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GLIDE

2
A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew, I. Sutskever, 

and M. Chen, GLIDE: Towards photorealistic image generation and editing with 

text-guided diffusion models, ICML, 2022.

Guided Language to Image Diffusion for 

Generation and Editing (GLIDE) is a diffusion-

based text-to-image model.

These models significantly outperform prior text-

to-image models based on GANs.

There are 2 versions of GLIDE that use

1. CLIP guidance

2. Text-conditioning and classifier-free guidance



GLIDE with CLIP guidance

The first version of GLIDE uses a “pre-trained” CLIP model to perform classifier guidance.

Since

one can consider generating images via the SDE

This would be convenient as we could use a pre-trained CLIP model, but this doesn’t work.
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GLIDE with CLIP guidance

The problem is                                            , where 𝑋𝑡 is a forward-corrupted version of 𝑋.

We therefore need a time-dependent CLIP model such that

we can then generate images via

The time-dependent CLIP model 𝑓𝜃
𝑡
, 𝑔𝜙

𝑡
is “pre-trained” in the sense that it is trained 

separately from the score network 𝑠𝜓 𝑋𝑡, 𝑡 ≈ ∇𝑋𝑡 log 𝑝𝑡 𝑋𝑡 .
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GLIDE via direct text-conditioning

Direct text-conditioning uses a classifier-free guidance, and it uses a conditional error (score) 

network

𝜀𝜃 𝑋𝑡, 𝑡, 𝐶

The caption 𝐶 is encoded into a sequence of 𝐾 tokens, which are then processes by a 

transformer model. The caption embeddings are added to the time embeddings.

Furthermore, the 𝐾 tokens are made available to the attention layers of the U-Net through 

cross attention, i.e., the 𝐾 tokens are projected into key and value vectors (but not query 

vectors) so that the queries (corresponding to pixels) can access them.
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DALL·E 2

6A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, Hierarchical text-conditional image generation with CLIP latents, arXiv, 2022.



DALL·E 2

The DALL·E 2 model consists 

of 4 neural networks:

• Image encoder 𝑓𝜃

• Text encoder 𝑔𝜙

• Image decoder ℎ𝜓

• “Prior” 𝑝𝜔

7A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, Hierarchical text-conditional image generation with CLIP latents, arXiv, 2022.

𝑓𝜃 ∶ 𝒳 → ℝ𝑑

𝑔𝜙 ∶ 𝒞 → ℝ𝑑

ℎ𝜓 ∶ ℝ𝑑 × 𝒞 ⇝ 𝒳𝑝ω ∶ ℝ𝑑 × 𝐶 ⇝ ℝ𝑑

(I’m using ⇝ to denote random generation.)



CLIP encoders 𝑓𝜃 and 𝑔𝜙

Stage 1. Train image encoder 𝑓𝜃 and text encoder 𝑔𝜙 as a CLIP model, or download a pre-

trained CLIP model. (This CLIP model has no time dependence.)

The encoders 𝑔𝜙 and 𝑓𝜃 are frozen as the other networks are trained.
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𝑓𝜃 ∶ 𝒳 → ℝ𝑑

𝑔𝜙 ∶ 𝒞 → ℝ𝑑



DALL·E 2 decoder ℎ𝜓

Decoder ℎ𝜓 𝑍, 𝐶 ⇝ 𝑋 generates samples from 𝑝 ⋅ 𝑓𝜃 𝑋 , 𝑝 ⋅ 𝑓𝜃 𝑋 , 𝐶 , 
or 𝑝 ⋅ 𝐶 as a conditional diffusion model. Its use cases are:

• ℎ𝜓 𝑓𝜃 𝑋 , ∅ ≈ 𝑋 in terms of semantic meaning.

• Cannot and do not expect pixel-wise similarity.

• Cool applications with the “bipartite representation” that we will 
see soon.

• ℎ𝜓 𝑓𝜃 𝑋 , 𝐶 ≈ 𝑋 more accurately, provided that 𝐶 does describe 𝑋
well.

• This will be used in final text-to-image generation.

• ℎ𝜓 0, 𝐶 generates an image corresponding to caption 𝐶.

• Not our final text-to-image mode. (Does not work very well.)

• Needed for classifier-free guidance.
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𝑓𝜃 ∶ 𝒳 → ℝ𝑑

ℎ𝜓 ∶ ℝ𝑑 × 𝒞 ⇝ 𝒳



DALL·E 2 decoder ℎ𝜓

Stage 2: Train a conditional error (score) network

𝜀𝜓 𝑋𝑡, 𝑡, 𝑍
image, 𝐶

with 𝑋0 = 0, 𝑍image = 𝑓𝜃 𝑋 , and 𝐶, given an image caption pair

𝑋, 𝐶 . Set 𝑍image = 0 with 10% chance and 𝐶 = ∅ with 50% chance.

This is for 64 × 64 images, and then we have train a cascaded

diffusion model

64 × 64 → 256 × 256 → 1024 × 1024
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ℎ𝜓 ∶ ℝ𝑑 × 𝒞 ⇝ 𝒳

𝑓𝜃 ∶ 𝒳 → ℝ𝑑



Bipartite representation

Consider an image 𝑋. Using ℎ𝜓 𝑓𝜃 𝑋 , ∅ , or equivalently 𝜀𝜓 𝑋𝑡, 𝑡, 𝑍
image = 𝑓𝜃 𝑋 , 𝐶 = ∅ , 

run the DDIM sampler forward in time to generate 𝑋𝑇, 𝑍
image . This 𝑋𝑇 will look like random 

noise, but it is a very particular noise instance as running the DDIM sampler backward in 

time (the usual sampling direction) starting from 𝑋𝑇, conditioned on 𝑍image, will generate 𝑋.

We call 𝑋𝑇, 𝑍
image the bipartite representation of 𝑋.

We can do some interesting things with it.
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DALL·E 2 decoder: Variations

Given 𝑋, obtain (with DDIM sampler) its bipartite representation 𝑋𝑇 , 𝑍
image . Then sample 

𝑋0, 𝑍
image with DDPM sampler to generate variations of 𝑋. This uses 𝑓𝜃 and ℎ𝜓 𝑍, ∅ .
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DALL·E 2 decoder: Interpolations 

Given 𝑋 1 and 𝑋 2 , form 𝑍 = 𝜂𝑓𝜃 𝑋 1 + 1 − 𝜂 𝑓𝜃 𝑋 2 * and run DDIM sampler multiple 

times with varying 𝜂, while fixing a particular 𝑋𝑇 ∼ 𝒩 0, 𝐼 to generate interpolations.

This uses 𝑓𝜃 and ℎ𝜓 𝑍, ∅ .

13*Actually, the interpolation is done by spherical linear interpolation (slerp).



DALL·E 2 decoder: Text Diffs 

Given 𝑋, 𝐶 and the bipartite representation 𝑋𝑇, 𝑍
image = 𝑓𝜃 𝑋 , form*

𝑍 = 𝑓𝜃 𝑋 + 𝜂 𝑔𝜙 𝐶new − 𝑔𝜙 𝐶

with 𝜂 > 0, where 𝐶new is a new text description. Then, run DDIM sampler multiple times 

with varying 𝜂 to apply text diffs to the image. This uses 𝑓𝜃, 𝑔𝜙, and ℎ𝜓 𝑍, ∅ .

a photo of a cat → an anime drawing of a super saiyan cat, artstation

a photo of a victorian house → a photo of a modern house

14*What is actually done is a spherical linear interpolation (slerp) counterpart of 𝑍 = 𝜂𝑓𝜃 𝐶 + 1 − 𝜂 𝑔𝜙 𝐶new − 𝑔𝜙 𝐶 .



DALL·E 2 decoder: Text Diffs 

a photo of an adult lion → a photo of lion cub

a photo of a landscape in winter → a photo of a landscape in fall 
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Text-to-image generation without prior

At this point, we can perform text-to-image generation given text 𝐶.

Option 1: Use ℎ𝜓 0, 𝐶 .

• Doesn’t work very well.
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Text-to-image generation without prior

Option 2: Use ℎ𝜓 𝑔𝜙 𝐶 , 𝐶 .

• This ignores the fact that 𝑔𝜙 𝐶 is a text embedding while ℎ𝜓 expects an image 

embedding 𝑓𝜃 𝑋 . There is a mismatch.

• This work better, but not as good as option 3.
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Option 3: 

Use prior 𝑝𝜔 .
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DALL·E 2 prior

We want a process to transform 𝑍text into 𝑍image.

Prior 𝑝ω 𝑍text, 𝐶 ⇝ 𝑍image generates samples from 𝑝 𝑍image 𝑍text, 𝐶 , which is 

mathematically equivalent to sampling 𝑋 given 𝐶 and obtaining 𝑍image = 𝑓𝜃 𝑋 . 

Note that 𝑍text = 𝑔𝜙 𝐶 . So, mathematically speaking, the conditioning on 𝑍text is redundant 

(only conditioning on 𝐶 would contain the same “information” in theory) but the CLIP-pre-

trained (and frozen) features 𝑔𝜙 𝐶 are beneficial in practice.
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𝑝ω ∶ ℝ𝑑 × 𝐶 ⇝ ℝ𝑑



DALL·E 2 prior

There are two approaches.

The first is an autoregressive approach, much alike pixelCNN. 

This doesn’t work very well.

The second is based on diffusion. The architecture is a pure 

transformer model, not a U-Net. Since the CLIP latents are not 

images, the inductive biases of the convolution layers are likely 

not beneficial. Therefore, a U-Net is not expected to work well and 

it experimentally doesn’t.
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𝑝ω ∶ ℝ𝑑 × 𝐶 ⇝ ℝ𝑑



DALL·E 2 text-to-image generation

Given text 𝐶, 

1. Compute 𝑍text = 𝑔𝜙 𝐶

2. Generate 𝑝ω 𝑍text, 𝐶 ⇝ 𝑍image.

3. Generate ℎ𝜓 𝑍image, 𝐶 ⇝ 𝑋.
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𝑔𝜙 ∶ 𝒞 → ℝ𝑑

ℎ𝜓 ∶ ℝ𝑑 × 𝒞 ⇝ 𝒳𝑝ω ∶ ℝ𝑑 × 𝐶 ⇝ ℝ𝑑



Imagen

Imagen is a simple cascaded 

diffusion model with a pre-

trained large language model to 

encode the input text into text 

embeddings.

22
C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S. K. S. Ghasemipour, B. K. Ayan, S. S. Mahdavi, R. G. Lopes, T. Salimans, J. Ho, D. J. 

Fleet, and M. Norouzi, Photorealistic text-to-Image diffusion models with deep language understanding, NeurIPS, 2022.



Imagen
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Imagen
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Imagen training and generation

Stage 0. Pre-train large language model, such as Text-To-Text Transfer Transformer (T5), 

on plain text without any images. Once trained, freeze the large language model.

Stage 1. Train cascaded diffusion model with image-caption pairs.

Stage 2. Generate image with classifier-free guidance using dynamic thresholding.

25
C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, Exploring the limits of transfer learning with a unified text-

to-text transformer, JMLR, 2020.



In classifier-free guidance, using a large guidance scale parameter is necessary for text-image

alignment. However, this worsens the perceptual image quality (image fidelity).

Problem is that large guidance gradients cause image to saturate. Dynamic thresholding mitigates

this issue. Roughly speaking, dynamic thresholding gradually pushes (rather than clipping) the pixel

values to be within the appropriate range.
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Scaling text encoder > scaling U-Net

Interesting observation:

Scaling text encoder is more important than scaling error (score) network.

27



Latent diffusion model

Standard diffusion directly operates on image.

• Perhaps inefficient to perform the many (≈ 1000) steps of diffusion on full image.

• Limits applicability. E.g. how can we diffuse to generate sentences?

Solution: Diffusion on latent variables of a variational autoencoder.

28A. Vahdat, K. Kreis, and J. Kautz, Score-based generative modeling in latent space, NeurIPS, 2021.



Variational lower bound (VLB)

Decompose the VLB into three terms.
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𝑞𝜙 𝑍0 𝑋

𝑝𝜓 𝑍 𝑍0

Prior: 𝑝𝜃 𝑍0 with 𝑍𝑇 ∼ 𝒩 0, 𝐼



Under the standard VAE setup, 𝑞𝜙 ⋅ 𝑋 = 𝒩 𝜇𝜙 𝑋 , Σ𝜙 𝑋 and 𝑝𝜓 ⋅ 𝑍0 = 𝒩 𝑓𝜓 𝑍 , 𝜎2𝐼 . 

So sampling 𝑍0 ∼ 𝑞𝜙 ⋅ 𝑋 and forming the first two with the reparameterization trick and 

backprop is straightforward. 
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𝑞𝜙 𝑍0 𝑋

𝑝𝜓 𝑍 𝑍0

Prior: 𝑝𝜃 𝑍0 with 𝑍𝑇 ∼ 𝒩 0, 𝐼



We can deal with the cross-entropy via score matching.

where 𝜇𝑡 𝑍0 is the mean of 𝑍𝑡 conditioned on 𝑍0 under the SDE                                          . 

(Need to use the reparameterization trick for 𝑍0 ∼ 𝑞𝜙 ⋅ 𝑋 to be able to backprop with 

respect to 𝜙.)
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𝑞𝜙 𝑍0 𝑋

𝑝𝜓 𝑍 𝑍0

Prior: 𝑝𝜃 𝑍0 with 𝑍𝑇 ∼ 𝒩 0, 𝐼



Latent diffusion model: Training

Stage 0. Pre-train VAE with prior 𝑝𝑧 = 𝒩 0, 𝐼 . (𝑞𝜙, 𝑝𝜓)

Stage 1. End-to-end train VAE with diffusion model. (𝑞𝜙, 𝑝𝜓, 𝑝𝜃)

• Training only 𝑝𝜃 is okay, but joint training provides improvement.
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𝑞𝜙 𝑍0 𝑋

𝑝𝜓 𝑍 𝑍0

Prior: 𝑝𝜃 𝑍0 with 𝑍𝑇 ∼ 𝒩 0, 𝐼



Latent diffusion model: Training

Since VAE is pretrained with 𝑝𝑧 = 𝒩 0, 𝐼 , the terminal marginal of the diffusion is chosen to 

be 𝑝 𝑍1 = 𝒩 0, 𝐼 , and if we choose the SDE                                           to be the VP-SDE, 

the training of 𝑝𝜃 in Stage 1 should be much easier than the standard diffusion.

In standard diffusion, the distributions of 𝑋0 and 𝑋1 are significantly different. In this setup, 

the distributions of 𝑍0 and 𝑍1 are very similar.
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Stable Diffusion 

Latent diffusion model with pre-trained 

and frozen autoencoder.

Then conditional diffusion model trained 

on latent variables.

34R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, High-resolution image synthesis with latent diffusion models, CVPR, 2022.



Stable Diffusion: Image samples
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Stable Diffusion: Image samples

xx
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Stable Diffusion: Image samples
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Stable Diffusion: Open source

An updated version of the model presented in the paper by Rombach et al. was released 

under the name Stable Diffusion. This has lead to many innovations.

38R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, High-resolution image synthesis with latent diffusion models, CVPR, 2022.


