problem 3 of Langevin

Inaccurate score estimation low-density regions.) Training of 𝑠𝜃 with SSM or DSM 

happens only at datapoints 𝑋 ∼ 𝑝 or at its perturbations ෨𝑋 = 𝑋 + 𝜎𝜀. 

If 𝑋′ is highly unlikely, then 𝑠𝜃 𝑋′ will not be accurately trained. However, 𝑋′ may be an 

image reachable with high temperature or it may be in a low-probability region that must be 

traversed for an image in one peak to reach another peak.

Resolution is to add noise to 𝜎 ≫ 0 and gradually reduce it 𝜎 = 0, and learn separate score 

function for all noise levels.
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Annealed Langevin dynamics with NCSN

Noise conditioned score network (NCSN) resolves all three problems by considering varying 

levels of noise perturbations and a score network conditioned on the varying noise levels.

Let 𝑋 ∼ 𝑝data and 𝜀 ∼ 𝒩 0, 𝐼 . Define ෤𝑝data
𝜎 via

Equivalently,

14Y. Song and S. Ermon, Generative modeling by estimating gradients of the data distribution, NeurIPS, 2019.



With 𝑝 𝑥 ∝ 𝑒−𝑥
2 𝑥−2 𝑥+2 , we have ෤𝑝data

𝜎
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𝜎 = 3 𝜎 = 1

𝜎 = 0.3 𝜎 = 0.1



Training for NCSN

Output: 𝑠𝜃 𝑥, 𝜎𝑖 = −
1

𝜎𝑖
𝜀𝜃 𝑥, 𝜎𝑖 ≈ ∇ log ෤𝑝data

𝜎𝑖

16Y. Song and S. Ermon, Generative modeling by estimating gradients of the data distribution, NeurIPS, 2019.



Sampling with NCSC

(The NCSN paper also considers a stepsize schedule Δ𝑡1, Δ𝑡2, … , Δ𝑡𝐿.) 17



Discussion
The authors of NCSN refer to their sampling algorithm as an “an annealed version of 
Langevin dynamics” despite it not being exactly the same as the classical sense of 
annealing, which involves the notion of temperature.

If 𝑋′ is an unlikely data and 𝜎big ≫ 𝜎small ≈ 0, then 𝑠𝜃 𝑋′, 𝜎big may be trained well, but 

𝑠𝜃 𝑋′, 𝜎small will not be trained well. This is okay because:

• 𝑠𝜃 𝑋′, 𝜎small is not used often in sampling.

• The conditional U-Net architecture encourages 𝑠𝜃 𝑋′, 𝜎small ≈ 𝑠𝜃 𝑋′, 𝜎big when there is 

training data for 𝑋′, 𝜎big but not for 𝑋′, 𝜎small . If 𝑠𝜃 𝑋′, 𝜎small is used in a small-

probability event, then 𝑠𝜃 𝑋′, 𝜎small ≈ 𝑠𝜃 𝑋′, 𝜎big is a reasonable direction.

For time-dependent score networks 𝑠𝜃 𝑋, 𝑡 for diffusion SDEs and DDPM, using a single 
time-conditioned U-net allows the training at one time-step to influence other adjacent 
timesteps. This is good as it 𝑠𝜃 𝑋′, 𝑡 to have reasonable directions for small 𝑡 (i.e., low 
noise) even for unlikely data 𝑋′.
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NCSN = discretization of VE SDE

Consider the general VE forward-time SDE

With Δ𝑡 = 1, the Euler–Maruyama discretization is 

corresponds to the forward noising process of NCSN, which learns the score functions

for a noise schedule 𝜎1, 𝜎2, … , 𝜎𝐿. There is no direct correspondence with sampling.
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Conditional generation

Assume we have access to 𝑋, 𝑌 ∼ 𝑝data
𝑋,𝑌 . The goal of conditional generation is to sample 

from 𝑋 ∼ 𝑝data
𝑋|𝑌

⋅ 𝑌 . (Here, the 𝑌 may be “labels” but it may also be other auxiliary 

information as we shall see later.)



Conditional forward-time SDE

Consider a setup where 𝑋, 𝑌 are randomly generated and we applying a forward-time 

SDE to 𝑋. So,

which is, of course, equivalent to

In particular, the transition 𝑋0 ↦ 𝑋𝑡 is independent of 𝑌 conditioned on 𝑋0:

21



Conditional reverse-time SDE

Given 𝑌, the forward-time SDE generates 𝑋𝑡 conditioned on 𝑌 and has 𝑋𝑡 ∼ 𝑝𝑡 ⋅ 𝑌 :

The reverse-time SDE generates ത𝑋0 ∼ 𝑝0 ⋅ 𝑌 = 𝑝data
𝑋|𝑌

⋅ 𝑌 :

Can generate from                                    by learning conditional score                             .

By Bayes’s rule, 
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Base classifier guidance

1. Train regular score function 𝑠𝜃 𝑋𝑡, 𝑡 ≈ ∇ log 𝑝𝑡 𝑋𝑡 by disregarding the label 𝑌:
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Base classifier guidance

2. Train a time-dependent classifier

𝑐𝜙 𝑋𝑡 , 𝑌, 𝑡 ≈ 𝑝𝑡 𝑌 𝑋𝑡 that predicts the 

label 𝑌 given the corrupted data 𝑋𝑡. 
The classifier 𝑐𝜙 is like a usual 

classifier in supervised learning, but it 

takes in an additional time parameter 𝑡 .
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Base classifier guidance

3. Use 𝑠𝜃 𝑋𝑡, 𝑡 and 𝑐𝜙 𝑋𝑡, 𝑌, 𝑡 to approximate the reverse-time conditional SDE

25

J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, Deep unsupervised learning using nonequilibrium thermodynamics, ICML, 2015.

Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, Score-based generative modeling through stochastic differential equations, 

ICLR, 2021.



Scaled classifier guidance

Experimentally, it helps to scale the classifier gradients by a constant factor 𝜔 larger than 1. 

When using a scale of 𝜔 = 1, it can happen that the classifier assigned reasonable 

probabilities (around 50%) to the desired classes for the final samples, but these samples 

did not match the intended classes upon visual inspection. Scaling up the classifier 

gradients remedies this problem, and the class probabilities from the classifier increases to 

nearly 100%. 

In other words, we follow the SDE

with 𝜔 > 1.

26P. Dhariwal and A. Nichol, Diffusion models beat GANs on image synthesis, NeurIPS, 2021.



Scaled classifier guidance

The parameter 𝜔 trades off diversity for fidelity. Consider 𝑌 =“Pembroke Welsh corgi”. For 

𝜔 = 1.0 (left), images do not all fit the designated class. For 𝜔 = 10.0 (right), images are 

much more class-consistent.

27P. Dhariwal and A. Nichol, Diffusion models beat GANs on image synthesis, NeurIPS, 2021.



Classifier-free guidance

The problem with classifier guidance is that we must train a separate classifier. (We need 

two neural networks.) Classifier-free guidance relies on

to get

with a classifier scale 𝜔.

Instead of a separate classifier, we train one score network to represent both the 

unconditional score ∇𝑋𝑡 log 𝑝𝑡 𝑋𝑡 and conditional score ∇𝑋𝑡 log 𝑝𝑡 𝑋𝑡 𝑌 .

28
J. Ho and T. Salimans, Classifier-free diffusion guidance, NeurIPS 2021 Workshop on Deep Generative Models, 2021.



Training for classifier-free guidance

Choose a forward SDE which defines 𝛾𝑡 and 𝜎𝑡.
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Sampling for classifier-free guidance

Since ∇𝑋𝑡 log 𝑝𝑡 𝑋𝑡 = ∇𝑋𝑡 log 𝑝𝑡 𝑋𝑡 𝑌 = ∅ , generate samples with
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Class embedding

Class embeddings are injected into U-Net architecture as an embedding layer added to 

the time embedding. In PyTorch, an nn.Embedding layer has a trainable output vector for 

each inedex/label.
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Inpainting

In image inpainting, we reconstruct parts of the 

image based on partial measurement.

Assume we have a score network

𝑠𝜃 𝑋, 𝑡 ≈ ∇𝑋 log 𝑝𝑡 𝑋 trained for

We do not re-train a different score network for 

image inpainting.

32
Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, Score-

based generative modeling through stochastic differential equations, ICLR, 2021.



Inpainting

Assume 𝑓 and 𝑔 are defined elementwise. More specifically, assume 

can be decomposed into

Under this assumption, forward-time corruption is independent across pixels and channels. 

(Reverse-time generation is not independent across pixels and channels, because the 

score function ∇𝑋 log 𝑝𝑡 𝑋 does not split elementwise.)

The forward-time SDEs we have been considering fall under this category.
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Inpainting

Let 𝑋0 ∈ ℝ𝐶×𝑊×𝐻 be the true, partially observed image. Let Ω ∶ ℝ𝐶×𝑊×𝐻 → ℝ𝐾, where 𝐾 ≤ 𝐶𝑊𝐻,
be a pixel/channel subsampling operation. Our observed data is 𝑌 = Ω 𝑋0 . Let 𝑋𝑡

Ω = Ω 𝑋𝑡 .

Let Ω𝐶 be a complementary pixel subsampling operation, i.e., Ω𝐶 selects the other pixels not 
selected by Ω. Let 𝑋𝑡

𝐶 = Ω𝐶 𝑋𝑡 . Then 𝑋𝑡
𝐶 follows basically the same forward-time SDE

where 𝑓𝐶 𝑍𝑡 , 𝑡 = Ω𝐶 𝑓 𝑋𝑡 , 𝑡 , 𝑔𝐶 𝑡 = Ω𝐶 𝑔 𝑡 , and 𝑊𝑡
𝐶 = Ω𝐶 𝑊𝑡 .

Since the Brownian motion 𝑊𝑡 is coordinate-wise independent, 𝑊𝑡
𝐶 is simply a lower-

dimensional Brownian motion.

Goal is to sample 𝑋0
𝐶 given 𝑌 = Ω 𝑋0 .
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We have

where ෠𝑋𝑡
Ω is a forward noise sample given 𝑌 = 𝑋0

Ω.

First approximation is based on argument that 𝑋0
Ω = 𝑌 does not additional provide much 

information about 𝑋𝑡
C given 𝑋𝑡

Ω. For small 𝑡, 𝑋𝑡
Ω ≈ 𝑋0

Ω = 𝑌 so the approximation holds. For 
large 𝑡, 𝑋0

Ω = 𝑌 becomes further away from 𝑋𝑡
𝐶 in the Markov process, and thus have 

smaller impact on 𝑋𝑡
𝐶. Moreover, the approximation error for large 𝑡 matter less for the final 

sample, since it is used early in the sampling process.

I do not find this argument fully convincing, and there are more sophisticated# diffusion-
based inpainting techniques. However, this approach serves as a nice and simple baseline.

35
#When trained directly on the inpainting task, diffusion models can smoothly inpaint regions of an image without edge artifacts:

C. Saharia, W. Chan, H. Chang, C. A. Lee, J. Ho, T. Salimans, D. J. Fleet, and M. Norouzi, Palette: Image-to-image diffusion models, SIGGRAPH, 2022.



Inpainting

The second approximation is a single-sample estimate of the expected value.

So ෠𝑋𝑡
Ω is the forward-time corruption from 𝑋0

Ω = 𝑌. 

Finally, we perform the SDE sampling via 
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We generate ത𝑋𝑘
𝐶 in reverse-time while forward-corrupting 𝑌 = 𝑋0

𝛺 to get ෠𝑋𝑡
Ω. The score 

function for ത𝑋𝑘
𝐶 is obtained by evaluating the score network 𝑠𝜃 with input ത𝑋𝑘

𝐶; ෠𝑋𝑡
Ω .

SDE inpainting sampling
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Image colorization

In image colorization, we reconstruct the colors 

based on a greyscale image.

The colorization is an instance of inpainting 

after an orthogonal change of coordinates. Use 

the orthogonal matrix

to map 𝐼; 𝐴 ; 𝐵 ↦ 𝑅;𝐺; 𝐵 .

38
Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, Score-

based generative modeling through stochastic differential equations, ICLR, 2021.



Image colorization

Consider the forward-time SDE

Let 𝑝𝑡 𝑡∈ 0,𝑇 be the marginal densities of 𝑋𝑡 𝑡∈ 0,𝑇 . Let 𝑠𝜃 𝑋𝑡, 𝑡 ≈ ∇𝑋𝑡 log 𝑝𝑡 𝑋𝑡 be a 

trained score network. Let

where 𝐔 is an orthogonal matrix. Let 𝑞𝑡 𝑡∈ 0,𝑇 be the marginal densities of 𝑌𝑡 𝑡∈ 0,𝑇 . By the 

change of variables formula, (since orthogonal matrices have unit Jacobian)

So 𝐔𝑇𝑠𝜃 𝐔𝑌𝑡, 𝑡 approximates the score function for 𝑌𝑡.
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Image colorization

The forward-time SDE of 𝑌𝑡 is

Using the fact that                    we can express it equivalently as

The corresponding reverse-time SDE is

and it is approximated by

40
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Cascaded diffusion model (CDM)

Generating a high-resolution image directly in a single step via diffusion is expensive.

Cascaded diffusion models reduce the computational cost by:

• Generate a low-resolution image by a diffusion model.

• Generate higher resolution image by diffusion conditioned on the lower resolution image.

42J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans, Cascaded diffusion models for high fidelity image generation, JMLR, 2022.



CDM architecture

The first network in CDM is 

identical to that of a standard 

diffusion model.

The second and subsequent 

networks use U-Nets for 

conditional score functions 

with intput being the 

concatenation of the previous 

image ത𝑋𝑡 and an “upsampled 

version” of the low-resolution 

image 𝑍.

43

Class label 𝐶 and timestep 𝑡 are injected into each block as 

an embedding, not depicted here.



Compounding error problem

In super-resolution-based generative models, the compounding error problems is

1. Generative model generates a low-resolution image with some “error”, a certain 

unrealistic and undesirable feature in the image.

2. The super-resolution routine magnifies (compounds) this error.

CDMs mitigate the compounding error problem by conditioning augmentation.
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Conditioning augmentation: Training

The super-resolution model takes in 

a noise-corrupted 𝑍𝑠 and the degree 

of corruption 𝑠.

The error (score) network 𝜀𝜃 is 

conditioned on 𝑍𝑠, not 𝑍0.

Instead of conditioning on the clean 

upsampled image 𝑍0, we are using 

the noise-corrupted (augmented) 

version 𝑍𝑠 for conditioning. Hence, 

the name conditioning augmentation.

45
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CDM sampling

The sampling requires choosing 𝑠
as a hyper parameter.

The sampling

𝑋𝑡−1 ∼ 𝑝𝜃 ⋅ 𝑋𝑡, 𝑋𝑠, 𝐶

depends on 𝑡 and 𝑠. (The error 

(score) network 𝜀𝜃 takes 𝑡 and 𝑠 in 

as input and uses them through 

time embeddings.)
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