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Homework 2
Due 5pm, Friday, May 10, 2024

Problem 1: Reverse conditional distribution conditioned on Xg. Consider the forward process

P(Xi| Xio1) ~ N(V1 = BiXi1, Bed)

fort =1,2,... with Xg ~ pgata. Show that

P(Xi-1|X1 Xo) = N (ju(Xe ] Xo), B )

1 = 1-TIo(1 - 5)
pe( Xt | Xo) = M(Xt + BtV x, log py|o(Xt | Xo)), B = 1 Hi:1(1 — /Bs)ﬁt
fort =1,2,.... Do not assume 5; ~ 0.

Problem 2: DDIM marginals. Consider the DDIM “forward” process

T-1

¢(X1,..., Xr | Xo) = ¢(X7 | Xo) [ ] a(X¢| X141, Xo)
=1

q(XT | Xo) = N(\/@Xm (1 - aT)I)

v I —a; — Ug+1
(Xt | Xig1, Xo) = N VorXo +

2
—a (X1 — Va1 Xo), op41 | t=T-1,...
where ar, ..., aq is a sequence in (0,1) and op, . .., o2 is sequence of positive numbers satisfying

Jt2+1 <l—agforallt=1,...,7 —1. Show that
Xt|X0NN(\/OétXO,(1—O£t)I), t: 17...,T.

Hint. Use the fact that

Xp 2 VoarXo+ V1 —arer
D 1iat70-252+1
X = Vo Xo + m (Xt—l-l_w/at—&—lXO)"i‘O—t—l-lgt’ t=T-1,...,1

for 11D ET,ET—1,---5,E1 NN(O,I).



Problem 3: Denoising score matching loss near t = 0. Consider the 1-dimensional Ornstein—
Uhlenbeck process

1
dX; = —iXtdt + dW;
for t € [0,T], where Xy ~ po. For simplicity, let po = N (0,1). Let

t/2 2

=€ ', ol =1—¢e"

Consider the loss

E
Xt | Xo

2
L£(0) = At) (Se(Xtyt) - ddXt log pyjo (Xt | Xo)>

&l

E [ E
t~Uniform([§,T]) | Xo~po

A(t)

5~ (c0(11 X0 — 04, t) — 5)2} :

t~Un1form([(5 7)) |:
Xo~po
e~N(0,I)

where 6 > 0, A(t) > 0 is a continuous function, s is a score network, and eg( Xy, t) = oys9( Xy, t).
It is customary to use § > 0 to “avoid numerical instabilities.” In this problem, we explore issues
that arise when § = 0.

(a) Show that p, = N (0,1) for all ¢ > 0.

(b) Assume sy has been perfectly trained, i.e., so(X¢, t) = dixtlogpt(Xt) = —X;. Show that
if mingep, 77 A(t) > 0, then

d 2
A(t) X, t) — =1 X | X
(é?s%] ) | (50~ om0 |

(c) Show that if A(t) = o7 (so minyep 71 A(t) = 0) and if sg(X;,t) = & log pi(X¢), then
L(0) < 0.

(d) Let A(t) = o?. Assume there is a 6* such that sg«(X;,t) = dixt log py(X¢). Let 6 be such
that so(Xy, 1) = 77 Xi + d;;l(t log pt(X;) for some small m > 0. Show that

L(0) — L(6%) = m?>.
(Conceptually, m? is small, so sg is nearly optimal with respect to the loss £.)

(e) Let sp(X¢,t) = Xy + &logpt(Xt) for some small m > 0. Show that the reverse
sampling ODE with the trained score sy is of the form

dX; = F(Xy,t)dt,

where F(X;,t) blows up as t — 0. (Since the ODE is singular, we expect numerical
solutions of it via discretizations to be numerically unstable.)

Remark. The ODE

_ 1
dX; = ——X
' N

has a general solution X; = exp(—2+/%) for t > 0, so a singular ODE (an ODE with a RHS that
blows up) does not necessarily have a singular solution (a solution that blows up).



Problem 4: Why output projection on MHA? Consider the standard multi-head self-attention
(MHA) layer defined by

output = concat(heady, ..., heads) we

~——

Lxdout LXx Hdyead
head, = Attention(QW2, KW2, VW) for h=1,...,H,
~———
Lthead

U QKT | -
Attention(Q, K, V') = softmax V,
( \% dattn)

where
WO e RHdneaaxdout
WhQ c RdQ Xdattn’ W}f{ c RdK X dattn , W}Y c Rdv thead

Q eRMe K eRM Y e RFXV,

(Of course, it is often the case that Q = K = V = X € REX4)) Let us call this model MHAL.
Next, consider a variant that we call MHA2.

output = head; + - - - + heady
——

Lxdout
head;, = Attention(QW2, KW2 VW)Y) for h=1,...,H,
——
LXdpead
Attention(Q, &, 7) = softmax( 257
ttention(Q, K, = softmax(—)V,
dattn

where

W}? c R4 Xdattn, W;{( c RdKXdattn’ W}Y c R4V Xdout
Lxd Lxd Lxd
Q c R¥*% K e Rk |V ¢ R¥*%,

(a) Given an MHA1 model, decompose the rows of WO as

we
O
2

WO — I RHdhead Xdout

Wi
such that Wlo , WQO ey Wg € ReaaXdous - Show that if we set the parameters of an MHA2
model as W,Y — W,Y W,? for h =1,..., H and keep all other parameters the same, then

the MHA1 and MHA2 models are equivalent, i.e., (MHA1(Q, K,V) = MHA2(Q, K,V)
for all inputs Q, K, V.

(b) How many trainable parameters do MHA1 and MHA2 have?

(¢) If dy = douwy = 512 and dpeaq = 64, what is the difference in the number of trainable
parameters?



