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Homework 1
Due 5pm, Monday, April 15, 2024

Problem 1: Tweedie’s formula. Consider the vector-valued continuous random variables

Y = X + Z ∈ Rn,

where X ∼ pX and Z ∼ N (0,Σ) with Σ ≻ 0 are independent. (To clarify, pX is a probability
density function.) Write pY to denote the probability density function of Y . Show that

E[X |Y ] = Y +Σ∇ log pY (Y ).

You may swap the order of derivatives and integrals without proof.

Hint. Start with the scalar case (so n = 1) with Σ = 1. Define

ℓ(y) =
pY (y)

pZ(y)
=

∫
R pY |X(y |x)pX(x) dx

pZ(y)

and show
d

dy
ℓ(y) = E[X |Y ]ℓ(y).

Then, use the formula

E[X |Y ] =
d

dy
log ℓ(y).

Clarification. We do not assume X is a Gaussian.

Problem 2: DKL of Gaussian random variables. Show that

DKL

(
N (µ0, σ

2
0I)∥N (µ1, σ

2
1I)

)
=

1

2σ2
1

∥µ1 − µ0∥2 +
(σ2

0/σ
2
1 − 1)d

2
+ d log

(
σ1
σ0

)
,

where d is the underlying dimension of the random variables, µ0, µ1 ∈ Rd, σ0 > 0, and σ1 > 0.

Remark. In the context of deep learning, if σ0 and σ1 are not trainable parameters, then we
can write

DKL

(
N (µ0, σ

2
0I)∥N (µ1, σ

2
1I)

)
=

1

2σ2
1

∥µ1 − µ0∥2 + C.
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Problem 3: Backprop for FFJORD. Consider the neural ODE

d

ds
z(s) = f(z(s), θ, s), s ∈ [0, 1].

Let F1,0
θ : RD → RD be the flow operator from pseudo-time s = 1 to s = 0. Let X ∈ RD be a

given datapoint, and consider the problem of evaluating a stochastic gradient of

log p
(gen)
θ (X) = log pZ

(
F1,0
θ (x)

)
−
∫ 1

0
Tr

(
∂f

∂z
(z(s), θ, s)

)
ds,

where pZ is a suitable latent distribution. We first sample a random ν ∈ RD such that E[νν⊺] = I
and solve

̂
log p

(gen)
θ (X) = log pZ(z(0))− ℓ̂(0)

d

dt

[
z(s)

ℓ̂(s)

]
=

[
f (z(s), θ, s)

−ν⊺ ∂f
∂z ν(z(s), θ, s)

]
for s ∈ [0, 1][

z(1)

ℓ̂(1)

]
=

[
X
0

]
in reverse pseudo-time. In class, we have established that

E
ν
[

̂
log p

(gen)
θ (X)] = log p

(gen)
θ (X).

Show that solving

∂
̂

log p
(gen)
θ (X)

∂θ
= b(1)

ȧ(s) = −a
∂f

∂z
(z(s), θ, s)− ∂

∂z
ν⊺

∂f

∂z
(z(s), θ, s)ν, s ∈ [0, 1]

ḃ(s) = −a
∂f

∂θ
(z(s), θ, s)− ∂

∂θ
ν⊺

∂f

∂z
(z(s), θ, s)ν, s ∈ [0, 1]

a(0) =
∂ log p0(z)

∂z

∣∣
z=z(0)

∈ R1×D, b(0) = 0 ∈ R1×P

in forward pseudo-time yields a stochastic gradient of the log-likelihood, i.e., show that

E
ν

[∂ ̂
log p

(gen)
θ (X)

∂θ

]
=

∂

∂θ
log p

(gen)
θ (X).

Hint. Apply the adjoint state method with

z̃ =

[
z
λ

]
, f̃(z(s), θ, s) =

[
f

−ν⊺ ∂f
∂z ν

]
(z(s), θ, s), L(z̃(0)) = log pZ(z(0))− λ(0)

in reverse pseudo-time. Then, simplify the dynamics using the fact that ∂f̃(z(s),θ,s)
∂λ = 0.
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Problem 4: Equivalence of graph-form backward passes. Let G = (V,E) be a DAG representing
a computation graph as discussed in the backdrop lecture. Show that the graph-form backdrop
code version 1

# Forward pass given u.value for source nodes

for v in V : # In linear topological order

v.value = v.fn( [u.value for u->v] )

for v in V : # .zero_grad ()

v.grad = 0

# Backward pass

v_out.grad = 1

for v in V : # In reversed linear topological order

for w such that v->w :

v.grad += w.grad @ w.fn.grad(v)

and version 2

# Forward pass given u.value for source nodes

for v in V :

v.value = v.fn( [u.value for u->v] )

for v in V : # .zero_grad ()

v.grad = 0

v_out.grad = 1

for v in V : # In reversed linear topological order

for u such that u->v :

u.grad += v.grad @ v.fn.grad(u)

are equivalent.

Hint. First, transform the loop

for v in V : # In reversed linear topological order

for w such that v->w :

v.grad += w.grad @ w.fn.grad(v)

into

for v in V : # In reversed linear topological order

for w in V : # In any order

if v->w :

v.grad += w.grad @ w.fn.grad(v)
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Problem 5: Let ρ : [0, T ] → R. Consider the d-dimensional SDE

dXt = f(Xt, t)dt+ ρ(t)dWt, t ∈ [0, T ]

with initial condition X0 ∼ p0. Let {pt}Tt=0 be the marginal marginal density functions. Show
that {pt}Tt=0 satisfies the Fokker–Planck equation

∂tpt = −∇x · (fpt) +
ρ2

2
∆pt,

where ∆ =
d∑

i=1

∂2

∂x2i
is the Laplacian operator.

Problem 6: Let σt ≥ 0 be a smooth non-decreasing function for 0 ≤ t ≤ T . Define

ρ(t) =

√
d

dt
σ2
t , t ∈ [0, T ].

For simplicity, assume d = 1. Consider the SDE

dXt = ρ(t)dWt, t ∈ [0, T ]

with initial condition X0 ∼ p0. Show Xt |X0 ∼ N (X0, σ
2
t ) by verifying that

pt(x) =

∫
Rd

pt|0(x | y)p0(y) dy =

∫
Rd

1√
2πσt

exp

[
−(x− y)2

2σ2
t

]
p0(y) dy

satisfies the Fokker–Planck equation.

Remark. It is actually sufficient to assume that σt is absolutely continuous, rather than smooth.

Problem 7: Sampling SDE family. Consider the forward-time SDE

dXt = f(Xt, t)dt+ g(t)dWt

with X0 ∼ p0. Write {pt}t≥0 to denote the marginal densities of {Xt}t≥0. Show that the
reverse-time SDEs defined by

dXt =

(
f(Xt, t)−

(
1− λ

2

)
g2(t)∇Xt

log pt(Xt)

)
dt+

√
1− λg(t)dW t

for t ∈ [0, T ] with XT ∼ pT have the same marginals {pt}t∈[0,T ] for all λ ≤ 1. For simplicity,

assume Xt ∈ R and W t is the 1-dimensional reverse-time Brownian motion.

Remark. Note that λ = 0 corresponds to the standard SDE sampling while λ = 1 corresponds
to the standard ODE sampling of diffusion models.

Remark. This result holds more generally for sθ : Rd × R → Rd and Xt ∈ Rd, but we assume
d = 1 for simplicity.
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