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Problem 1: Reverse conditional distribution conditioned on X0. Consider the forward process

P(Xt |Xt−1) ∼ N (
√

1− βtXt−1, βtI)

for t = 1, 2, . . . with X0 ∼ pdata. Show that

P(Xt−1|Xt, X0) = N
(
µt(Xt |X0), β̃tI

)
,

µt(Xt |X0) =
1√

1− βt
(Xt + βt∇Xt log pt | 0(Xt |X0)), β̃t =

1−
∏t−1

s=1(1− βs)

1−
∏t

s=1(1− βs)
βt

for t = 1, 2, . . . . Do not assume βt ≈ 0.

Problem 2: DDIM marginals. Consider the DDIM “forward” process

q(X1, . . . , XT |X0) = q(XT |X0)

T−1∏
t=1

q(Xt |Xt+1, X0)

q(XT |X0) = N (
√
αTX0, (1− αT )I)

q(Xt |Xt+1, X0) = N

√αtX0 +

√
1− αt − σ2

t+1
√
1− αt+1

(Xt+1 −
√
αt+1X0), σ

2
t+1I

 , t = T − 1, . . . , 1,

where αT , . . . , α1 is a sequence in (0, 1) and σT , . . . , σ2 is sequence of positive numbers satisfying
σ2
t+1 ≤ 1− αt for all t = 1, . . . , T − 1. Show that

Xt |X0 ∼ N (
√
αtX0, (1− αt)I), t = 1, . . . , T.

Hint. Use the fact that

XT
D
=
√
αTX0 +

√
1− αT εT

Xt
D
=
√
αtX0 +

√
1− αt − σ2

t+1
√
1− αt+1

(Xt+1 −
√
αt+1X0) + σt+1εt, t = T − 1, . . . , 1

for IID εT , εT−1, . . . , ε1 ∼ N (0, I).
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Problem 3: Denoising score matching loss near t = 0. Consider the 1-dimensional Ornstein–
Uhlenbeck process

dXt = −
1

2
Xtdt+ dWt

for t ∈ [0, T ], where X0 ∼ p0. For simplicity, let p0 = N (0, 1). Let

γt = e−t/2, σ2
t = 1− e−t.

Consider the loss

L(θ) = E
t∼Uniform([δ,T ])

[
E

X0∼p0

[
E

Xt |X0

[
λ(t)

(
sθ(Xt, t)−

d

dXt
log pt|0(Xt |X0)

)2 ∣∣∣∣X0

]]]

= E
t∼Uniform([δ,T ])

X0∼p0
ε∼N (0,I)

[
λ(t)

σ2
t

(εθ(γtX0 − σtε, t)− ε)2
]
,

where δ ≥ 0, λ(t) ≥ 0 is a continuous function, sθ is a score network, and εθ(Xt, t) = σtsθ(Xt, t).
It is customary to use δ > 0 to “avoid numerical instabilities.” In this problem, we explore issues
that arise when δ = 0.

(a) Show that pt = N (0, 1) for all t > 0.

(b) Assume sθ has been perfectly trained, i.e., sθ(Xt, t) =
d

dXt
log pt(Xt) = −Xt. Show that

if mint∈[0,T ] λ(t) > 0, then

L(θ) ≥
(

min
t∈[0,T ]

λ(t)

)
E

t,X0,Xt

[(
sθ(Xt, t)−

d

dXt
log pt|0(Xt |X0)

)2
]

=∞.

(c) Show that if λ(t) = σ2
t (so mint∈[0,T ] λ(t) = 0) and if sθ(Xt, t) =

d
dXt

log pt(Xt), then

L(θ) <∞.

(d) Let λ(t) = σ2
t . Assume there is a θ⋆ such that sθ⋆(Xt, t) =

d
dXt

log pt(Xt). Let θ be such

that sθ(Xt, t) =
m
σt
Xt +

d
dXt

log pt(Xt) for some small m > 0. Show that

L(θ)− L(θ⋆) = m2.

(Conceptually, m2 is small, so sθ is nearly optimal with respect to the loss L.)

(e) Let sθ(Xt, t) = m
σt
Xt +

d
dXt

log pt(Xt) for some small m > 0. Show that the reverse
sampling ODE with the trained score sθ is of the form

dXt = F (Xt, t)dt,

where F (Xt, t) blows up as t → 0. (Since the ODE is singular, we expect numerical
solutions of it via discretizations to be numerically unstable.)

Remark. The ODE

dXt = −
1√
t
Xt

has a general solution Xt = exp(−2
√
t) for t ≥ 0, so a singular ODE (an ODE with a RHS that

blows up) does not necessarily have a singular solution (a solution that blows up).
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Problem 4: Why output projection on MHA? Consider the standard multi-head self-attention
(MHA) layer defined by

output︸ ︷︷ ︸
L×dout

= concat(head1, . . . ,headH)︸ ︷︷ ︸
L×Hdhead

WO

headh︸ ︷︷ ︸
L×dhead

= Attention(QWQ
h ,KWQ

h , V W V
h ) for h = 1, . . . ,H,

Attention(Q̃, K̃, Ṽ ) = softmax
( Q̃K̃⊺

√
dattn

)
Ṽ ,

where

WO ∈ RHdhead×dout

WQ
h ∈ RdQ×dattn , WK

h ∈ RdK×dattn , W V
h ∈ RdV ×dhead

Q ∈ RL×dQ , K ∈ RL×dK , V ∈ RL×dV .

(Of course, it is often the case that Q = K = V = X ∈ RL×d.) Let us call this model MHA1.

Next, consider a variant that we call MHA2.

output︸ ︷︷ ︸
L×dout

= head1 + · · ·+ headH

headh︸ ︷︷ ︸
L×dhead

= Attention(QWQ
h ,KWQ

h , V W V
h ) for h = 1, . . . ,H,

Attention(Q̃, K̃, Ṽ ) = softmax
( Q̃K̃⊺

√
dattn

)
Ṽ ,

where

WQ
h ∈ RdQ×dattn , WK

h ∈ RdK×dattn , W V
h ∈ RdV ×dout

Q ∈ RL×dQ , K ∈ RL×dK , V ∈ RL×dV .

(a) Given an MHA1 model, decompose the rows of WO as

WO =


WO

1

WO
2
...

WO
H

 ∈ RHdhead×dout

such thatWO
1 ,WO

2 , . . . ,WO
H ∈ Rdhead×dout . Show that if we set the parameters of an MHA2

model as W V
h ← W V

h WO
h for h = 1, . . . ,H and keep all other parameters the same, then

the MHA1 and MHA2 models are equivalent, i.e., (MHA1(Q,K, V ) = MHA2(Q,K, V )
for all inputs Q,K, V .

(b) How many trainable parameters do MHA1 and MHA2 have?

(c) If dV = dout = 512 and dhead = 64, what is the difference in the number of trainable
parameters?
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