Homework 1
Due 5pm, Monday, April 15, 2024

Problem 1: Tweedie's formula. Consider the vector-valued continuous random variables

$$
Y=X+Z \in \mathbb{R}^{n}
$$

where $X \sim p_{X}$ and $Z \sim \mathcal{N}(0, \Sigma)$ with $\Sigma \succ 0$ are independent. (To clarify, p_{X} is a probability density function.) Write p_{Y} to denote the probability density function of Y. Show that

$$
\mathbb{E}[X \mid Y]=Y+\Sigma \nabla \log p_{Y}(Y)
$$

You may swap the order of derivatives and integrals without proof.

Hint. Start with the scalar case (so $n=1$) with $\Sigma=1$. Define

$$
\ell(y)=\frac{p_{Y}(y)}{p_{Z}(y)}=\frac{\int_{\mathbb{R}} p_{Y \mid X}(y \mid x) p_{X}(x) d x}{p_{Z}(y)}
$$

and show

$$
\frac{d}{d y} \ell(y)=\mathbb{E}[X \mid Y] \ell(y)
$$

Then, use the formula

$$
\mathbb{E}[X \mid Y]=\frac{d}{d y} \log \ell(y)
$$

Clarification. We do not assume X is a Gaussian.
Problem 2: D_{KL} of Gaussian random variables. Show that

$$
D_{\mathrm{KL}}\left(\mathcal{N}\left(\mu_{0}, \sigma_{0}^{2} I\right) \| \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2} I\right)\right)=\frac{1}{2 \sigma_{1}^{2}}\left\|\mu_{1}-\mu_{0}\right\|^{2}+\frac{\left(\sigma_{0}^{2} / \sigma_{1}^{2}-1\right) d}{2}+d \log \left(\frac{\sigma_{1}}{\sigma_{0}}\right)
$$

where d is the underlying dimension of the random variables, $\mu_{0}, \mu_{1} \in \mathbb{R}^{d}, \sigma_{0}>0$, and $\sigma_{1}>0$.
Remark. In the context of deep learning, if σ_{0} and σ_{1} are not trainable parameters, then we can write

$$
D_{\mathrm{KL}}\left(\mathcal{N}\left(\mu_{0}, \sigma_{0}^{2} I\right) \| \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2} I\right)\right)=\frac{1}{2 \sigma_{1}^{2}}\left\|\mu_{1}-\mu_{0}\right\|^{2}+C .
$$

Problem 3: Backprop for FFJORD. Consider the neural ODE

$$
\frac{d}{d s} z(s)=f(z(s), \theta, s), \quad s \in[0,1] .
$$

Let $\mathcal{F}_{\theta}^{1,0}: \mathbb{R}^{D} \rightarrow \mathbb{R}^{D}$ be the flow operator from pseudo-time $s=1$ to $s=0$. Let $X \in \mathbb{R}^{D}$ be a given datapoint, and consider the problem of evaluating a stochastic gradient of

$$
\log p_{\theta}^{(\text {gen })}(X)=\log p_{Z}\left(\mathcal{F}_{\theta}^{1,0}(x)\right)-\int_{0}^{1} \operatorname{Tr}\left(\frac{\partial f}{\partial z}(z(s), \theta, s)\right) d s
$$

where p_{Z} is a suitable latent distribution. We first sample a random $\nu \in \mathbb{R}^{D}$ such that $\mathbb{E}\left[\nu \nu^{\top}\right]=I$ and solve

$$
\begin{aligned}
\log \widehat{p_{\theta}^{(\text {gen })}}(X) & =\log p_{Z}(z(0))-\hat{\ell}(0) \\
\frac{d}{d t}\left[\begin{array}{l}
z(s) \\
\hat{\ell}(s)
\end{array}\right] & =\left[\begin{array}{c}
f(z(s), \theta, s) \\
-\nu^{\top} \frac{\partial f}{\partial z} \nu(z(s), \theta, s)
\end{array}\right] \quad \text { for } s \in[0,1] \\
{\left[\begin{array}{l}
z(1) \\
\hat{\ell}(1)
\end{array}\right] } & =\left[\begin{array}{c}
X \\
0
\end{array}\right]
\end{aligned}
$$

in reverse pseudo-time. In class, we have established that

$$
\underset{\nu}{\mathbb{E}}\left[\log \widehat{p_{\theta}^{\text {(gen) }}}(X)\right]=\log p_{\theta}^{(\text {gen })}(X)
$$

Show that solving

$$
\begin{aligned}
\frac{\partial \log \widehat{p_{\theta}^{(\mathrm{gen})}}(X)}{\partial \theta} & =b(1) \\
\dot{a}(s) & =-a \frac{\partial f}{\partial z}(z(s), \theta, s)-\frac{\partial}{\partial z} \nu^{\top} \frac{\partial f}{\partial z}(z(s), \theta, s) \nu, \quad s \in[0,1] \\
\dot{b}(s) & =-a \frac{\partial f}{\partial \theta}(z(s), \theta, s)-\frac{\partial}{\partial \theta} \nu^{\top} \frac{\partial f}{\partial z}(z(s), \theta, s) \nu, \quad s \in[0,1] \\
a(0) & =\left.\frac{\partial \log p_{0}(z)}{\partial z}\right|_{z=z(0)} \in \mathbb{R}^{1 \times D}, \quad b(0)=0 \in \mathbb{R}^{1 \times P}
\end{aligned}
$$

in forward pseudo-time yields a stochastic gradient of the log-likelihood, i.e., show that

$$
\underset{\nu}{\mathbb{E}}\left[\frac{\partial \log \widehat{p_{\theta}^{(\mathrm{gen})}}(X)}{\partial \theta}\right]=\frac{\partial}{\partial \theta} \log p_{\theta}^{(\mathrm{gen})}(X) .
$$

Hint. Apply the adjoint state method with

$$
\tilde{z}=\left[\begin{array}{c}
z \\
\lambda
\end{array}\right], \quad \tilde{f}(z(s), \theta, s)=\left[\begin{array}{c}
f \\
-\nu^{\top} \frac{\partial f}{\partial z} \nu
\end{array}\right](z(s), \theta, s), \quad \mathcal{L}(\tilde{z}(0))=\log p_{Z}(z(0))-\lambda(0)
$$

in reverse pseudo-time. Then, simplify the dynamics using the fact that $\frac{\partial \tilde{f}(z(s), \theta, s)}{\partial \lambda}=0$.

Problem 4: Equivalence of graph-form backward passes. Let $G=(V, E)$ be a DAG representing a computation graph as discussed in the backdrop lecture. Show that the graph-form backdrop code version 1

```
# Forward pass given u.value for source nodes
for v in V : # In linear topological order
    v.value = v.fn( [u.value for u->v] )
for v in V : # .zero_grad()
    v.grad = 0
# Backward pass
v_out.grad = 1
for v in V : # In reversed linear topological order
    for w such that v->w :
        v.grad += w.grad @ w.fn.grad(v)
```

and version 2

```
# Forward pass given u.value for source nodes
for v in V :
    v.value = v.fn( [u.value for u->v] )
for v in V : # .zero_grad()
    v.grad = 0
v_out.grad = 1
for v in V : # In reversed linear topological order
    for u such that u->v :
            u.grad += v.grad @ v.fn.grad(u)
```

are equivalent.

Hint. First, transform the loop

```
for v in V : # In reversed linear topological order
    for w such that v->w :
        v.grad += w.grad @ w.fn.grad(v)
```

into

```
for v in V : # In reversed linear topological order
    for w in V : # In any order
        if v->w :
            v.grad += w.grad @ w.fn.grad(v)
```

Problem 5: Let $\rho:[0, T] \rightarrow \mathbb{R}$. Consider the d-dimensional SDE

$$
d X_{t}=f\left(X_{t}, t\right) d t+\rho(t) d W_{t}, \quad t \in[0, T]
$$

with initial condition $X_{0} \sim p_{0}$. Let $\left\{p_{t}\right\}_{t=0}^{T}$ be the marginal marginal density functions. Show that $\left\{p_{t}\right\}_{t=0}^{T}$ satisfies the Fokker-Planck equation

$$
\partial_{t} p_{t}=-\nabla_{x} \cdot\left(f p_{t}\right)+\frac{\rho^{2}}{2} \Delta p_{t},
$$

where $\Delta=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial x_{i}^{2}}$ is the Laplacian operator.
Problem 6: Let $\sigma_{t} \geq 0$ be a smooth non-decreasing function for $0 \leq t \leq T$. Define

$$
\rho(t)=\sqrt{\frac{d}{d t} \sigma_{t}^{2}}, \quad t \in[0, T] .
$$

For simplicity, assume $d=1$. Consider the SDE

$$
d X_{t}=\rho(t) d W_{t}, \quad t \in[0, T]
$$

with initial condition $X_{0} \sim p_{0}$. Show $X_{t} \mid X_{0} \sim \mathcal{N}\left(X_{0}, \sigma_{t}^{2}\right)$ by verifying that

$$
p_{t}(x)=\int_{\mathbb{R}^{d}} p_{t \mid 0}(x \mid y) p_{0}(y) d y=\int_{\mathbb{R}^{d}} \frac{1}{\sqrt{2 \pi} \sigma_{t}} \exp \left[-\frac{(x-y)^{2}}{2 \sigma_{t}^{2}}\right] p_{0}(y) d y
$$

satisfies the Fokker-Planck equation.
Remark. It is actually sufficient to assume that σ_{t} is absolutely continuous, rather than smooth.
Problem 7: Sampling SDE family. Consider the forward-time SDE

$$
d X_{t}=f\left(X_{t}, t\right) d t+g(t) d W_{t}
$$

with $X_{0} \sim p_{0}$. Write $\left\{p_{t}\right\}_{t \geq 0}$ to denote the marginal densities of $\left\{X_{t}\right\}_{t \geq 0}$. Show that the reverse-time SDEs defined by

$$
d \bar{X}_{t}=\left(f\left(\bar{X}_{t}, t\right)-\left(1-\frac{\lambda}{2}\right) g^{2}(t) \nabla_{\bar{X}_{t}} \log p_{t}\left(\bar{X}_{t}\right)\right) d t+\sqrt{1-\lambda} g(t) d \bar{W}_{t}
$$

for $t \in[0, T]$ with $\bar{X}_{T} \sim p_{T}$ have the same marginals $\left\{p_{t}\right\}_{t \in[0, T]}$ for all $\lambda \leq 1$. For simplicity, assume $\bar{X}_{t} \in \mathbb{R}$ and \bar{W}_{t} is the 1-dimensional reverse-time Brownian motion.

Remark. Note that $\lambda=0$ corresponds to the standard SDE sampling while $\lambda=1$ corresponds to the standard ODE sampling of diffusion models.
Remark. This result holds more generally for $s_{\theta}: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$ and $X_{t} \in \mathbb{R}^{d}$, but we assume $d=1$ for simplicity.

