Generative AI and Foundation Models, M3309.001800 001 E. Ryu Spring 2024

Homework 2 Due 5pm, Friday, May 10, 2024

Problem 1: Reverse conditional distribution conditioned on X_0 . Consider the forward process

$$\mathcal{P}(X_t \mid X_{t-1}) \sim \mathcal{N}(\sqrt{1-\beta_t}X_{t-1}, \beta_t I)$$

for t = 1, 2, ... with $X_0 \sim p_{\text{data}}$. Show that

$$\mathcal{P}(X_{t-1}|X_t, X_0) = \mathcal{N}\left(\mu_t(X_t \mid X_0), \tilde{\beta}_t I\right),\,$$

$$\mu_t(X_t \mid X_0) = \frac{1}{\sqrt{1 - \beta_t}} (X_t + \beta_t \nabla_{X_t} \log p_{t \mid 0}(X_t \mid X_0)), \qquad \tilde{\beta}_t = \frac{1 - \prod_{s=1}^{t-1} (1 - \beta_s)}{1 - \prod_{s=1}^{t} (1 - \beta_s)} \beta_t$$

for $t = 1, 2, \ldots$ Do not assume $\beta_t \approx 0$.

Problem 2: DDIM marginals. Consider the DDIM "forward" process

$$q(X_{1},...,X_{T} | X_{0}) = q(X_{T} | X_{0}) \prod_{t=1}^{T-1} q(X_{t} | X_{t+1}, X_{0})$$

$$q(X_{T} | X_{0}) = \mathcal{N} \left(\sqrt{\alpha_{T}} X_{0}, (1 - \alpha_{T})I \right)$$

$$q(X_{t} | X_{t+1}, X_{0}) = \mathcal{N} \left(\sqrt{\alpha_{t}} X_{0} + \frac{\sqrt{1 - \alpha_{t} - \sigma_{t+1}^{2}}}{\sqrt{1 - \alpha_{t+1}}} (X_{t+1} - \sqrt{\alpha_{t+1}} X_{0}), \sigma_{t+1}^{2} I \right), \qquad t = T - 1, ..., 1,$$

where $\alpha_T, \ldots, \alpha_1$ is a sequence in (0,1) and $\sigma_T, \ldots, \sigma_2$ is sequence of positive numbers satisfying $\sigma_{t+1}^2 \leq 1 - \alpha_t$ for all $t = 1, \ldots, T - 1$. Show that

$$X_t \mid X_0 \sim \mathcal{N}(\sqrt{\alpha_t}X_0, (1-\alpha_t)I), \qquad t = 1, \dots, T.$$

Hint. Use the fact that

$$X_{T} \stackrel{\mathcal{D}}{=} \sqrt{\alpha_{T}} X_{0} + \sqrt{1 - \alpha_{T}} \varepsilon_{T}$$

$$X_{t} \stackrel{\mathcal{D}}{=} \sqrt{\alpha_{t}} X_{0} + \frac{\sqrt{1 - \alpha_{t} - \sigma_{t+1}^{2}}}{\sqrt{1 - \alpha_{t+1}}} (X_{t+1} - \sqrt{\alpha_{t+1}} X_{0}) + \sigma_{t+1} \varepsilon_{t}, \qquad t = T - 1, \dots, 1$$

for IID $\varepsilon_T, \varepsilon_{T-1}, \ldots, \varepsilon_1 \sim \mathcal{N}(0, I)$.

Problem 3: Denoising score matching loss near t = 0. Consider the 1-dimensional Ornstein–Uhlenbeck process

$$dX_t = -\frac{1}{2}X_t dt + dW_t$$

for $t \in [0, T]$, where $X_0 \sim p_0$. For simplicity, let $p_0 = \mathcal{N}(0, 1)$. Let

$$\gamma_t = e^{-t/2}, \qquad \sigma_t^2 = 1 - e^{-t}.$$

Consider the loss

$$\mathcal{L}(\theta) = \underset{t \sim \text{Uniform}([\delta, T])}{\mathbb{E}} \left[\underset{X_0 \sim p_0}{\mathbb{E}} \left[\underset{X_t \mid X_0}{\mathbb{E}} \left[\lambda(t) \left(s_{\theta}(X_t, t) - \frac{d}{dX_t} \log p_{t|0}(X_t \mid X_0) \right)^2 \mid X_0 \right] \right] \right]$$

$$= \underset{t \sim \text{Uniform}([\delta, T])}{\mathbb{E}} \left[\frac{\lambda(t)}{\sigma_t^2} \left(\varepsilon_{\theta}(\gamma_t X_0 - \sigma_t \varepsilon, t) - \varepsilon \right)^2 \right],$$

$$\underset{\varepsilon \sim \mathcal{N}(0, I)}{\underbrace{K_0 \sim p_0}}$$

where $\delta \geq 0$, $\lambda(t) \geq 0$ is a continuous function, s_{θ} is a score network, and $\varepsilon_{\theta}(X_t, t) = \sigma_t s_{\theta}(X_t, t)$. It is customary to use $\delta > 0$ to "avoid numerical instabilities." In this problem, we explore issues that arise when $\delta = 0$.

- (a) Show that $p_t = \mathcal{N}(0, 1)$ for all t > 0.
- (b) Assume s_{θ} has been perfectly trained, i.e., $s_{\theta}(X_t, t) = \frac{d}{dX_t} \log p_t(X_t) = -X_t$. Show that if $\min_{t \in [0,T]} \lambda(t) > 0$, then

$$\mathcal{L}(\theta) \ge \left(\min_{t \in [0,T]} \lambda(t)\right) \underset{t,X_0,X_t}{\mathbb{E}} \left[\left(s_{\theta}(X_t, t) - \frac{d}{dX_t} \log p_{t|0}(X_t \mid X_0) \right)^2 \right]$$
$$= \infty.$$

- (c) Show that if $\lambda(t) = \sigma_t^2$ (so $\min_{t \in [0,T]} \lambda(t) = 0$) and if $s_{\theta}(X_t, t) = \frac{d}{dX_t} \log p_t(X_t)$, then $\mathcal{L}(\theta) < \infty$.
- (d) Let $\lambda(t) = \sigma_t^2$. Assume there is a θ^* such that $s_{\theta^*}(X_t, t) = \frac{d}{dX_t} \log p_t(X_t)$. Let θ be such that $s_{\theta}(X_t, t) = \frac{m}{\sigma_t} X_t + \frac{d}{dX_t} \log p_t(X_t)$ for some small m > 0. Show that

$$\mathcal{L}(\theta) - \mathcal{L}(\theta^*) = m^2.$$

(Conceptually, m^2 is small, so s_θ is nearly optimal with respect to the loss \mathcal{L} .)

(e) Let $s_{\theta}(X_t, t) = \frac{m}{\sigma_t} X_t + \frac{d}{dX_t} \log p_t(X_t)$ for some small m > 0. Show that the reverse sampling ODE with the trained score s_{θ} is of the form

$$d\overline{X}_t = F(\overline{X}_t, t)dt,$$

where $F(X_t, t)$ blows up as $t \to 0$. (Since the ODE is singular, we expect numerical solutions of it via discretizations to be numerically unstable.)

Remark. The ODE

$$d\overline{X}_t = -\frac{1}{\sqrt{t}}\overline{X}_t$$

has a general solution $\overline{X}_t = \exp(-2\sqrt{t})$ for $t \ge 0$, so a singular ODE (an ODE with a RHS that blows up) does not necessarily have a singular solution (a solution that blows up).

Problem 4: Why output projection on MHA? Consider the standard multi-head self-attention (MHA) layer defined by

$$\underbrace{\underbrace{\text{output}}_{L\times d_{\text{out}}} = \underbrace{\text{concat}(\text{head}_1,\dots,\text{head}_H)}_{L\times Hd_{\text{head}}} W^O}_{L\times Hd_{\text{head}}}$$

$$\underbrace{\underbrace{\text{head}_h}_{L\times d_{\text{head}}} = \text{Attention}(QW_h^Q,KW_h^Q,VW_h^V)}_{L\times d_{\text{head}}} \text{ for } h=1,\dots,H,$$

$$\underbrace{\text{Attention}(\tilde{Q},\tilde{K},\tilde{V})}_{L\times d_{\text{head}}} = \text{softmax}(\underbrace{\tilde{Q}\tilde{K}^\intercal}_{\sqrt{d_{\text{attn}}}})\tilde{V},$$

where

$$W^O \in \mathbb{R}^{Hd_{\text{head}} \times d_{\text{out}}}$$

$$W_h^Q \in \mathbb{R}^{d_Q \times d_{\text{attn}}}, \quad W_h^K \in \mathbb{R}^{d_K \times d_{\text{attn}}}, \quad W_h^V \in \mathbb{R}^{d_V \times d_{\text{head}}}$$

$$Q \in \mathbb{R}^{L \times d_Q}, \quad K \in \mathbb{R}^{L \times d_K}, \quad V \in \mathbb{R}^{L \times d_V}.$$

(Of course, it is often the case that $Q = K = V = X \in \mathbb{R}^{L \times d}$.) Let us call this model MHA1. Next, consider a variant that we call MHA2.

$$\underbrace{\underset{L \times d_{\text{out}}}{\text{output}}} = \text{head}_1 + \dots + \text{head}_H$$

$$\underbrace{\underset{L \times d_{\text{head}}}{\text{head}_h}} = \text{Attention}(QW_h^Q, KW_h^Q, VW_h^V) \quad \text{for } h = 1, \dots, H,$$

$$\text{Attention}(\tilde{Q}, \tilde{K}, \tilde{V}) = \text{softmax}(\frac{\tilde{Q}\tilde{K}^\intercal}{\sqrt{d_{\text{attn}}}})\tilde{V},$$

where

$$W_h^Q \in \mathbb{R}^{d_Q \times d_{\text{attn}}}, \quad W_h^K \in \mathbb{R}^{d_K \times d_{\text{attn}}}, \quad W_h^V \in \mathbb{R}^{d_V \times d_{\text{out}}}$$

$$Q \in \mathbb{R}^{L \times d_Q}, \quad K \in \mathbb{R}^{L \times d_K}, \quad V \in \mathbb{R}^{L \times d_V}.$$

(a) Given an MHA1 model, decompose the rows of W^O as

$$W^{O} = \begin{bmatrix} W_{1}^{O} \\ W_{2}^{O} \\ \vdots \\ W_{H}^{O} \end{bmatrix} \in \mathbb{R}^{Hd_{\text{head}} \times d_{\text{out}}}$$

such that $W_1^O, W_2^O, \dots, W_H^O \in \mathbb{R}^{d_{\mathrm{head}} \times d_{\mathrm{out}}}$. Show that if we set the parameters of an MHA2 model as $W_h^V \leftarrow W_h^V W_h^O$ for $h = 1, \dots, H$ and keep all other parameters the same, then the MHA1 and MHA2 models are equivalent, i.e., $(\mathrm{MHA1}(Q,K,V) = \mathrm{MHA2}(Q,K,V)$ for all inputs Q,K,V.

- (b) How many trainable parameters do MHA1 and MHA2 have?
- (c) If $d_V = d_{\text{out}} = 512$ and $d_{\text{head}} = 64$, what is the difference in the number of trainable parameters?