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Motivating example: Binary classification

Consider the binary classification problem where we have grayscale
images X1, . . . , XN ∈ X = Rd, where d is the number of pixels, and
corresponding labels Y1, . . . , YN ∈ {−1,+1}. (E.g. labels indicate
whether the image contains a cat or dog.)

Goal: Learn a function f : X → {−1,+1} that approximately solves

minimize
f

P
(X,Y )∼P

[f(X) ̸= Y ]︸ ︷︷ ︸
=R[f ]

.

I.e., minimize R[f ] = (probability of error of f).

Implicit constraint: We must be able to implement f on a computer.
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Direct empirical risk minimization

We do not have direct access to

R[f ] = P
(X,Y )∼P

[f(X) ̸= Y ] = (Probability of error),

but we can use the approximation

P
(X,Y )∼P

[f(X) ̸= Y ] = E
(X,Y )∼P

[
1{f(X) ̸=Y }

]
?
≈ 1

N

N∑
i=1

1{f(Xi )̸=Yi}︸ ︷︷ ︸
=R̂[f ]

= (% of error on training data).

We call R[f ] the population risk or the true risk and call R̂[f ] the
empirical risk. Intuitively, based on the law of large numbers, we expect

R̂[f ]
?
≈ R[f ]

when the sample size N is large. The
?
≈ will be precisely defined and

rigorously justified in this course.



Direct empirical risk minimization

A seemingly straightforward approach is

minimize
f

1

N

N∑
i=1

1{f(Xi )̸=Yi}︸ ︷︷ ︸
=R̂[f ]

.

I.e., minimize (% of error on training data of f). This is used in some
setups, such as tree-based learning methods.

However, this combinatorial optimization problem is often difficult
(NP-hard) to solve exactly, and it’s not the focus of modern machine
learning research.1

1One can argue that tree-based methods such as XGBoost are most common in
current machine learning practice of the industry. However, methods based on
continuous optimization of surrogate losses are more mainstream in current machine
learning research, and it is the basis of modern deep learning.



Surrogate loss

Instead, use a surrogate loss and solve the resulting continuous
optimization problem.

Let f(x) = sign(g(x)), where g : X → R. (For the sake of concreteness,
define sign(0) = 0, although this specific choice does not matter.)

Then (no surrogate yet),

R[g] = P
(X,Y )∼P

[sign(g(X)) ̸= Y ]

= P
(X,Y )∼P

[sign(Y g(X)) ̸= 1]

= E
(X,Y )∼P

[1{sign(Y g(X)) ̸=1}]

= E
(X,Y )∼P

[Φ0-1(Y g(X))], Φ0-1(u) =

{
1 for u < 0
0 otherwise.

Since R[f ] = R[sign ◦ g] = R[g], this is a bit of abuse of notation.
Prologue 6



Surrogate loss

Replace Φ0-1(u) with a surrogate loss such as

Φhinge(u) = max{1− u, 0}
Φlogistic(u) = log(1 + e−u),

which are nice continuous, convex functions.

Finally, solve the continuous optimization problem

minimize
g

E
(X,Y )∼P

[Φ(Y g(X))]︸ ︷︷ ︸
=RΦ[g]

or its approximation

minimize
g

1

N

N∑
i=1

Φ(Yig(Xi))︸ ︷︷ ︸
=R̂Φ[g]

.

u

Φ(u)

Φ0-1

Φlogistic

Φhinge
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Minimize surrogate loss
?⇒ Minimize original loss

Do not forget that we have changed the optimization problem from
minimizing R to RΦ to R̂Φ.

Is this a valid approach? We will rigorously establish this later.

The surrogate losses majorize the 0-1 loss, i.e., Φhinge ≥ Φ0-1 or
1

log(2)Φ
logistic ≥ Φ0-1, and this is an important observation. Therefore,

RΦ[g] ≈ 0 ⇒ R[g] ≈ 0, provided that the original and surrogate losses
are nonnegative.

However, if
RΦ[g

surr
⋆ ] = inf

g
RΦ[g] > 0,

then it is not immediately clear whether

R[gsurr⋆ ]
?
≈ inf

g
R[g].

In this case, we need further justification for using the surrogate loss.
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Measures of performance

We want to prove that our ML method is good.
How do we quantify “good”?

If we can find a g such that

R[g]−R⋆ < small

where R⋆ is some suitable baseline, then g will be a good function, and
the machine learning task has succeeded.

However, our g is itself random, as it depends on that data
X1, . . . , XN , Y1, . . . , YN and the randomness of the training algorithm
(perhaps SGD). Therefore, a statement about the goodness of g must be
probabilistic sense.
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Measures of performance: Expected error

One approach is to show that the expected error is small:

E
g
[R[g]−R⋆] < small.

Interpretation: g is good in expectation.

We will mostly focus on this measure of performance in this course.
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Measures of performance: PAC

Another approach is to show that the probably approximately correct
(PAC) result:

P
g
(R[g]−R⋆ < small) > 1− small

Interpretation: g is good with high probability. Arguably, this better
aligns with our intuitive notion of what a “good” ML method is.

PAC is a weaker notation (easier to establish) than expected error:

▶ A bound on expected error implies PAC by Markov inequality.

▶ If an algorithm catastrophically fails with a small probability, then
the expected error will be large, but PAC may hold.
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Measures of performance:

Data, memory, and compute complexities

In either

E
g
[R[g]−R⋆] < small

or

P
g
(R[g]−R⋆ < small) > 1− small,

“small” will be formally quantified with ε’s and δ’s.

The “small” will (usually) be a decreasing function of the expended
resources: data, memory, and compute.2

2In modern ML vernacular, “compute” is used as a noun to mean “computation”,
“computing power”, or “flops”.

Prologue 12



Outline

Prologue

Analysis, linear algebra, and convexity

Concentration inequalities

Convex analysis

Analysis, linear algebra, and convexity 13



Norn and dual norm

We say ∥ · ∥ is a norm on Rd if ∥x∥ ∈ [0,∞) for all x ∈ Rd (so the
output of ∥x∥ is a finite non-negative scalar), and

▶ ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ Rd,
▶ ∥αx∥ = |α|∥x∥ for all α ∈ R and x ∈ Rd, and
▶ ∥x∥ = 0 if and only if x = 0.

Let ∥ · ∥ be a norm on Rd. The dual norm ∥ · ∥∗ is defined as

∥y∥∗ = sup{y⊺x |x ∈ Rd, ∥x∥ ≤ 1}

for all y ∈ Rd. The dual norm is a norm on Rd.

If p, q ∈ [1,∞] and 1/p+ 1/q = 1, then the p-norm and the q-norm are
duals of each other, i.e.,

(∥ · ∥p)∗ = ∥ · ∥q.

In particular, the Euclidean norm ∥ · ∥2 is self-dual.
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Singular value decomposition (SVD)

Let A ∈ Rm×n. The singular value decomposition (SVD) of A has the
form

A =
[
u1 · · · um

]︸ ︷︷ ︸
∈Rm×m


σ1 0 0 · · · 0 · · · 0
0 σ2 0 · · · 0 · · · 0

0 0
. . . 0 0 · · · 0

0 0 0 σr 0 · · · 0
0 0 0 0 0 · · · 0


︸ ︷︷ ︸

∈Rm×n

v
⊺
1
...
v⊺n


︸ ︷︷ ︸
∈Rn×n

.

where u1, . . . , um ∈ Rm is an orthonormal basis of Rm, r is the rank of
A, σ1, . . . , σr > 0, and v1, . . . , vn ∈ Rn is an orthonormal basis of Rn.
The SVD always exists and can be computed.3

3In comparison, the eigenvalue decomposition only exists when the matrix is
diagonalizable. Also, the Jordan canonical form cannot be computed stably on a
computer with finite-precision arithmetic.
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Compact SVD

Let A ∈ Rm×n. The compact SVD of A has the form

A =
[
u1 · · · ur

]︸ ︷︷ ︸
=U∈Rm×r

diag(σ1, . . . , σr)︸ ︷︷ ︸
=Σ∈Rr×r

v
⊺
1
...
v⊺r


︸ ︷︷ ︸

=V ⊺∈Rr×n

,

where u1, . . . , ur ∈ Rm is an orthonormal set of vectors, r is the rank of
A, σ1, . . . , σr > 0, and v1, . . . , vr ∈ Rn is an orthonormal set of vectors.

Note, U and V are not orthogonal matrices despite containing
orthonormal columns. So

U⊺U = I, UU⊺ ̸= I, V ⊺V = I, V V ⊺ ̸= I.
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Moore–Penrose inverse pseudo-inverse

The (Moore–Penrose) pseudo-inverse is as defined as follows:
Let A ∈ Rm×n have rank r and let

A =
[
u1, . . . , ur

]︸ ︷︷ ︸
=U

diag(σ1, . . . , σr)︸ ︷︷ ︸
=Σ

v
⊺
1
...
v⊺r


︸ ︷︷ ︸
=V ⊺

be the compact SVD of A. Then, the pseudo-inverse is defined as

A† =
[
v1, . . . , vr

]
diag(σ−1

1 , . . . , σ−1
r )

u
⊺
1
...
u⊺
r

 = V Σ−1U⊺.
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Abstract definition of pseudo-inverse

Alternatively, we can define A† to be the linear operator such that

A†∣∣
R(A)⊥

= 0, A†∣∣
R(A)

=
(
A
∣∣
N (A)⊥→R(A)

)−1

.

To clarify, by restricting A’s domain and range as

A
∣∣
N (A)⊥→R(A)

: N (A)⊥ → R(A)

we have a bijection and, therefore, invertible linear mapping.
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Unitary matrices and unitary invariance of ∥ · ∥2

We say U ∈ Rn×n is unitary or orthogonal if any one of the following
equivalent conditions hold:

▶ U⊺U = I.

▶ UU⊺ = I.

▶ The columns of U form an orthonormal basis of Rn.

▶ The rows of U form an orthonormal basis of Rn.

The Euclidean norm ∥ · ∥2 is unitarily invariant, i.e., if U ∈ Rn×n is
unitary, then

∥Ux∥2 = ∥x∥2 ∀x ∈ Rn.
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Positive definite matrices

We say a symmetric matrix A ∈ Rn×n is positive definite if its
eigenvalues are all strictly positive and positive semidefinite if its
eigenvalues are all nonnegative. (Note that symmetric real matrices
necessarily have real eigenvalues.) (In this class, we will not refer to
asymmetric matrices as positive definite or semidefinite.)

For a symmetric A ∈ Rn×n, write

A ≻ 0 and A ⪰ 0

to respectively denote that A is positive definite and positive semidefinite.

For symmetric A,B ∈ Rn×n, we use the notation

A ≻ B ⇔ (A−B) ≻ 0

and
A ⪰ B ⇔ (A−B) ⪰ 0.
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Cholesky factorization and matrix square root

Let A ∈ Rn×n be symmetric positive semidefinite. Then there is a lower
triangular L ∈ Rn×n such that

LL⊺ = A.

This is the Cholesky factorization, and it can be computed efficiently.

Let A ∈ Rn×n be symmetric positive semidefinite. If we let
A = Udiag(λ1, . . . , λn)U

⊺ be the eigenvalue decomposition of A, then

A1/2 = Udiag(
√
λ1, . . . ,

√
λn)U

⊺

is called the matrix square root of A. Of course, A1/2 is itself a
symmetric positive semidefinite matrix, and

A1/2(A1/2)⊺ = A1/2A1/2 = A.

We will encounter several instances where given a symmetric positive
semidefinite A, we need a B such that BB⊺ = A. Theoretically, one can
choose either the Cholesky factorization or the matrix square root. (Or
something else, since there are many other choices.) Computationally,
the Cholesky is usually the best option.



Matrix inversion lemma

Let A ∈ Rn×n and D ∈ Rm×m be invertible. Let B ∈ Rn×m and
C ∈ Rm×n. Then, the Sherman–Morrison–Woodbury matrix inversion
lemma states:

(A−BD−1C)−1 = A−1 +A−1B(D − CA−1B)−1CA−1.

Often applied with A and/or B equal to a scalar multiple of identity.
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Convexity

We say a set C ⊆ Rd is convex if

θx+ (1− θ)y ∈ C, ∀x, y ∈ C, θ ∈ (0, 1).

In other words, the line segment connecting x and y is contained in C.

We say a function f : Rd → R is convex if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), ∀x, y ∈ R, θ ∈ [0, 1].

In other words, the line segment connecting (x, f(x)) and (y, f(y)) is
above the graph of f . Finite-valued convex functions are continuous.
Convex functions are not necessarily differentiable.
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Jensen’s inequality

Lemma (Jensen’s inequality)
Let X ∈ Rd be a random variable such that E[X] ∈ Rd is well defined,
and let φ : Rd → R be convex. Then.

φ
(
E[X]

)
≤ E[φ(X)].

(The LHS is assumed to be finite, but the RHS can take value ∞.)

Proof. Immediate from the notion of subgradients and the linearity of
expectation. We will revisit the proof later.

Analysis, linear algebra, and convexity 24



Outline

Prologue

Analysis, linear algebra, and convexity

Concentration inequalities

Convex analysis

Concentration inequalities 25



Markov inequality

Theorem
Let X ∈ R be a nonnegative random variable. For any ε > 0,

P(X ≥ ε) ≤ 1

ε
E[X].

Proof. Using

1{X≥ε} ≤ 1

ε
X,

we conclude

P(X ≥ ε) = E[1{X≥ε}] ≤ E
[
1

ε
X

]
.
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Chebyshev inequality

Corollary
Let X1, . . . , XN be a IID scalar random variables with mean µ ∈ R and
standard deviation σ ∈ R. Let

X̄ =
1

N

N∑
i=1

Xi.

For any ε > 0,

P
(
|X̄ − µ| ≥ ε

)
≤ σ2

Nε2
.

Proof.
By the Markov inequality,

P
(
|X̄ − µ| ≥ ε

)
= P

(
(X̄ − µ)2 ≥ ε2

)
≤ σ2/N

ε2
.
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Concentration: X̄ ≈ µ when N is large?

Can we bound the deviation of X̄ from its mean µ? I.e., can we show
that X̄ concentrates around µ?

Without assumptions, we cannot. Even as N → ∞. (E.g. Cauchy.)

If we assume σ < ∞, Chebyshev applies and shows a concentration result.

When X is bounded, a stronger condition, Hoeffding applies and provides
a stronger concentration result.
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Hoeffding inequality

Theorem
Let X1, . . . , XN ∈ [0, 1] be independent random variables with means

µ1, . . . , µN ∈ R. Let X̄ = 1
N

∑N
i=1 Xi and µ̄ = 1

N

∑N
i=1 µi. For any

ε > 0,
P(X̄ − µ̄ ≥ ε) ≤ exp(−2Nε2).

The exponential dependence on N is much stronger (better) than the
O(1/N) dependence of Chebyshev.
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Two-sided Hoeffding inequality

Corollary
Let X1, . . . , XN ∈ [0, 1] be independent random variables with means

µ1, . . . , µN ∈ R. Let X̄ = 1
N

∑N
i=1 Xi and µ̄ = 1

N

∑N
i=1 µi. For any

ε > 0,
P(|X̄ − µ̄| ≥ ε) ≤ 2 exp(−2Nε2).

Proof. Decompose the deviation into two events and use one-sided
Hoeffding twice with Xi, (1−Xi) ∈ [0, 1]:

P(|X̄ − µ̄| ≥ ε) = P(X̄ − µ̄ ≥ ε) + P(X̄ − µ̄ ≤ −ε)

= P(X̄ − µ̄ ≥ ε) + P(−X̄ + µ̄ ≥ ε)

= P(X̄ − µ̄ ≥ ε) + P((1− X̄)− (1− µ̄) ≥ ε)

≤ exp(−2Nε2) + exp(−2Nε2).
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Light and heavy tails

We say a scalar-valued random variable X is light-tailed if

P
(
|X| > large

)
≤ small

and heavy-tailed if

P
(
|X| > large

)
≥ not small

where “small” and “large” depends on the context.4 Light-tailed random
variables are much easier to control and will allow us to get good rates, so
we exclude heavy-tailed random variables with appropriate assumptions.

Cauchy RVs with density

f(x) =
1

π(1 + x2)

and tail probability

P(X ≥ x) ∼ 1

πx
as x → ∞

are heavy-tailed.

4In probability theory, there is a more quantitative definition of light- and
heavy-tailedness. In this course, this informal definition will suffice.



Light and heavy tails

Gaussian RVs with density

f(x) =
1√
2π

e−
x2

2

and tail probability

P(X ≥ x) ∼ 1√
2πx

e−
x2

2 as x → ∞

are light-tailed.

Bounded RVs

X ∈ [a, b] for some −∞ < a ≤ b < ∞

have tail probability

P(X ≥ x) = 0 as x → ∞,

so they are light-tailed.
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Chebyshev vs. Hoeffding

Theorem (More general Chebyshev)
Let X1, . . . , XN be IID .... For p ≥ 2, there is some Cε,p > 0 such that

P(|X̄ − µ| ≥ ε) ≤ Cε,pE[|X1 − µ|p]
Np/2

.

Theorem (Hoeffding)
Let X1, . . . , XN ∈ [0, 1] be IID .... Then, there is some Cε > 0 such that

P(|X̄ − µ| ≥ ε) ≤ exp(−CεN).

Hoeffding is substantially stronger for large N .

The main difference is that Chebyshev applies to light- and heavy-tailed
RVs, while Hoeffding applies to only light-tailed RVs.

Soon, we generalize Hoeffding to sub-Gaussian random variables.
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Hoeffding lemma

We now proceed with the proof of the Hoeffding inequality.

Lemma
Let Z ∈ [0, 1] be a random variable. For any s ≥ 0,

E[es(Z−E[Z])] ≤ es
2/8.

Proof. We first consider the cumulant-generating function

φ(s) = logE[es(Z−E[Z])].

Clearly, φ(0) = 0. We will show that φ′(0) = 0 and φ′′(s) ≤ 1/4 for all
s ≥ 0. This implies φ′(s) ≤ s/4 and φ(s) ≤ s2/8, and we conclude the
statement.
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Let f be the density function5 of Z, and let Z̃ ∈ [0, 1] is a random
variable with density

es(z−E[Z])f(z)∫ 1

0
es(w−E[Z])f(w) dw

for z ∈ [0, 1].

Then,6

φ′(s) =
E[(Z − E[Z])es(Z−E[Z])]

E[es(Z−E[Z])]
= E[Z̃ − E[Z]]

φ′′(s) =
E[(Z − E[Z])2es(Z−E[Z])]

E[es(Z−E[Z])]
−
(
E[(Z − E[Z])es(Z−E[Z])]

E[es(Z−E[Z])]

)2

= Var(Z̃ − E[Z]) = Var(Z̃).

We see that φ′(0) = 0. Since

φ′′(s) = Var(Z̃) = Var(Z̃ − 1/2) ≤ E[(Z̃ − 1/2)2] ≤ 1

4

since (Z̃ − 1/2)2 ≤ 1/4 for all Z̃ ∈ [0, 1].

5If Z is not a continuous RV we can use the Radon–Nikodym derivative.
6To be rigorous, one should justify differentiating under the integral, i.e. one should
justify d

ds EZ [· · · ] = EZ [ d
ds

· · · ], with a Lebesgue DCT argument.



Proof of Hoeffding inequality

Using the Hoeffding Lemma, we now prove the Hoeffding inequality.

Proof.

P(X̄ − µ̄ ≥ ε) = P(es(X̄−µ̄) ≥ esε) for s > 0 (monotonicity of exponential)

≤ e−sεE[es(X̄−µ̄)] (Markov ineq.)

= e−sε
N∏
i=1

E[e
s
N (Xi−µi)] (independence)

≤ e−sε
N∏
i=1

e
s2

8N2 (Hoeffding Lem.)

= e−sε+ s2

8N

Finally, we plug in s = 4Nε, the minimizer of the bound, to conclude

P(X̄ − µ̄ ≥ ε) ≤ e−2Nε2 .
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Hoeffding inequality with non-uniform bounds

Hoeffding’s bound Xi ∈ [0, 1] is arbitrary, and it can be generalized.

Theorem
Let X1, . . . , XN ∈ R be independent random variables such that
|Xi| ≤ ci < ∞ almost surely and E[Xi] = µi ∈ R for i = 1, . . . , N .

Let X̄ = 1
N

∑N
i=1 Xi and µ̄ = 1

N

∑N
i=1 µi. For any ε > 0,

P(X̄ − µ̄ ≥ ε) ≤ exp

(
− N2ε2

2(c21 + · · ·+ c2N )

)
.

Proof. Follow the same reasoning as the regular Hoeffding inequality.
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Hoeffding for martingales (Azuma)

The independence assumption of Hoeffding inequality can be relaxed to a
martingale difference assumption.

Theorem (Azuma’s inequality)
Let X1, . . . , XN ∈ R be a martingale difference sequence, i.e.,

E[Xi |X1, . . . , Xi−1] = 0 for i = 1, . . . , N,

such that |Xi| ≤ ci < ∞ for i = 1, . . . , N . (The martingale difference

condition implies X1, . . . , XN have zero mean.) Let X̄ = 1
N

∑N
i=1 Xi.

For any ε > 0,

P(X̄ ≥ ε) ≤ exp

(
− N2ε2

2(c21 + · · ·+ c2N )

)
.

Proof. Follow the same reasoning as the regular Hoeffding inequality.

In probability theory, whenever a result holds for sums of independent random
variables, there is a good chance that the result can be generalized to sums of
martingale difference sequences, i.e., martingales.



Sub-Gaussian random variables

A random variable X ∈ R is sub-Gaussian with constant τ ≥ 0 if

E[es(X−E[X])] ≤ eτ
2s2/2 ∀ s ∈ R.

Fact
If X is sub-Gaussian with constant τ , then sX is sub-Gaussian with
constant |s|τ for any s ∈ R.

Proof. Check definition.

Fact
If X ∼ N (µ, σ2), then X is sub-Gaussian with constant τ = σ.

Proof. With direct calculation, show E[es(X−E[X])] = eσ
2s2/2.

Fact
If X ∈ [a, b], then X is sub-Gaussian with constant τ2 = (b− a)2/4.

Proof. Re-do the proof of Hoeffding lemma.



Hoeffding for sub-Gaussians

Fact
Let X1, . . . , XN be independent sub-Gaussian random variables with
constant τ . Then X̄ = 1

N

∑N
i=1 Xi is sub-Gaussian with constant τ/

√
N .

Proof. Follow the reasoning of Hoeffding inequality.

Theorem
Let X1, . . . , XN be independent sub-Gaussian random variables with
constant τ > 0. Write µ1, . . . , µN ∈ R for the means. Let
X̄ = 1

N

∑N
i=1 Xi and µ̄ = 1

N

∑N
i=1 µi. For any ε > 0,

P(X̄ − µ̄ ≥ ε) ≤ exp

(
−Nε2

2τ2

)
.

Proof. Re-do the proof of Hoeffding inequality.
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Tails of sub-Gaussians

The Hoeffding inequality with N = 1 implies

P(|X − µ| ≥ ε) ≤ 2 exp

(
− ε2

2τ2

)
,

so sub-Gaussians are light-tailed.

In fact, we can equivalently characterize sub-Guassian random variables
via this light-tailed property.

Theorem
X is a sub-Gaussian with some τ > 0 if and only if there is some ω > 0
such that

P(|X − E[X]| ≥ ε) ≤ exp

(
−ε2

ω

)
∀ ε > 0.
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McDiarmid inequality

Theorem
Let Z1, . . . , ZN ∈ Z be independent random variables. (No assumption
on Z.) Let f : ZN → R be a function satisfying the following “bounded
differences property” with c > 0:∣∣f(Z1, . . . , Zi−1, Zi, Zi+1, . . . , ZN )−f(Z1, . . . , Zi−1, Z

′
i, Zi+1, . . . , ZN )

∣∣ ≤ c

for all Z1, . . . , ZN , Z ′
i ∈ Z. Then, for all ε > 0,

P (f(Z1, . . . , ZN )− E[f(Z1, . . . , ZN )] ≥ ε) ≤ exp(−2ε2/(Nc2)).

(Note, McDiarmid generalizes Hoeffding with f = 1
N

∑N
i=1 Zi and c = 1.)
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McDiarmid inequality

Proof. We show

P (f(Z1, . . . , ZN )− E[f(Z1, . . . , ZN )] ≥ ε) ≤ exp(−2ε2/(Nc2)).

and the two-sided bound from the decomposition argument of p. 30.

For i = 1, . . . , N , define

Vi = E[f(Z1, . . . , ZN ) |Z1, . . . , Zi]− E[f(Z1, . . . , ZN ) |Z1, . . . , Zi−1],

where for i = 1, we have

E[f(Z1, . . . , ZN ) | ∅] = E[f(Z1, . . . , ZN )].

By definition,

f(Z1, . . . , ZN )− E[f(Z1, . . . , ZN )] =

N∑
i=1

Vi.

By the law of iterated expectations,

E[Vi |Z1, . . . , Zi−1] = 0.

(So V1, . . . , VN is a martingale difference sequence.)



McDiarmid inequality

By the bounded differences property,

Vi = E

[
E
Z′

i

[
f(Z1, . . . , Zi−1, Zi, Zi+1, . . . , ZN )− f(Z1, . . . , Zi−1, Z

′
i, Zi+1, . . . , ZN )

]
∣∣∣∣∣Z1, . . . , Zi

]

|Vi| ≤ E

[
E
Z′

i

[∣∣f(Z1, . . . , Zi−1, Zi, Zi+1, . . . , ZN )− f(Z1, . . . , Zi−1, Z
′
i, Zi+1, . . . , ZN )

∣∣]
∣∣∣∣∣Z1, . . . , Zi

]
≤ E[E

Z′
i

[c] |Z1, . . . , Zi]

= c

Finally, we use the Hoeffding inequality with the martingale difference
sequence V1, . . . , VN to conclude the statement.
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Expectation of maximum

Theorem
Let X1, . . . , XN be (potentially dependent) zero-mean random variables
that are sub-Gaussian with constant τ > 0. Then

E[max{X1, . . . , XN}] ≤
√
2τ2 logN.

Proof.

E[max{X1, . . . , XN}]

≤ 1

t
logE[etmax{X1,...,XN}] for t > 0 (Jensen inequality)

=
1

t
logE[max{etX1 , . . . , etXN }]

≤ 1

t
logE[etX1 + · · ·+ etXN ]

≤ 1

t
log(Neτ

2t2/2).

Finally, plug in t = 1
τ

√
2 logN , the minimizer of the bound, to conclude

the result.
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Expectation of maximum

Corollary
Let X1, . . . , XN be (potentially dependent) zero-mean random variables
that are sub-Gaussian with constant τ > 0. Then

E[max{|X1|, . . . , |XN |}] ≤
√
2τ2 log(2N).

Proof. Use the previous theorem with X1, . . . , XN ,−X1, . . . ,−XN .
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Bernstein inequality

When we know σ, Bernstein’s inequality improves upon Hoeffding.

Theorem
Let X1, . . . , XN be independent zero-mean random variables such that
|Xi| ≤ c almost surely for i = 1, . . . , N . Then, for ε > 0,

P(|X̄| ≥ ε) ≤ 2 exp
(
− Nε2

2σ2 + 2cε/3

)
,

where X̄ = 1
N

∑N
i=1 Xi and σ2 = 1

N

∑N
i=1 Var(Xi).

Bernstein is not uniformly better than Hoeffding, but it is “not worse”
than Hoeffding for small ε > 0, where “not worse” is meant in the sense
illustrated in the next slide.
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Proof of Bernstein

Proof. We start by showing two Lemmas.

Lemma 1) The function

h(x) =
1

x2

∞∑
k=1

xk

k!
=

{
ex−x−1

x2 for x ̸= 0
1
2 for x = 0

is a monotonically increasing function. We skip the proof.

Lemma 2) Let |u| < 3. Then,

eu − 1− u =

∞∑
k=0

uk+2

(k + 2)!

≤
∞∑
k=0

uk+2

2 · 3k
=

u2

2

∞∑
k=0

uk

3k
=

u2

2

1

1− u/3
.
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Proof of Bernstein

Lemma 3) Let Z be a random variable such that |Z| ≤ c, E[Z] = 0, and
E[Z2] = σ2. Then,

E[esZ ] = E
[ ∞∑
k=0

sk

k!
Zk

]
=

∞∑
k=0

sk

k!
E[Zk]

= 1 + E[sZ] +

∞∑
k=2

sk

k!
E[Zk] = 1 + E[h(sZ)s2Z2]

≤ 1 + E[h(sc)s2Z2] = 1 + h(sc)s2E[Z2]

= 1 + σ2

c2 (e
sc − 1− sc) ≤ 1 + σ2s2

2
1

1−sc/3

≤ exp
(

s2σ2

2(1−sc/3)

)
,

where we swap the order of the summation and expectation using the
boundedness of Z and the Lebesgue dominated convergence theorem.
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Proof of Bernstein

Finally, we proceed with the main proof.

Let σ2
i = Var(Xi) for i = 1, . . . , N and note Nσ2 = σ1 + · · ·+ σ2

N .
Then,

P(X̄ ≥ ε) = P(esNX̄ ≥ esNε) ≤ e−sNεE[esNX̄ ] = e−sNε
N∏
i=1

E[esXi ]

≤ e−sNε
N∏
i=1

exp
( s2σ2

i

2(1−sc/3)

)
≤ exp

(
− sNε+ Ns2σ2

2(1−sc/3)

)
for s < 3

c . Finally, plugging in

s =
ε

σ2 + cε/3
<

1

c

and simplifying leads to the stated bound.
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Hoeffding vs. Bernstein

Let X1, . . . , XN ∈ [a, b] be IID random variables with mean µ ∈ R.
Imagine we want to estimate µ with X̄ = 1

N

∑N
i=1 Xi.

Using Hoeffding, one can (and you will) show

N = O
(
(b− a)2

ε2
log(1/δ)

)
⇒ P(|X̄ − µ| < ε) ≤ 1− δ.

Using Bernstein, one can (and you will) show

N = O
((σ2

ε2
+

b− a

ε

)
log(1/δ)

)
⇒ P(|X̄ − µ| < ε) ≤ 1− δ.

Consider small ε > 0 and δ > 0. Note that for small ε > 0, the term σ2

ε2

dominates the other term b−a
ε .

If σ ≪ (b− a), Bernstein’s sample complexity is better than Hoeffding’s.
If σ ≈ (b− a), then the two sample complexities are roughly the same.
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Matrix functions

Let f : R → R. For any A = A⊺ ∈ Rd×d, define the matrix function
f(A) ∈ Rd×d by first taking the eigenvalue decomposition

A = Udiag(λ1, . . . , λd)U
⊺

and then forming

f(A) = Udiag(f(λ1), . . . , f(λd))U
⊺.

(One can define matrix functions for asymmetric matrices, but we will
not do so in this class.)
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Lieb’s theorem

Theorem
Let S = S⊺ ∈ Rd×d. The function

A 7→ −Tr
(
exp(S + logA)

)
is a convex map on the set of d× d positive definite matrices.

(Note that the set of positive definite matrices is a convex set.)

The proof is quite involved. We will use this result without proof.

E. H. Lieb, Convex trace functions and the Wigner–Yanase–Dyson conjecture, Adv.
Math., 1973.
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Matrix Bernstein inequality

Theorem
Let X1, . . . , XN ∈ Rd×d be independent symmetric random matrices
such that λmax(Xi) ≤ c almost surely and E[Xi] = 0 for i = 1, . . . , N .
Then, for ε > 0,

P(λmax(X̄) ≥ ε) ≤ d exp
(
− Nε2

2σ2 + 2cε/3

)
,

where X̄ = 1
N

∑N
i=1 Xi and

σ2 = λmax

( 1

N

N∑
i=1

E[X2
i ]
)
.
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Proof of matrix Bernstein

Proof. We start by showing three Lemmas.

Lemma 1) Let Z = Z⊺ ∈ Rd×d be a random matrix such that
λmax(Z) ≤ c, and E[Z] = 0. Consider the same function h as in the
scalar matrix Bernstein inequality. Then,

E[esZ ] = E
[ ∞∑
k=0

sk

k!
Zk

]
=

∞∑
k=0

sk

k!
E[Zk]

= I + E[sZ] +
∞∑
k=2

sk

k!
E[Zk] = I + E[h(sZ)s2Z2]

⪯ I + E[h(sc)s2Z2] = I + h(sc)s2E[Z2]

= I + 1
c2 (e

sc − 1− sc)E[Z2] ⪯ I + s2

2(1−sc/3)E[Z
2]

⪯ exp
(

s2

2(1−sc/3)E[Z
2]
)

for s < c/3, where we follow similar steps as in the scalar case.
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Proof of matrix Bernstein

Lemma 2) Let s > 0 and M = M⊺ ∈ Rd×d. Then

esλmax(M) ≤ Tr(esM ).

To see why, let λ1, . . . λd be the eigenvalues of M . Then,

esmaxi=1,...,d{λi} = max
i=1,...,d

esλi ≤
∑

i=1,...,d

esλi = Tr(esM ).
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Lemma 3) In the matrix case, E[exp(s
∑N

i=1 Xi)] ̸=
∏N

i=1 E[exp(sXi)]
even though the Xi are independent, so the scalar proof needs
modification. We use the following bound

Tr

(
E
[
exp

(
s

N∑
i=1

Xi

)])
= E

[
Tr exp

(
s

N−1∑
i=1

Xi + sXN

)]
= E

[
Tr exp

(
s

N−1∑
i=1

Xi + log exp(sXN )
)]

= E
X1,...,XN−1

[
E
XN

[
Tr exp

(
s

N−1∑
i=1

Xi + log exp(sXN )
)]]

≤ E
X1,...,XN−1

[
Tr exp

(
s

N−1∑
i=1

Xi + log E
XN

[exp(sXN )]
)]

...

≤ Tr

(
exp

( N∑
i=1

logE[exp(sXi)]
))
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Proof of matrix Bernstein

Next, we proceed with the main proof.

Using the bound of the lemma 3, we have

P(λmax(X̄) ≥ ε) =P(esNλmax(X̄) ≥ esNε) ≤ e−sNεE[esλmax(NX̄)]

≤ e−sNεTr(E[esNX̄ ])

≤ e−sNεTr

(
exp

( N∑
i=1

logE[exp(sXi)]
))

≤ Tr
(
exp

(
− sNεI + s2

2(1−sc/3)

N∑
i=1

E[X2
i ]
))

≤ Tr
(
exp

(
− sNεI + Ns2σ2

2(1−sc/3)I
))

for s < 3
c . Finally, plugging in

s =
ε

σ2 + cε/3
<

1

c

and noting that Tr(I) = d leads to the stated bound.
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Extended-valued convex functions

Let C ⊆ Rd be convex. We say a function f : C → R is convex if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), ∀x, y ∈ C, θ ∈ (0, 1).

We say a function f : Rd → R ∪ {∞} is an extended-valued convex
function if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), ∀x, y ∈ Rd, θ ∈ (0, 1).

Define the (effective) domain of f as

dom f = {x ∈ Rd | f(x) < ∞}.

Then, dom f ⊆ Rd is convex. Also, we can identify an extended-valued
convex f : Rd → R ∪ {∞} with a convex f̃ : dom f → R such that
f̃(x) = f(x) for all x ∈ dom f .
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Gradient provides global lower bound

Given an extended-valued convex function f , we say f is differentiable at
x ∈ Rd if f is finite on an open neighborhood of x and f is differentiable
at x in the usual sense.

Theorem
Let f : Rd → R ∪ {∞} be convex. Assume f is differentiable at x. Then,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩, ∀ y ∈ Rd.

Proof. By convexity,

f(x+ θ(y − x)) ≤ (1− θ)f(x) + θf(y), ∀ θ ∈ (0, 1).

Reorganizing, we get

f(y) ≥ f(x) +
f(x+ θ(y − x))− f(x)

θ
, ∀ θ ∈ (0, 1).

By taking θ → 0, we get the desired inequality.
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Projection onto convex sets are well defined

Lemma
Let A ⊆ Rd be a nonempty closed convex set and let p ∈ Rd. Then

argmin
x∈A

∥x− p∥2

uniquely exists.

Proof. Proof in homework.

Convex analysis 62



Supporting hyperplane theorem

Theorem (Supporting hyperplane theorem)
Let A ⊂ Rd be a nonempty closed convex set and let p ∈ ∂A. Then,
there is a non-zero v ∈ Rd such that

v⊺x ≤ v⊺p, ∀x ∈ A.

Proof. For any ε > 0, it must be that B(p, ε) ̸⊂ A, since p ∈ ∂A.
Choose pn ∈ B(p, 1/2n)\A for n ∈ N, so pn → p. Also, let

xn = argmin
x∈A

∥x− pn∥,

i.e., xn is the projection of pn onto A, which uniquely exists for n ∈ N.
Then, ∥xn − pn∥ > 0, so let

vn =
pn − xn

∥pn − xn∥
.

Since {vn}n∈N is a sequence on the unit ball (which is compact), it has
an accumulation point, which we denote v∞.
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We claim
v⊺nx ≤ v⊺npn, ∀x ∈ A.

Otherwise, if there is an x ∈ A such that v⊺x > v⊺pn, i.e., such that
(pn − xn)

⊺x > (pn − xn)
⊺pn, then

∥λx+ (1− λ)xn︸ ︷︷ ︸
∈A

−pn∥2 = ∥λ(x− pn) + (1− λ)(xn − pn)∥2

= λ2∥(x− pn)∥2 + (1− λ)2∥xn − pn∥2 + 2λ(1− λ)(x− pn)
⊺(xn − pn)

= (1− 2λ)∥xn − pn∥2 + 2λ (x− pn)
⊺(xn − pn)︸ ︷︷ ︸
<0

+O(λ2) ≤ ∥xn − pn∥2

for small λ > 0, which contradicts the assumption that xn is the
projection of pn into A.

Since there is a subsequence nj → ∞ such that vnj
→ v∞

def
= v and

pnj → p, we conclude

v⊺x ≤ v⊺p, ∀x ∈ A.
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Subgradients

Let f : Rd → R ∪ {∞} be convex (but not necessarily differentiable). We
say g ∈ Rd is a subgradient of f at x if

f(y) ≥ f(x) + g⊺(y − x), ∀ y ∈ Rd.

We write ∂f(x) ⊆ Rd to denote the set of subgradients at x.

We have already established that ∇f(x) ∈ ∂f(x) if f is differentiable at
x, but convex functions can be non-differentiable. Nevertheless, a
subgradient always exists on int domf .
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Existence of a subgradient

Theorem
Let f : Rd → R ∪ {∞} be convex. If x ∈ int domf (x in interior of
domf), then exists a subgradient of f at x, i.e., g ∈ ∂f(x) exists.

Proof. Consider the epigraph of f :

A = {(x, t) | f(x) ≤ t, x ∈ Rd, t ∈ R} ⊂ Rd+1.

Convexity of f as a function implies convexity of A as a set.

By construction, (x, f(x)) ∈ ∂A. By the supporting hyperplane theorem,
there is a v = (g̃, τ) ∈ Rd+1 such that

g̃⊺y + τs ≤ g̃⊺x+ τf(x), ∀(y, s) ∈ A.

Given any y, we can take s → ∞, so τ ≤ 0. If τ = 0, then,

g̃⊺(x+ δ) ≤ g̃⊺x

for sufficiently small δ ∈ Rd such that x+ δ ∈ domf . Since
x ∈ int domf , this implies that g̃ = 0, but this contradicts (g̃, τ) ̸= 0.
Therefore, we conclude τ < 0.



Existence of a subgradient

Finally, we divide both sides of the inequality by τ < 0 and let g = g̃/τ to
get

−g⊺y + s ≥ −g⊺x+ f(x), ∀(y, s) ∈ A.

Plugging in s = f(y), we conclude

f(y) ≥ f(x) + g⊺(y − x), ∀y ∈ Rd.
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Uniqueness of subgradient implies differentiability

Theorem
Let f : Rd → R. Then {g} = ∂f(x) if and only if f is differentiable at x
and g = ∇f(x).

We won’t use this result, so we won’t prove it.
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Gradient of cvx. f provides a cutting plane for argmin f

Lemma
Let f : R → R be convex. Assume f is differentiable at x = 0.

(a) If f ′(0) < 0, then argmin f ⊆ (0,∞).

(b) If f ′(0) > 0, then argmin f ⊆ (−∞, 0).

Proof. We only prove (a) as (b) follows from the same reasoning with
the sign flipped. By convexity

f(y) ≥ f(0) + f ′(0) · y, ∀ y ∈ R.

Therefore, for y < 0, we have

f(y) ≥ f(0) + f ′(0) · y > f(0).

So argmin f ⊆ [0,∞).

By standard calculus arguments, for small y,

f(y) = f(0) + f ′(0) · y +O(y2)

so inf f < f(0). Thus we conclude argmin f ⊆ (0,∞).



Jensen’s inequality

Lemma (Jensen’s inequality)
Let X ∈ Rd be a random variable such that E[X] ∈ Rd is well defined,
and let φ : Rd → R be convex. Then,

φ
(
E[X]

)
≤ E[φ(X)].

Proof. Let g ∈ ∂φ(E[X]). Then,

φ(X) ≥ φ(E[X]) + g⊺(X − E[X]).

Taking expectations on both sides completes the proof.
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General Jensen’s inequality

Lemma (General Jensen’s inequality)
Let C ⊆ Rd be a nonempty convex set and let φ : C → R be convex. Let
X be a random variable such that X ∈ C with probability 1 and
E[X] ∈ Rd is well defined. Then, E[X] ∈ C and

φ
(
E[X]

)
≤ E[φ(X)].

Proof. Step-by-step in homework.
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Continuity of univariate convex functions

Theorem
Let f : R → R ∪ {∞} be convex. Then, f is continuous on int domf .

Proof. W.L.O.G. consider continuity at x = 0 ∈ int domf . W.L.O.G.
assume 0 ∈ argmin f and 0 = min f , since otherwise we can consider

f̃(x) = f(x)− f(0)− gx,

where g ∈ ∂f(x) and noting that continuity of f and f̃ are equivalent.

For any x ̸= 0, the convexity inequality with y = 0 imlpies

f(εx) ≤ εf(x)

for all ε ∈ [0, 1]. Also note that 0 ≤ f(εx). Therefore, by taking x = ±δ
for sufficiently small δ > 0 and ε → 0, we conclude

lim
z→0

f(z) = 0.
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Lemma: Convex fn. are maximized at extreme points

For any ε > 0, let

Kε = {(±ε, . . . ,±ε) ∈ Rd}, (So |K| = 2d)

Cε = {x ∈ Rd | ∥x∥∞ ≤ ε}.

Lemma
Let f : Rd → R be convex. Then,

sup
x∈Cε

f(x) = max
x∈Kε

f(x).
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Lemma: Convex fn. are maximized at extreme points

Proof. Let x⋆ ∈ argmaxx∈Kε f(x). Assume for contradiction that there
is an x◦ ∈ Cε\Kε such that f(x◦) > f(x⋆). Then, there exists an index
i ∈ {1, . . . , d} such that x◦

i ∈ (−ε,+ε). Let g ∈ ∂f(x◦). Then the
subgradient inequality tells us that

f(x◦ + δei) ≥ f(x◦) + δgi

for all δ ∈ R. Therefore, by taking δ > 0 if gi ≥ 0 and δ < 0 if gi < 0, we
can find a δ such that

x◦
i + δ = ±ε, f(x◦ + δei) ≥ f(x◦).

Therfore, x◦ + δei has one fewer coordinate in (−ε,+ε) and it has a
function value that is not smaller.

Repeating this process at most d times, we get a point in Kε with
function value not not smaller than f(x◦) > f(x⋆). This contradicts the
optimality of x⋆, and we are forced to conclude that

sup
x∈Cε

f(x) ≤ f(x⋆).



Continuity of multivariate convex functions

Theorem
Let f : Rd → R ∪ {∞} be convex. Then, f is continuous on int domf .

Proof. W.L.O.G. consider continuity at x = 0 ∈ int domf . W.L.O.G.
assume 0 ∈ argmin f and 0 = min f . Consider Kε and Cε as previously
defined.

Let {x(1), . . . x(2d)} = Kε. Then,

0 = f(0) ≤ f(x) ≤ max
j=1,...,2d

f(x(j)), ∀x ∈ Cε.

Since univariate convex functions are continuous,

lim
ε→0

max
j=1,...,2d

f(x(j)) = max
j=1,...,2d

lim
ε→0

f(x(j)) = f(0) = 0.

Therefore,

0 ≤ inf
x∈Cε

f(x) ≤ sup
x∈Cε

f(x) = max
x∈Kε

f(x) → 0

as ε → 0, and we conclude continuity.



CCP functions

f is CCP if closed, convex, and proper:

▶ f is proper if f(x) < ∞ somewhere.

▶ Proper f is closed if epigraph of f

epi f = {(x, α) ∈ Rn × R | f(x) ≤ α}

is closed.

Properties:

▶ Most convex functions of interest are closed and proper.

▶ [f is convex] ⇔ [epi f is convex]

▶ For proper f , [f closed] ⇔ [f is lower semi-continuous]

▶ [f CCP] ⇔ [epi f nonempty closed convex without a vertical line]
(vertical line = {x0} × R.)

▶ If f is convex and f(x) < ∞ for all x, then f is CCP
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CCP function example

Closed convex function Convex but not closed

The dashed line denotes the function value of ∞.
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CCP function example

Epigraph of the CCP − log is a nonempty closed convex set.

epi (− log)
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Conjugate function

Let f : Rd → R ∪ {∞}. Conjugate function of f :

f∗(y) = sup
x∈Rd

{⟨y, x⟩ − f(x)}

Properties: when f is CCP

▶ f∗ is CCP and f∗∗ = f

▶ (∇f)−1 = ∇f∗ when f and f∗ are differentiable

▶ (∂f)−1 = ∂f∗ in general
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Strong convexity

With µ > 0, CCP f is µ-strongly convex if:

▶ f(x)− (µ/2)∥x∥2 is convex.

▶ f(y) ≥ f(x) + ⟨g, y − x⟩+ µ
2 ∥x− y∥2 for all x, y and g ∈ ∂f(x).

▶ ∇2f(x) ⪰ µI for all x if f is twice continuously differentiable.

These conditions are equivalent.

If f is µ-strongly convex and g is convex, then f + g is µ-strongly
convex. To clarify, strong convexity does not imply differentiability.
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L-smooth function

With L > 0, CCP f is L-smooth if:

▶ f(x)− (L/2)∥x∥2 is concave.

▶ f is differentiable and
f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2 ∥x− y∥2 for all x, y.

▶ f is differentiable and
f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ 1

2L∥∇f(x)−∇f(y)∥2 for all x, y.

▶ f is differentiable and ∇f is L-Lipschitz.

▶ ∇2f(x) ⪯ LI for all x if f is twice continuously differentiable.

These conditions are equivalent.

“L-smoothness”, which implies once-continuous differentiability, is
somewhat non-standard; “smoothness” often means infinite
differentiability in other fields of mathematics.
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Strong convexity and smoothness

Informally speaking, µ-strongly convex functions have upward curvature
of at least µ and L-smooth convex functions have upward curvature of
no more than L. We can think of nondifferentiable points to be points
with infinite curvature.

Strongly convex but not smooth Smooth but not strongly convex.
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Strong convexity and smoothness

If f is µ-strongly convex and L-smooth, then µ ≤ L.

Strong convexity and smoothness are dual properties:
if f CCP, [f is µ-strongly convex] ⇔ [f∗ is (1/µ)-smooth]
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Fenchel–Young inequality

Theorem
Let f : Rd → R ∪ {∞} be convex and proper. Then,

f(x) + f∗(y) ≥ x⊺y, ∀x, y ∈ Rd.

Proof. By definition of the conjugate,

f∗(y) = sup
z∈Rd

{z⊺y − f(z)} ≥ x⊺y − f(x).

Example consequences of Fenchel–Young:

a⊺b ≤ ε

2
∥a∥22 +

1

2ε
∥b∥22, ∀ a, b ∈ Rd, ε > 0

a⊺b ≤ 1

p
∥a∥pp +

1

q
∥b∥qq, ∀ a, b ∈ Rd, p, q ∈ (1,∞), 1

p + 1
q = 1.
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Fenchel–Young for smooth functions

Theorem
Let f : Rd → R be convex and L-smooth. Then,

f(x) + f∗(y) ≥ x⊺y +
1

2L
∥y −∇f(x)∥2, ∀x, y ∈ Rd.

Proof. If f∗(y) = ∞, then the inequality holds vacuously. Assume
y ∈ int domf∗. Then, there exists z ∈ ∂f∗(y), and ∇f(z) = y. By
smoothness of f , we have

f(x) ≥ f(z) +∇f(z)⊺(x− z) +
1

2L
∥∇f(x)−∇f(z)∥2

= f(z) + y⊺(x− z) +
1

2L
∥∇f(x)− y∥2.

Plugging this in, we get

f∗(y) = sup
u∈Rd

{u⊺y − f(u)} ≥ z⊺y − f(z) ≥ −f(x) + y⊺x+
1

2L
∥∇f(x)− u∥2.

Finally, the case y ∈ ∂(domf∗) follows from a lower semi-continuity
argument that we won’t consider for now.



Affine set

Affine set: A ⊆ Rd is affine if

(1− θ)x+ θy ∈ A, ∀x, y ∈ A, θ ∈ R.

(An empty set is defined to be an affine set.)



Lemma
A nonempty affine set A ⊆ Rd can be written as

A = x0 + V = {x0 + v |V ∈ V},

where V ⊆ Rd is a subspace and x0 ∈ V⊥.

Proof. Let x′
0 ∈ A. Then

A− x′
0 = {a− x′

0 | a ∈ A} ⊆ Rd

is a subspace: Clearly, 0 = x′
0 − x′

0 ∈ A,

x, y ∈ A− x′
0 ⇒ x+ x′

0, y + x′
0 ∈ A ⇒ 1

2
(x+ x′

0) +
1

2
(y + x′

0) ∈ A

⇒ (x+ x′
0) + (y + x′

0)− x′
0 ∈ A ⇒ x+ y ∈ A− x′

0,

and

x ∈ A− x′
0 ⇒ x+ x′

0 ∈ A ⇒ α(x+ x′
0) + (1− α)x′

0 ∈ A

⇒ αx+ x′
0 ∈ A ⇒ αx ∈ A− x′

0.

Finally, we let V = A− x′
0, and x0 = ProjA(0).
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Affine hull

Affine hull of C ⊆ Rd:

aff C = {θ1x1 + · · ·+ θkxk |x1, . . . , xk ∈ C, θ1 + · · ·+ θk = 1, k ≥ 1}.

Lemma
Let C ⊆ Rd be nonempty. If x0 ∈ C, then

aff C = x0 + aff (C − x0) = x0 + span (C − x0).

Proof. Proof in homework.
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Interior

Closed ball of radius r centered at x:

B(x, r) = {y ∈ Rd | ∥y − x∥ ≤ r}

C ⊆ Rd is open: For all x ∈ C, there is an r > 0 such that

B(x, r) ⊆ C

Interior of C ⊆ Rd:

intC = {x ∈ C |B(x, r) ⊆ C for some r > 0}

Closure of C ⊆ Rd: clC

Boundary of C ⊆ Rd: clC\intC
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Subspace topology

Let S ⊆ Rd.

C ⊆ S is open relative to S: For all x ∈ C, there is an r > 0 such that

B(x, r) ∩ S = {s ∈ S | ∥s− x∥ ≤ r} ⊆ C.

(This definition is for any S ⊆ Rd, but we will only consider the case
where S is affine.)

In this class, if we say C is relatively open without specifying S, then we
mean S = aff C.
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Relative interior

Relative interior of C ⊂ Rd:

riC = {x ∈ C |B(x, r) ∩ aff C ⊆ C for some r > 0}

If C = {x} ⊂ Rd, then the definition implies ri {x} = {x}.

Relative boundary of C ⊆ Rd: clC\riC
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Relative interior example

S =
{
(x, y) ∈ R2 |x ∈ [0.5, 1], y = 4x− 3

}
.

S = riS =
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Relative interior is nonempty

Lemma
Let C ⊆ Rd be a nonempty convex set. Then, riC ̸= ∅.

Proof. Let x0 ∈ C. If C = {x0} is a singleton, then ri {x0} = {x0} ≠ ∅.
Now assume C has at least two elements.

Since C − x0 has a nonzero element, it has a basis (a maximal linearly
independent subset) {b1, . . . , bk}. Write M = span {b1, . . . , bk} ⊆ Rd.
Then, φ : Rk → M defined by

φ(α1, . . . , αk) =

k∑
i=1

αibi

is a one-to-one linear isomorphism. Since C − x0 is convex and
0 ∈ C − x0, we have that

φ
(
{(α1, . . . , αk) |α1 + · · ·+ αk < 1, αi > 0 for i = 1, . . . , k}

)
⊂ C − x0.

Since φ maps an open set to a (relatively) open set, we conclude that
C − x0 has nonempty relative interior.
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Relative interior through explicit parameterization

Lemma
Let C ⊆ Rd be a nonempty convex set, and let

aff (C) = x0 + V

such that x0 ∈ V⊥. Let the columns of U ∈ Rd×r form an orthonormal
basis of V, then,

C = {x0 + Uy | y ∈ U⊺C},

and
riC = {x0 + Uy | y ∈ int (U⊺C)}.
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Proof. Note that U⊺U = I by orthonormality and UU⊺ = ProjV .

If x ∈ C ⊆ aff (C) = x0 + V, then x = x0 + v with x0 ∈ V⊥ and v ∈ V,
and

x = x0 + v = x0 + UU⊺v = x0 + UU⊺x ∈ {x0 + Uy | y ∈ U⊺C}.

Therefore,
C ⊆ {x0 + Uy | y ∈ U⊺C}.

On the other hand, let x′ ∈ {x0 + Uy | y ∈ U⊺C}, i.e., x′ = x0 + UU⊺x
for some x ∈ C. Since x ∈ C ⊆ aff (C) = x0 + V, we have x = x0 + v
with x0 ∈ V⊥ and v ∈ V. Therefore,

x′ = x0 + UU⊺x = x0 + v = x ∈ C,

and
C ⊇ {x0 + Uy | y ∈ U⊺C}.
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We have established

C = {x0 + Uy | y ∈ U⊺C},

which is equivalent to

C − x0 = {Uy | y ∈ U⊺C} = U
(
U⊺C

)
.

Next, note that U : Rk → V is a one-to-one linear isomorphism that
maps open sets to (relatively) open sets. Therefore, U maps the interior
U⊺C to the interior of C − x0 relative to V, i.e.,

ri (C − x0) = {Uy | y ∈ int (U⊺C)},

and we conclude the statement after translation by x0.
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Existence of a subgradient

Theorem
Let f : Rd → R ∪ {∞} be proper and convex. If x ∈ ri domf (x in
relative interior of domf), then exists a subgradient of f at x.

Proof. Let
aff (domf) = x0 + V

where x0 ∈ V⊥. Let the columns of U ∈ Rd×r form an orthonormal basis
of V. Then, by the previous lemma,

ri domf = {x0 + Uy | y ∈ int(U⊺domf)}.

Define f̃ : Rr → R ∪ {∞} as

f̃(x̃) = f(x0 + Ux̃), ∀ x̃ ∈ Rr.

Then, f̃ is proper and convex. (Recall that f(x) = ∞ outside of x0 + V.)
Since U⊺U = I and U⊺(x0 + Ux̃) = x̃, we have

U⊺domf = domf̃

U⊺ri domf = int(U⊺domf) = int domf̃ .



Let x ∈ ri domf and x̃ = U⊺x ∈ int domf̃ . Then, by a previous theorem,
f̃ has a subgradient g̃ at x̃, and

f̃(ỹ) ≥ f̃(x̃) + ⟨g̃, ỹ − x̃⟩, ∀ ỹ ∈ Rr.

Let g = Ug̃. Then, using U⊺U = I,

f(x0 + Uỹ) ≥ f(x0 + Ux̃) + ⟨g̃, U⊺U(ỹ − x̃)⟩
= f(x0 + Ux̃) + ⟨g, U(ỹ − x̃)⟩
= f(x0 + Ux̃) + ⟨g, x0 + Uỹ − (x0 + Ux̃)⟩

for all ỹ ∈ Rr, i.e., and

f(y) ≥ f(x) + ⟨g, y − x⟩

for all y ∈ x0 + V. Since the inequality vacuously holds for all y /∈ x0 + V
(LHS = ∞), we conclude g ∈ ∂f(x).
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