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GLIDE

“a hedgehog using a “a corgi wearing a red bowtie “robots meditating in a “a fall landscape with a small
calculator” and a purple party hat” vipassana retreat” cottage next to a lake”

Guided Language to Image Diffusion for
Generation and Editing (GLIDE) is a diffusion-
based text-to-image model.

“a surrealist dream-like oil “a professional photo of a “a high-quality oil painting “an illustration of albert
painting by salvador dalf sunset behind the grand of a psychedelic hamster einstein wearing a superhero
of a cat playing checkers” canyon” dragon” costume”

These models significantly outperform prior text-
to-image models based on GANSs.

There are 2 versions of GLIDE that use

“a painting of a fox in the style “a red cube on top “a stained glass window

1 ‘ L I P g u I d an Ce AR of starry night” of a blue cube” of a panda eating bamboo™

2. Text-conditioning and classifier-free guidance

A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew, I. Sutskever,
and M. Chen, GLIDE: Towards photorealistic image generation and editing with ,, \ 4
teXt-gl"“ded dIﬁ:USIOn mOdels’ ICML! 2022 “a crayon drawing of a space elevator” “a futuristic city in synthwave style” “a pixel art corgi pizza” “a fog rolling into new york”™




GLIDE with CLIP guidance

The first version of GLIDE uses a “pre-trained” CLIP model to perform classifier guidance.

Since |

logp(C'| X) ~ ;f@ (X) - g4(C') 4 constant independent of X

one can consider generating images via the SDE

dX; = (f — gQ(Vyt log pe(X¢) + wV=. logp(C | X,)))dt + gdW,, X1 ~ pr
— W _ _ _
~ (f — 9*(Vx, logpi(Xy) + ;vfth(Xt) - 96(C)))dt + gdW,, X1 ~pr

This would be convenient as we could use a pre-trained CLIP model, but this doesn’t work.




GLIDE with CLIP guidance

The problem is logp(C | X) # log p(C'| X¢), where X, is a forward-corrupted version of X.
We therefore need a time-dependent CLIP model such that

1
logp:(C'| Xy) = - ét)(Xt) -gg)(C) + constant independent of X,

we can then generate images via
dX; = (f — g°(Vx, logpe(Xs) + wVx, logpi(C| Xy)))dt + gdWy, X~ pr

_ W _ — _
~ (f — 62(Vx, logp(X2) + =Vx f37(X4) - ¢5(C)))dt + gdWy,  Xp ~pr
T @

The time-dependent CLIP model (fg(t),gg)) is “pre-trained” in the sense that it is trained
separately from the score network s, (X;, t) = Vy, logp:(X;).



GLIDE via direct text-conditioning

Direct text-conditioning uses a classifier-free guidance, and it uses a conditional error (score)

network
80 (Xt' t, C)

The caption C is encoded into a sequence of K tokens, which are then processes by a
transformer model. The caption embeddings are added to the time embeddings.

Furthermore, the K tokens are made available to the attention layers of the U-Net through
Cross attention, i.e., the K tokens are projected into key and value vectors (but not query
vectors) so that the queries (corresponding to pixels) can access them.



DALL-E 2

a propaganda poster depicting a cat dressed as french emperor
napoleon holding a piece of cheese

a dolphin in an astronaut suit on saturn, artstation a teddy bear on a skateboard in times square

an espresso machine that makes coffee from human souls, artstation panda mad scientist mixing sparkling chemicals, artstation a corgi’s head depicted as an explosion of a nebula

A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, Hierarchical text-conditional image generation with CLIP latents, arXiv, 2022. 6



DALL-E 2

: d CLIP objective i
9gp R — B e B e
“a corgi
: laying a
The DALL-E 2 model consists 3 ﬁlaie ...........................................................................................
of 4 neural networks: throwing
. d trumpet” ({\b ; 8 d
mage encoder fg Or O
O O O O
- Textencoderg, T —9-9 O O
* Image decoder hy, prior decoder

* “Prior” p,,

(I'm using w to denote random generation.)

A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, Hierarchical text-conditional image generation with CLIP latents, arXiv, 2022. V4



CLIP encoders fg and g4

Stage 1. Train image encoder fg and text encoder g4 as a CLIP model, or download a pre-
trained CLIP model. (This CLIP model has no time dependence.)

The encoders g4 and fg are frozen as the other networks are trained.

gp 1 C— R?

p!

CLIP objective img

encoder

LITTTTTT]

“a corgi
playing a
flame
throwing
trumpet”




fo: X >R

img
encoder

DALL-E 2 decoder hy,

HEEEEEEN

Decoder h,,(Z,C) = X generates samples from p(- [fg(X)), p(- [fo(X),C), =
or p(- |C) as a conditional diffusion model. Its use cases are: " y
* hy(fe(X),®) = X in terms of semantic meaning. . OsOn

« Cannot and do not expect pixel-wise similarity. B 8

« Cool applications with the “bipartite representation” that we will
see soon. decoder d
*  hy(fe(X),C) = X more accurately, provided that C does describe X fy : REXC o X
well.

» This will be used in final text-to-image generation.

*  hy(0,C) generates an image corresponding to caption C.

* Not our final text-to-image mode. (Does not work very well.)
» Needed for classifier-free guidance.



fo: X >R

DALL-E 2 decoder hy,

img
encoder

LI PPTTT]

Stage 2: Train a conditional error (score) network 7o
ey (X, t, Z1M3ge, C) ;

with X, = 0, Z'™a8e = £ ,(X), and C, given an image caption pair
(X, C). Set Z'™age = ( with 10% chance and C = @ with 50% chance.

OO@OO
v

LI T PTTT]

decoder

.. : : hy:REXCw X
This is for 64 x 64 images, and then we have train a cascaded v "

diffusion model
64 X 64 - 256 X 256 - 1024 X 1024

10



Bipartite representation

Consider an image X. Using hy,(f3(X), @), or equivalently &, (X,, t, Z'M28¢ = f,(X),C = @),
run the DDIM sampler forward in time to generate (XT,Zimage). This X+ will look like random

noise, but it is a very particular noise instance as running the DDIM sampler backward in
time (the usual sampling direction) starting from X, conditioned on Z'"™2&¢ will generate X.

(XO X | Zimage) €_¢> (XT | Zimage)

) (XO _ X | Zimage) & (XT ’ Zimage)

CITTTTTT]
N

We call (X, ZiM38¢) the bipartite representation of X.

We can do some interesting things with it.

11



DALL:-E 2 decoder: Variations

Given X, obtain (with DDIM sampler) its bipartite representation (X, Z'™m38¢). Then sample
(Xo, Z'™age) with DDPM sampler to generate variations of X. This uses fy and hy,(Z, 9).




DALL-E 2 decoder: Interpolations

Given XM and X@, form Z = nfy(XW) + (1 — 1) f3(X@)* and run DDIM sampler multiple
times with varying n, while fixing a particular X; ~ NV (0, ) to generate interpolations.
This uses fp and hy,(Z, 9).




DALL:-E 2 decoder: Text Diffs

Given (X, C) and the bipartite representation (XT,Zimalge = fo (X)), form®
Z = fo(X) +1( gy (CY) — g4 (C))

with n > 0, where C™*" is a new text description. Then, run DDIM sampler multiple times
with varying n to apply text diffs to the image. This uses fy, g4, and hy,(Z, 0).

N Vg A / W
.} g Dt > e

S I
‘*o_?._ \f\

a photo of a V|ctor|an' house — a photo of a modern house |

"What is actually done is a spherical linear interpolation (slerp) counterpart of Z = nfy(C) + (1 — 1) (g¢(C“eW) — gqb(C)).

14



DALL:-E 2 decoder: Text Diffs

!

a photo of a IanéScapeﬁn W|nt5r — a ph';dto of a Indscape in fall

15



Text-to-Image generation without prior

At this point, we can perform text-to-image generation given text C.

Option 1: Use h,(0,C).

« Doesn’t work very well.

Caption

“A group of baseball “an oil painting of a e : “A motorcycle parked in a “This wire metal rack
h X : a hedgehog using a : :
players is crowded at corgi wearing a calculator” parking space next to holds several pairs of
another motorcycle.” shoes and sandals™ 16

the mound.” party hat”



Text-to-Image generation without prior

Option 2: Use hy,(g4(C), C).

- This ignores the fact that g, (C) is a text embedding while h,, expects an image
embedding fy (X). There is a mismatch.

« This work better, but not as good as option 3.

Text embedding

“A group of baseball “an oil painting of a 9 : “A motorcycle parked in a “This wire metal rack
. : : a hedgehog using a : :
players is crowded at corgi wearing a - parking space next to holds several pairs of
. o calculator - .-
the mound. party hat another motorcycle. shoes and sandals

.mnvx vy ||

——t A | |

WA R |

17



Option 3:
Use prior p,, .

Text embedding Caption

Image embedding

e T e Ve 4 45 T
L/
L

== | |
.mmx | |

e LIV
W A B am | f

F

fadic

“A motorcycle parked in a “Thls wire metal rack
parking space next to holds several pairs of
the mound.” party hat” another motorcycle.” shoes and sandals™

“A group of baseball “an oil pamtmo of a

] “a hedgehog using a
players is crowded at corgi wearing a shang £

calculator”



_ T éd000[
DALL-E 2 prior _ 833~
O
prior
We want a process to transform Zxt into z'mage, Do ¢ RE X C w R4

Prior p,, (Z%*, C) w» Z'Mage generates samples from p(ZiMmage|ztext ) which is
mathematically equivalent to sampling X given € and obtaining Z'™238¢ = f,(X).

Note that Z**** = g, (C). So, mathematically speaking, the conditioning on Z**** is redundant

(only conditioning on € would contain the same “information” in theory) but the CLIP-pre-
trained (and frozen) features g4 (C) are beneficial in practice.

19




DALL-E 2 prior

There are two approaches.

The first is an autoregressive approach, much alike pixelCNN.
This doesn’t work very well.

The second is based on diffusion. The architecture is a pure
transformer model, not a U-Net. Since the CLIP latents are not
Images, the inductive biases of the convolution layers are likely
not beneficial. Therefore, a U-Net is not expected to work well and
it experimentally doesn't.

20



DALL-E 2 text-to-image generation

Given text C,

1. Compute Z'** = g4 (C) 9o ¢
2. Generate p,,(Zt%t C) w z1mage, "a corgi
playing a
3. Generate hlp(zlmage’ C) w X, e 1 I
throwing /,;\ "
trumpet” OO000 =fe
“leitel
________________________________________ 8*—+ L » WO C
O O -
prior decoder

Dy i REXCw RE  hy iREXCw X

21



Imagen

Imagen is a simple cascaded
diffusion model with a pre-
trained large language model to
encode the input text into text

Text

Y

Frozen Text Encoder

Text Embedding

Y

Text-to-Image
Diffusion Model

l64 x 64 Image

Super-Resolution

“A Golden Retriever dog wearing a blue
checkered beret and red dotted turtleneck.

embeddings. ™ Diffusion Model
256 x 256 Image
Y
Super-Resolution
Diffusion Model|
1024 x 1024 Image
C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S. K. S. Ghasemipour, B. K. Ayan, S. S. Mahdavi, R. G. Lopes, T. Salimans, J. Ho, D. J. 29

Fleet, and M. Norouzi, Photorealistic text-to-Image diffusion models with deep language understanding, NeurlPS, 2022.



Imagen

Imagen

Sprouts in the shape of text ‘Imagen’ coming out of a A photo of a Shiba Inu dog with a backpack riding a A high contrast portrait of a very happy fuzzy panda
fairytale book. bike. It is wearing sunglasses and a beach hat. dressed as a chef in a high end kitchen making dough.
There is a painting of flowers on the wall behind him.

Bt | A °

Teddy bears swimming at the Olympics 400m Butter- A cute corgi lives in a house made out of sushi. A cute sloth holding a small treasure chest. A bright
fly event. golden glow is coming from the chest.

A strawberry mug filled with white sesame seeds. The
mug is floating in a dark chocolate sea.

23



Imagen

Imagen

4 i Y e
A chromeplated cat sculpture placed on a Persian rug. Android Mascot made from bamboo. Intricate origami of a fox and a unicorn in a snowy
forest.

Imagen

- p e D i

A transparent sculpture of a duck made out of glass. A raccoon wearing cowboy hat and black leather A bucket bag made of blue suede. The bag is dec-
jacket is behind the backyard window. Rain droplets orated with intricate golden paisley patterns. The
on the window. handle of the bag is made of rubies and pearls.

= Imagen g o a
Three spheres made of glass falling into ocean. Water Vines in the shape of text "Imagen’ with flowers and A strawberry splashing in the coffee in a mug under
is splashing. Sun is setting. butterflies bursting out of an old TV. the starry sky.

24



Imagen training and generation

Stage 0. Pre-train large language model, such as Text-To-Text Transfer Transformer (T5),
on plain text without any images. Once trained, freeze the large language model.

Stage 1. Train cascaded diffusion model with image-caption pairs.

Stage 2. Generate image with classifier-free guidance using dynamic thresholding.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, Exploring the limits of transfer learning with a unified text- 25
to-text transformer, JMLR, 2020.



In classifier-free guidance, using a large guidance scale parameter is necessary for text-image
alignment. However, this worsens the perceptual image quality (image fidelity).

Problem is that large guidance gradients cause image to saturate. Dynamic thresholding mitigates
this issue. Roughly speaking, dynamic thresholding gradually pushes (rather than clipping) the pixel

values to be within the appropriate range.

g
Yo ff%i

4 : ;'«g; a’ (_%5

(a) No thresholding. (b) Statlc thresholdmg (c) Dynamic thresholdmg



FID-10K

Scaling text encoder > scaling U-Net

Interesting observation:

Scaling text encoder is more important than scaling error (score) network.

I ]
== T5-Small
25 || == T-Large
—— T5-XL
—— T5-XXL

\
0.22 0.24 0.26 0.28

CLIP Score

(a) Impact of encoder size.

FID-10K

\ \ \
024 025 026 027 0.28

CLIP Score

(b) Impact of U-Net size.

0.29

FID@ 10K

25 || == static thresholding
== (lynamic thresholding

[}
o
T

H
=
T

|
0.26 0.27 0.28 0.29
CLIP Score

(¢) Impact of thresholding.
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Latent diffusion model

Standard diffusion directly operates on image.

» Perhaps inefficient to perform the many (= 1000) steps of diffusion on full image.

« Limits applicability. E.g. how can we diffuse to generate sentences?

Solution: Diffusion on latent variables of a variational autoencoder.

Latent Space Diffusion p(z1)

Encoder

Datax

—— O (2o |x)
==\
o
=14

Reconst. <

<>

|

p(zo) -

| 4 . .
p(x|zo) Decoder KL(q(zo|x)||p(2z0)) Latent Space Denoising

A. Vahdat, K. Kreis, and J. Kautz, Score-based generative modeling in latent space, NeurlPS, 2021.



Variational lower bound (VLB)

Decompose the VLB into three terms.

VLBg,9,4(X) = Ezyng, (| x) [ 10g 0y (X | Zo)]+ Dxr(qe(- | X)|Ipa(-))
= Ezyngo (-] X) [— 108 Py (X | Z0)|+E 25 mgy (- | x) (108 46(Z0 | X)|+E zyngy (| x) [— 108 po(Zo)]

" “~ “~

reconstruction term negative encoder entropy cross-entropy

71X Latent Space Diffusion
Datax Encoderﬂ¢( olX) p(zg) - 5 D(z1)

——— O (2o |x)
== Nw
i
- L
- ==l |

— _—

Reconst. <Deco der p,(Z|1Z0) KL (a(2ol )” (z0)) < Latent Space Denoising
pl/) 0 Zo|X)||P\Z
p(x|zo) 1o VU dZy = [(t) Zudt + g(t)dW,

: . 2
Prior: pg(Z,) with Z; ~ N (0,1) 0



VLB ,9,4(X) = Ezyng, (| x) [ 1080y (X | Zo)]+ Dxr(ge(- | X)|[pa(-))
= Ezyngy(-1x) (710804 (X | Z0)|+B 75 ng, (| x) 108 49 (Zo | X)|+E 20 g, (.| x) [~ log po(Z0)]

-

v W
reconstruction term negative encoder entropy cross-entropy

Under the standard VAE setup, g4 (- |X) = N (“qb (X),Z¢ (X)) and py, (- 1Zy) = NV (fyy(2),02%1).
So sampling Z, ~ q4(- |X) and forming the first two with the reparameterization trick and
backprop is straightforward.

71X Latent Space Diffusion
Datax Encoderﬂ¢( olX) p(zg) - 5 D(z1)

—— O (2o |x)
===
<+
- .
- === |

— _—

Reconst. <Deco der p,(Z|1Z0) KL (a(2ol )” (z0)) < Latent Space Denoising
x|z pl[) 0 q\Zo|X)||P\Zo
p(x|zo) dZ; = f(t)Zsdt + g(t)dW;

Prior: py(Z,) with Zy ~ NV (0,1) 30



We can deal with the cross-entropy via score matching.

dy
CE(gs(-|X)lpe(-)) = E |——= E lle — ea(Zy, t)|I°] +—10g(2vfeffo)
t~U0,1] | 2 Zorge(-] X)

e~N(0,T)
Zi=pt(Zo)+oe

where u.(Z,) is the mean of Z, conditioned on Z, under the SDE dZ; = f(t) Zdt + g(t)dW.

(Need to use the reparameterization trick for Z, ~ q4 (- |X) to be able to backprop with
respect to ¢.)

Encoder CI¢ (ZoX) D ( Zo) _ Latent Space Diffusion_» p(z1)

Datax

. ./0\ q(zo|x)
\‘f \\ -

B

Reconst. < | < —
p(x|z0) Decoder p,,(Z|Z,) KL(q(zo|x)||p(2z0)) Latent Space Denoising
Prior: pg(Z,) with Z; ~ N (0,1)

31



Latent diffusion model: Training

Stage 0. Pre-train VAE with prior p, = N'(0,1). (q¢, py)
Stage 1. End-to-end train VAE with diffusion model. (g4, py Do)

« Training only pg Is okay, but joint training provides improvement.

Encoder bqu (ZoX) D ( Zo) _ Latent Space Diffusion_» p(z1)

Datax

e (Zo|x)
==
P
- L
===

Reconst.

E ‘ e
Decoder p,,(Z|Zy) KL(a(znlx z Latent Space Denoising
p(x|zo) yp(Z1Zo (9(zo|x)||p(Z0)) dZ, = f(t)Zdt + g(t)dW,

Prior: pg(Z,) with Z; ~ N (0,1)
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Latent diffusion model: Training

Since VAE is pretrained with p, = NV (0, 1), the terminal marginal of the diffusion is chosen to
be p(Z,) = N(0,1), and if we choose the SDE dZ; = f(t)Z:dt + g(t)dW; to be the VP-SDE,
the training of pg in Stage 1 should be much easier than the standard diffusion.

In standard diffusion, the distributions of X, and X, are significantly different. In this setup,
the distributions of Z, and Z; are very similar.

33



Stable Diffusion

Latent diffusion model with pre-trained
and frozen autoencoder.

Then conditional diffusion model trained
on latent variables.

Latent Space
—-I Diffusion Process ———»
Denoising U-Net €g 2T

il &

Pixel Space

'Conditioninai

emanti
Ma
Text

Repres
entations

~

D q !:’?V E

denoising step crossattention switch skip connection concat

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, High-resolution image synthesis with latent diffusion models, CVPR, 2022.

0
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Stable Diffusion: Image samples

Text-to-Image Synthesis on LAION. 1.45B Model.

"A street sign that reads ’A zombie in the
“Latent Diffusion” ’ style of Picasso’

"An image of an animal

half mouse half octopus’

"An illustration of a slightly

conscious neural network’

"A painting of a

squirrel eating a burger’

"A watercolor painting of a "A shirt with the inscription:

chair that looks like an octopus’ “I love generative models!” ’

)

LATENT
DIFFUSION

_ATETEN
DIFFUSION _

Gonorastive Moodal)

Generative
Models!




Stable Diffusion: Image samples




Stable Diffusion: Image samples

"An epic painting of Gandalf the Black
'An oil painting of a latent space.’ summoning thunder and lightning in the mountains.’




Stable Diffusion: Open source

An updated version of the model presented in the paper by Rombach et al. was released
under the name Stable Diffusion. This has lead to many innovations.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, High-resolution image synthesis with latent diffusion models, CVPR, 2022. 38



