Generative AI and Foundation Models, M3309.001800 001 E. Ryu

Spring 2024

Homework 2
Due 5pm, Friday, May 10, 2024

Problem 1: Reverse conditional distribution conditioned on X_{0}. Consider the forward process

$$
\mathcal{P}\left(X_{t} \mid X_{t-1}\right) \sim \mathcal{N}\left(\sqrt{1-\beta_{t}} X_{t-1}, \beta_{t} I\right)
$$

for $t=1,2, \ldots$ with $X_{0} \sim p_{\text {data }}$. Show that

$$
\begin{gathered}
\mathcal{P}\left(X_{t-1} \mid X_{t}, X_{0}\right)=\mathcal{N}\left(\mu_{t}\left(X_{t} \mid X_{0}\right), \tilde{\beta}_{t} I\right) \\
\mu_{t}\left(X_{t} \mid X_{0}\right)=\frac{1}{\sqrt{1-\beta_{t}}}\left(X_{t}+\beta_{t} \nabla_{X_{t}} \log p_{t \mid 0}\left(X_{t} \mid X_{0}\right)\right), \quad \tilde{\beta}_{t}=\frac{1-\prod_{s=1}^{t-1}\left(1-\beta_{s}\right)}{1-\prod_{s=1}^{t}\left(1-\beta_{s}\right)} \beta_{t}
\end{gathered}
$$

for $t=1,2, \ldots$ Do not assume $\beta_{t} \approx 0$.

Problem 2: DDIM marginals. Consider the DDIM "forward" process

$$
\begin{aligned}
q\left(X_{1}, \ldots, X_{T} \mid X_{0}\right) & =q\left(X_{T} \mid X_{0}\right) \prod_{t=1}^{T-1} q\left(X_{t} \mid X_{t+1}, X_{0}\right) \\
q\left(X_{T} \mid X_{0}\right) & =\mathcal{N}\left(\sqrt{\alpha_{T}} X_{0},\left(1-\alpha_{T}\right) I\right) \\
q\left(X_{t} \mid X_{t+1}, X_{0}\right) & =\mathcal{N}\left(\sqrt{\alpha_{t}} X_{0}+\frac{\sqrt{1-\alpha_{t}-\sigma_{t+1}^{2}}}{\sqrt{1-\alpha_{t+1}}}\left(X_{t+1}-\sqrt{\alpha_{t+1}} X_{0}\right), \sigma_{t+1}^{2} I\right), \quad t=T-1, \ldots, 1,
\end{aligned}
$$

where $\alpha_{T}, \ldots, \alpha_{1}$ is a sequence in $(0,1)$ and $\sigma_{T}, \ldots, \sigma_{2}$ is sequence of positive numbers satisfying $\sigma_{t+1}^{2} \leq 1-\alpha_{t}$ for all $t=1, \ldots, T-1$. Show that

$$
X_{t} \mid X_{0} \sim \mathcal{N}\left(\sqrt{\alpha_{t}} X_{0},\left(1-\alpha_{t}\right) I\right), \quad t=1, \ldots, T
$$

Hint. Use the fact that

$$
\begin{aligned}
& X_{T} \stackrel{\mathcal{D}}{=} \sqrt{\alpha_{T}} X_{0}+\sqrt{1-\alpha_{T}} \varepsilon_{T} \\
& X_{t} \stackrel{\mathcal{D}}{=} \sqrt{\alpha_{t}} X_{0}+\frac{\sqrt{1-\alpha_{t}-\sigma_{t+1}^{2}}}{\sqrt{1-\alpha_{t+1}}}\left(X_{t+1}-\sqrt{\alpha_{t+1}} X_{0}\right)+\sigma_{t+1} \varepsilon_{t}, \quad t=T-1, \ldots, 1
\end{aligned}
$$

for IID $\varepsilon_{T}, \varepsilon_{T-1}, \ldots, \varepsilon_{1} \sim \mathcal{N}(0, I)$.

Problem 3: Denoising score matching loss near $t=0$. Consider the 1-dimensional OrnsteinUhlenbeck process

$$
d X_{t}=-\frac{1}{2} X_{t} d t+d W_{t}
$$

for $t \in[0, T]$, where $X_{0} \sim p_{0}$. For simplicity, let $p_{0}=\mathcal{N}(0,1)$. Let

$$
\gamma_{t}=e^{-t / 2}, \quad \sigma_{t}^{2}=1-e^{-t} .
$$

Consider the loss

$$
\begin{aligned}
\mathcal{L}(\theta) & =\underset{\substack{t \sim \mathrm{Uniform}(\delta, T])}}{\mathbb{E}}\left[\underset{X_{0} \sim p_{0}}{\mathbb{E}}\left[\underset{X_{t} \mid X_{0}}{\mathbb{E}}\left[\left.\lambda(t)\left(s_{\theta}\left(X_{t}, t\right)-\frac{d}{d X_{t}} \log p_{t \mid 0}\left(X_{t} \mid X_{0}\right)\right)^{2} \right\rvert\, X_{0}\right]\right]\right] \\
& =\underset{\substack{t \sim \mathrm{Uniform}(\delta \delta, T]) \\
X_{0} \sim p_{0} \\
\varepsilon \sim \mathcal{N}(0, I)}}{\mathbb{E}}\left[\frac{\lambda(t)}{\sigma_{t}^{2}}\left(\varepsilon_{\theta}\left(\gamma_{t} X_{0}-\sigma_{t} \varepsilon, t\right)-\varepsilon\right)^{2}\right],
\end{aligned}
$$

where $\delta \geq 0, \lambda(t) \geq 0$ is a continuous function, s_{θ} is a score network, and $\varepsilon_{\theta}\left(X_{t}, t\right)=\sigma_{t} s_{\theta}\left(X_{t}, t\right)$. It is customary to use $\delta>0$ to "avoid numerical instabilities." In this problem, we explore issues that arise when $\delta=0$.
(a) Show that $p_{t}=\mathcal{N}(0,1)$ for all $t>0$.
(b) Assume s_{θ} has been perfectly trained, i.e., $s_{\theta}\left(X_{t}, t\right)=\frac{d}{d X_{t}} \log p_{t}\left(X_{t}\right)=-X_{t}$. Show that if $\min _{t \in[0, T]} \lambda(t)>0$, then

$$
\begin{aligned}
\mathcal{L}(\theta) & \geq\left(\min _{t \in[0, T]} \lambda(t)\right)_{t, X_{0}, X_{t}}^{\mathbb{E}}\left[\left(s_{\theta}\left(X_{t}, t\right)-\frac{d}{d X_{t}} \log p_{t \mid 0}\left(X_{t} \mid X_{0}\right)\right)^{2}\right] \\
& =\infty .
\end{aligned}
$$

(c) Show that if $\lambda(t)=\sigma_{t}^{2}\left(\right.$ so $\left.\min _{t \in[0, T]} \lambda(t)=0\right)$ and if $s_{\theta}\left(X_{t}, t\right)=\frac{d}{d X_{t}} \log p_{t}\left(X_{t}\right)$, then

$$
\mathcal{L}(\theta)<\infty
$$

(d) Let $\lambda(t)=\sigma_{t}^{2}$. Assume there is a θ^{\star} such that $s_{\theta^{\star}}\left(X_{t}, t\right)=\frac{d}{d X_{t}} \log p_{t}\left(X_{t}\right)$. Let θ be such that $s_{\theta}\left(X_{t}, t\right)=\frac{m}{\sigma_{t}} X_{t}+\frac{d}{d X_{t}} \log p_{t}\left(X_{t}\right)$ for some small $m>0$. Show that

$$
\mathcal{L}(\theta)-\mathcal{L}\left(\theta^{\star}\right)=m^{2} .
$$

(Conceptually, m^{2} is small, so s_{θ} is nearly optimal with respect to the loss \mathcal{L}.)
(e) Let $s_{\theta}\left(X_{t}, t\right)=\frac{m}{\sigma_{t}} X_{t}+\frac{d}{d X_{t}} \log p_{t}\left(X_{t}\right)$ for some small $m>0$. Show that the reverse sampling ODE with the trained score s_{θ} is of the form

$$
d \bar{X}_{t}=F\left(\bar{X}_{t}, t\right) d t
$$

where $F\left(X_{t}, t\right)$ blows up as $t \rightarrow 0$. (Since the ODE is singular, we expect numerical solutions of it via discretizations to be numerically unstable.)

Remark. The ODE

$$
d \bar{X}_{t}=-\frac{1}{\sqrt{t}} \bar{X}_{t}
$$

has a general solution $\bar{X}_{t}=\exp (-2 \sqrt{t})$ for $t \geq 0$, so a singular ODE (an ODE with a RHS that blows up) does not necessarily have a singular solution (a solution that blows up).

Problem 4: Why output projection on $M H A$? Consider the standard multi-head self-attention (MHA) layer defined by

$$
\begin{gathered}
\quad \underbrace{\text { output }}_{L \times d_{\text {out }}}=\underbrace{\operatorname{concat}\left(\operatorname{head}_{1}, \ldots, \operatorname{head}_{H}\right)}_{L \times H d_{\text {head }}} W^{O} \\
\underbrace{\operatorname{head}_{h}}_{L \times d_{\text {head }}}= \\
\operatorname{Attention}\left(Q W_{h}^{Q}, K W_{h}^{Q}, V W_{h}^{V}\right) \quad \text { for } h=1, \ldots, H, \\
\\
\\
\operatorname{Attention}(\tilde{Q}, \tilde{K}, \tilde{V})=\operatorname{softmax}\left(\frac{\tilde{Q} \tilde{K}^{\top}}{\sqrt{d_{\text {attn }}}}\right) \tilde{V},
\end{gathered}
$$

where

$$
\begin{gathered}
W^{O} \in \mathbb{R}^{H d_{\mathrm{head}} \times d_{\mathrm{out}}} \\
W_{h}^{Q} \in \mathbb{R}^{d_{Q} \times d_{\mathrm{attn}}}, \quad W_{h}^{K} \in \mathbb{R}^{d_{K} \times d_{\mathrm{attn}}}, \quad W_{h}^{V} \in \mathbb{R}^{d_{V} \times d_{\mathrm{head}}} \\
Q \in \mathbb{R}^{L \times d_{Q}}, \quad K \in \mathbb{R}^{L \times d_{K}}, \quad V \in \mathbb{R}^{L \times d_{V}}
\end{gathered}
$$

(Of course, it is often the case that $Q=K=V=X \in \mathbb{R}^{L \times d}$.) Let us call this model MHA1. Next, consider a variant that we call MHA2.

$$
\begin{gathered}
\underbrace{\text { output }}_{L \times d_{\text {out }}}=\text { head }_{1}+\cdots+\text { head }_{H} \\
\underbrace{\text { head }_{h}}_{L \times d_{\text {head }}}=\operatorname{Attention}\left(Q W_{h}^{Q}, K W_{h}^{Q}, V W_{h}^{V}\right) \quad \text { for } h=1, \ldots, H \\
\\
\text { Attention }(\tilde{Q}, \tilde{K}, \tilde{V})=\operatorname{softmax}\left(\frac{\tilde{Q} \tilde{K}^{\top}}{\sqrt{d_{\text {attn }}}}\right) \tilde{V}
\end{gathered}
$$

where

$$
\begin{gathered}
W_{h}^{Q} \in \mathbb{R}^{d_{Q} \times d_{\mathrm{attn}}}, \quad W_{h}^{K} \in \mathbb{R}^{d_{K} \times d_{\mathrm{attn}}}, \quad W_{h}^{V} \in \mathbb{R}^{d_{V} \times d_{\mathrm{out}}} \\
Q \in \mathbb{R}^{L \times d_{Q}}, \quad K \in \mathbb{R}^{L \times d_{K}}, \quad V \in \mathbb{R}^{L \times d_{V}} .
\end{gathered}
$$

(a) Given an MHA1 model, decompose the rows of W^{O} as

$$
W^{O}=\left[\begin{array}{c}
W_{1}^{O} \\
W_{2}^{O} \\
\vdots \\
W_{H}^{O}
\end{array}\right] \in \mathbb{R}^{H d_{\mathrm{head}} \times d_{\mathrm{out}}}
$$

such that $W_{1}^{O}, W_{2}^{O}, \ldots, W_{H}^{O} \in \mathbb{R}^{d_{\text {head }} \times d_{\text {out }}}$. Show that if we set the parameters of an MHA2 model as $W_{h}^{V} \leftarrow W_{h}^{V} W_{h}^{O}$ for $h=1, \ldots, H$ and keep all other parameters the same, then the MHA1 and MHA2 models are equivalent, i.e., $(\operatorname{MHA} 1(Q, K, V)=\operatorname{MHA} 2(Q, K, V)$ for all inputs Q, K, V.
(b) How many trainable parameters do MHA1 and MHA2 have?
(c) If $d_{V}=d_{\text {out }}=512$ and $d_{\text {head }}=64$, what is the difference in the number of trainable parameters?

