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Supervised learning setup

Given data X1, . . . , XN ∈ X and corresponding labels Y1, . . . , YN ∈ Y,
where X is the data space Y is the label space. Goal is to learn a
function f : X → Y such that f(X) ≈ Y for new data-label pairs (X,Y ).

More formally, let ℓ : Y × Y → R be a loss function that quantifies the
size of the error. Often, ℓ(y′, y) ≥ 0 for all y′, y ∈ Y. Assume

(Xi, Yi)
IID∼ P . We further formalize the goal as

minimize
f

E
(X,Y )∼P

[ℓ(f(X), Y )].

For now, consider the minimization over all functions f , although we will
soon see that we must restrict the class of functions.

Precisely speaking the expectation is well defined only for appropriately measurable
functions ℓ and f . In this course, we will not seriously engage with the issue of
measurability, but I will point out the issue when relevant.
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Supervised learning setup

Sometimes, actually, we don’t want the “prediction” of f to be exactly
the same type as the label Y ∈ Y.

Assume (Xi, Yi)
IID∼ P . More generally, let f : X → Ỹ and

ℓ : Ỹ × Y → R. We formalize the goal as

minimize
f∈F

E
(X,Y )∼P

[ℓ(f(X), Y )] .

Example) K-class classification with cross-entropy loss, where
Y = {1, 2, . . . ,K} and

Ỹ = ∆K = {(p1, . . . , pK | p1, . . . , pK ≥ 0, p1 + · · ·+ pK = 1}.
I.e., label Y is a single class, but the prediction is a probability
distribution over the K classes. The cross-entropy loss is

ℓCE(y′, y) = − log

(
exp(y′y)∑K
k=1 exp(y

′
k)

)
> 0.
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Expected risk

The expected risk, also called the true risk, is

R[f ] = E
(X,Y )∼P

[ℓ(f(X), Y )].

Our goal is to solve
minimize

f
R[f ].

We call
R⋆ = inf

f
R[f ]

the Bayes risk or the optimal risk, where the infimum is over all functions.
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Bayes predictor

Optimal f⋆ : X → Ỹ attaining the Bayes risk is characterized as follows.

By the law of iterated expectations, we have

R[f ] = E
(X,Y )∼P

[ℓ(f(X), Y )]

= E
X∼PX

[
E

Y∼PY |X

[ℓ(f(X), Y ) |X]

]
.

Then, the Bayes predictor f⋆, defined by

f⋆(X) ∈ argmin
y′∈Ỹ

E
Y∼PY |X

[ℓ(y′, Y ) |X],

attains the Bayes risk, i.e.,

R⋆ = R[f⋆].

(So, the Bayes predictor is the exact/perfect solution to given ML task.)
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Theorem
Let f⋆ be such that

f⋆(X) ∈ argmin
y′∈Ỹ

E
Y∼PY |X

[ℓ(y′, Y ) |X] ∀X ∈ X .

Then, R[f ] ≥ R[f⋆] ∀ f.

(We do not know whether f⋆ exists or whether it is unique.)

Proof. Since

E
Y∼PY |X

[ℓ(f(X), Y ) |X] ≥ E
Y∼PY |X

[ℓ(f⋆(X), Y ) |X] ∀X ∈ X ,

by the law of iterated expectations, we have

R[f ] = E
X∼PX

[
E

Y∼PY |X

[ℓ(f(X), Y ) |X]

]

≥ E
X∼PX

[
E

Y∼PY |X

[ℓ(f⋆(X), Y ) |X]

]
= R[f⋆].



Example: Binary classification

Consider Ỹ = Y = {−1,+1} and ℓ(y′, y) = 1{y′ ̸=y}. So

R[f ] = E
(X,Y )∼P

[ℓ(f(X), Y )] = P
(X,Y )∼P

(f(X) ̸= Y ).

Then,

f⋆(X) =

{
−1 if P(Y = −1 |X) ≥ P(Y = +1 |X)
+1 if P(Y = +1 |X) < P(Y = −1 |X)

(with ties broken arbitrarily) is a Bayes predictor, and

R⋆ = E
X∼PX

[min{P(Y = −1 |X),P(Y = +1 |X)}].
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Example: Regression with squared loss

Consider Ỹ = Y = R and ℓ(y′, y) = (y′ − y)2. Then

f⋆(X) = argmin
y′∈R

E
Y∼PY |X

[(y′ − Y )2 |X]

= argmin
y′∈R

E
Y∼PY |X

[(y′ − E[Y |X])2 + (E[Y |X]− Y )2

+ 2(y′ − E[Y |X])(E[Y |X]− Y ) |X]

= argmin
y′∈R

E
Y∼PY |X

[(y′ − E[Y |X])2 + (E[Y |X]− Y )2 |X]

= E[Y |X].

Note that only the blue term depends on y′.

So the conditional mean E[Y |X] is the optimal Bayes predictor, and

R⋆ = E
X∼PX

[Var(Y |X)]

is the expected conditional variance of Y .
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Excess risk and empirical risk

Think of R⋆ as the optimal (smallest) risk one could achieve, in principle,
with infinite data and compute.

Define excess risk as
R[f ]−R⋆,

which is the risk f achieve compared to the baseline of R⋆.
In practice, we do not have access to the true risk. We instead have
access to the empirical risk

R̂[f ] =
1

N

N∑
i=1

ℓ(f(Xi), Yi).

However,
minimize

f
R̂[f ],

where the minimization is over all functions, is a bad idea as it leads to
severe overfitting.
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Function class (hypothesis set)

We write F to denote a function class (also called a hypothesis set) used
in an ML algorithm.

F is a “small” subset of functions; it is not all functions.

▶ Considering all functions would be computationally expensive.

▶ Having a “large” function class F causes overfitting (large
estimation error, large Rademacher complexity), as we discuss soon.

F is often not a vector space.

▶ We often impose compactness, and F becomes a subset of a vector
space.

▶ In deep learning, neural networks depend on their parameters
nonlinearly, and F becomes a “manifold” within a larger function
(vector) space.
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Empirical risk minimization

Eempirical risk minimization considers

f̂ ∈ argmin
f∈F

R̂[f ]

or
f̂ ≈ argmin

f∈F
R̂[f ].

We use the notation X ≈ argmin to say that X is an approximate
minimizer. The consequence of solving the minimization inexactly will be
addressed later when we discuss optimization error.
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Risk decomposition

Let f̂ be the output of an ML algorithm. (Usually approximate empirical
risk minimization over a parameterized class of functions.)

Our analyses will be based on the risk decomposition:

R[f̂ ]−R⋆ = (R[f̂ ]− inf
f ′∈F

R[f ′])︸ ︷︷ ︸
=Estimation error≥0

+ ( inf
f ′∈F

R[f ′]−R⋆)︸ ︷︷ ︸
=Approximation error≥0

Approximation error only depends on F , P , and ℓ; it does not depend on
the data or the choice of ML algorithm. If F is sufficiently expressive,
i.e., if F can approximate the optimal Bayes predictor f⋆ well, then the
approximation error will be small.

Estimation error depends on f̂ , which, in turn, depends on the data
{(Xi, Yi)}Ni=1 and the ML algorithm.
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Risk decomposition

Goal is to show excess risk is small, i.e.,

R[f̂ ]−R⋆ ≤ small,

by showing

Estimation error = R[f̂ ]− inf
f ′∈F

R[f ′] ≤ small

and
Approximation error = inf

f ′∈F
R[f ′]−R⋆ ≤ small.

Note, estimation error is random (because f̂ is random), and
approximation error is deterministic.

To argue that the excess risk is “small”, we need to show that estimation
error is either small in expectation or small with high probability.
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Bias-variance tradeoff

Goal is to show excess risk is small, i.e.,

R[f̂ ]−R⋆ ≤ small

by showing

Estimation error = R[f̂ ]− inf
f ′∈F

R[f ′] ≤ small

and
Approximation error = inf

f ′∈F
R[f ′]−R⋆ ≤ small.

Typically, estimation error goes down as N goes up, but it goes up as F
becomes large.

Typically, approximation error goes down to 0 as F becomes large.
(By universal approximation theorems.)
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Bias-variance tradeoff

In most cases, large N is better,1 but large F is not always better, even
though processing large F requires more compute.

In traditional statistics and ML theory,2 the best F is the solution of the
bias-variance tradeoff, a trade-off between underfitting and overfitting.

Underfitting is loosely defined by the following conditions:
▶ high bias, low variance
▶ small estimation error, large approximation error
▶ small F

Overfitting is loosely defined by the following conditions:
▶ low bias, high variance
▶ large estimation error, small approximation error
▶ large F

1There are some counterintuitive counterexamples to this:
P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever, Deep double
descent: Where bigger models and more data hurt, ICLR, 2020.
2“Double-descent” and “benign overfitting” is the alternate modern view.



Universal approximation result

We will soon see why large F can increase estimation error.

However, typically, large F reduces approximation error

Approximation error = inf
f ′∈F

R[f ′]−R⋆

due to universal approximation theory.

In this course, we won’t get to this topic, but such results have the
following flavor.

Theorem (Universal approximation theorem. Informal)
Let fθ be an L-layer neural network with L ≥ 2. If fθ has sufficiently
many neurons, then fθ can approximate any function in the sense of Lp

for any p ∈ [1,∞].

(It is possible to show a quantitative approximation result that describes
the number of neurons needed to achieve an ε > 0 approximation.)

Corollary: If F large, neural network fθ can approximate optimal Bayes
predictor well, and approximation error ≈ 0.
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Estimation error decomposition

Estimation error = R[f̂ ]− inf
f ′∈F

R[f ′]

= R[f̂ ]−R[g] (define g = argmin
f ′∈F

R[f ′])

= (R[f̂ ]− R̂[f̂ ]) + (R̂[g]−R[g]) + (R̂[f̂ ]− R̂[g])

≤ sup
f∈F

{R[f ]− R̂[f ]}+ sup
f∈F

{R̂[f ]−R[f ]}+ (R̂[f̂ ]− R̂[g])

≤ sup
f∈F

{R[f ]− R̂[f ]}+ sup
f∈F

{R̂[f ]−R[f ]}+ (R̂[f̂ ]− inf
f∈F

R̂[f ])︸ ︷︷ ︸
=Optimization error≈0

For now, assume opt. error is negligible. We’ll bound opt. error later.

(This identity holds the same even if a minimizer g does not exist.)
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Uniform bound

Ignoring the optimization error, we are left to bound

sup
f∈F

{R[f ]− R̂[f ]}+ sup
f∈F

{R̂[f ]−R[f ]}

Sometimes, one proceeds with the

sup
f∈F

{R[f ]− R̂[f ]}+ sup
f∈F

{R̂[f ]−R[f ]} ≤ 2 sup
f∈F

∣∣R[f ]− R̂[f ]
∣∣,

and bound the RHS with a uniform bound on
∣∣R[f ]− R̂[f ]

∣∣.
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Why uniform convergence?

Loosely speaking, we will show

sup
f∈F

∣∣R[f ]− R̂[f ]
∣∣→ 0,

i.e., show R̂ uniform→ R, as N → ∞. This is a standard argument.

This bound may seem pessimistic (loose), but it is crucial. Since

f̂ ≈ argminf∈F R̂[f ], the statistical dependence between R̂ and f̂ is
usually intractable.

By passing to the uniform bound, we eliminate f̂ and thereby remove the
statistical dependence between R̂ and f̂ . We now only need to deal with
the randomness of R̂.
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Expected error to PAC bound

Assume we can show

E
[
sup
f∈F

∣∣R[f ]− R̂[f ]
∣∣] < small.

Then we can show a concentration result

sup
f∈F

∣∣R[f ]− R̂[f ]
∣∣ < ε with probability > 1− δ.

Using Markov, we can show

sup
f∈F

∣∣R[f ]− R̂[f ]
∣∣ < E

[
supf∈F

∣∣R[f ]− R̂[f ]
∣∣]

δ
w.p. > 1− δ.

However, we can obtain a much stronger bound with McDiarmid.

Estimation error 22



PAC bound with McDiarmid

Assume 0 ≤ ℓ(f(X), Y ) ≤ ℓ∞ for all f ∈ F and (X,Y ) ∼ P .3

Assumption holds if:

▶ 0-1 loss Φ0-1 is used; or

▶ Convex surrogate loss4 is used, f ∈ F is continuous, |F| < |infty,
|Y| < ∞, and X ∼ P has compact support (e.g. images with pixel
values in [0, 1]).

Let Zi = (Xi, Yi) for i = 1, . . . , N , and let

H(Z1, . . . , ZN ) = sup
f∈F

{
R[f ]− R̂[f ]

}
and use the McDiarmid inequality to obtain a PAC bound.

3So 0 ≤ ℓ(f(X), Y ) ≤ ℓ∞ for all f ∈ F , P -almost surely.
4Convex functions are continuous.
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PAC bound with McDiarmid
The bounded differences property∣∣H(Z1, . . . , Zi−1, Zi, Zi+1, . . . , ZN︸ ︷︷ ︸

=D

)−H(Z1, . . . , Zi−1, Z
′
i, Zi+1, . . . , ZN︸ ︷︷ ︸

=D′

)
∣∣ ≤ c

is the main condition to be checked.

To see this, note that

R̂[f ](D′)− R̂[f ](D) =
1

N

(
ℓ(f(X ′

i), Y
′
i )− ℓ(f(Xi), Yi)

)
≤ ℓ∞

N
.

Then we have

H(D)−H(D′)

= sup
f∈F

{
R[f ]− R̂[f ](D′) + R̂[f ](D′)− R̂[f ](D)

}
− sup

f∈F

{
R[f ]− R̂[f ](D′)

}
≤ sup

f∈F

{
R[f ]− R̂[f ](D′)

}
+ sup

f∈F

{
R̂[f ](D′)− R̂[f ](D)

}
− sup

f∈F

{
R[f ]− R̂[f ](D′)

}
= sup

f∈F

{
R̂[f ](D′)− R̂[f ](D)

}
≤ ℓ∞

N
.

So c = ℓ∞
N and |H(D)−H(D′)| ≤ ℓ∞

N with a symmetric argument.



PAC bound with McDiarmid

Therefore, we conclude

sup
f∈F

{
R[f ] ≤ R̂[f ]

}
≤ E

[
sup
f∈F

{
R[f ]− R̂[f ]

}]
+ ℓ∞

√
log(1/δ)

2N

with probability 1− δ.

By the same reasoning, we have

sup
f∈F

{
R̂[f ]−R[f ]

}
≤ E

[
sup
f∈F

{
R̂[f ]−R[f ]

}]
+ ℓ∞

√
log(1/δ)

2N

with probability 1− δ.

By a union bound, we have

sup
f∈F

{
R̂[f ]−R[f ]

}
+ sup

f∈F

{
R[f ]− R̂[f ]

}
≤ E

[
sup
f∈F

{
R̂[f ]−R[f ]

}]
+ E

[
sup
f∈F

{
R[f ]− R̂[f ]

}]
+ ℓ∞

√
2log(2/δ)

N

with probability 1− δ.
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Example: Finite number of models

We show examples of bounding the estimation error.

Consider |F| = m < ∞, i.e., we are learning among a finite number of
models. Let {f1, . . . , fm} = F and

f̂ = argmin
f1,...,fm∈F

R̂[fi].

Assume 0 ≤ ℓ(f(X), Y ) ≤ ℓ∞ for all f ∈ F and (X,Y ) ∼ P . Since

R̂[f ]−R[f ] =
1

N

N∑
i=1

ℓ(f(Xi), Yi)− E[ℓ(f(X), Y )]︸ ︷︷ ︸
zero-mean sub-Gauss. with τ2 = ℓ2∞

,

R̂[f ]−R[f ] is a zero-mean sub-Gaussian with τ2 = ℓ2∞/N .

Then,

E
[
sup
f∈F

{
R[f ]− R̂[f ]

}]
≤ E

[
max

i=1,...,m

{
R̂[fi]−R[fi]

}]
≤
√

2ℓ2∞
N

logm.Estimation error 26



Example: Finite number of models

Combining this with McDiarmid inequality,

sup
f∈F

{
R[f ]− R̂[f ]

}
≤
√

2ℓ2∞
N

(√
logm+

√
log(1/δ)

4

)

with probability 1− δ. The same bound on supf∈F
{
R̂[f ]−R[f ]

}
can

be obtained with the same argument.

Finally, we have

Estimation error = R[f̂ ]− inf
f ′∈F

R[f ′]

≤ sup
f∈F

{
R[f ]− R̂[f ]

}
+ sup

f∈F

{
R̂[f ]−R[f ]

}
+ Opt. error︸ ︷︷ ︸

=0

≤ 2

√
2ℓ2∞
N

(√
logm+

√
log(2/δ)

4

)
with probability 1− δ.
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ε-cover

We say (F , ∥ · ∥∞) is totally bounded if for any ε > 0, there is m(ε) < ∞
and f1, . . . , fm(ε) ∈ F such that

F ⊆
m(ε)⋃
i=1

B(fi, ε),

where B(fi, ε) = {f ∈ F | ∥f − fi∥∞ < ε}.

We say f1, . . . , fm(ε) is an ε-cover of size m(ε).

(As an aside, in complete metric spaces, a set is compact if and only if it
is closed and totally bounded.)
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Example: Infinite models with covering number

Assume ℓ(·, Y ) is G-Lipschitz for all Y ∼ PY .
Assume 0 ≤ ℓ(f(X), Y ) ≤ ℓ∞ for all f ∈ F and (X,Y ) ∼ P .

Then, with ∥f − fi∥ < ε,

R[f ]− R̂[f ] ≤
∣∣R[f ]−R[fi]

∣∣+R[fi]− R̂[fi] +
∣∣R̂[fi]− R̂[f ]

∣∣
≤ 2Gε+ max

i=1,...,m(ε)

{
R[fi]− R̂[fi]

}

Therefore,

E

[
sup
f∈F

{
R[f ]− R̂[f ]

}]
≤ 2Gε+ E

[
max

i=1,...,m(ε)

{
R[fi]− R̂[fi]

}]

≤ 2Gε+

√
2ℓ2∞
N

logm(ε).
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Example: Infinite models with covering number

For the sake of specificity5, assume m(ε) ∼ ε−d. Choose ε ∼ 1/
√
N .

Chaining things together, we get

Estimation error = R[f̂ ]− inf
f ′∈F

R[f ′]

≲
4G√
N

+

√
8ℓ2∞
N

(√
d log(N) +

√
log(2/δ)

)
+ Opt. error

with probability 1− δ.

In many cases, the analysis is suboptimal. Rademacher complexity leads
to sharper bounds.

5A compact set in Rd has m(ε) ∼ (
√
d/ε)d. Generally, when logm(ε) ∼ d log(ε) with

logarithmic factors in d ignored, d is loosely considered to be the underlying
“dimension” of F .
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Rademacher complexity

Let H be a class of R-valued functions on Z.
Let P be a probability distribution on Z.

The Rademacher complexity of H is

RadN (H) = E
Z1,...,ZN

iid∼P

ε1,...,εN
iid∼Rad

[
sup
h∈H

1

N

N∑
i=1

εih(Zi)

]
,

where ε1, . . . , εN are Rademacher random variables, which are ±1 w.p.
1/2, and Z1, . . . , ZN and ε1, . . . , εN are independent.

To clarify, RN (H) does depend on the distribution P , but we suppress
the dependency on P for the sake of notational simplicity.

In general, RN (H) may not be well defined if suph∈H leads to a non-measurable
function. However, as far as I know, all practically parameterized function classes used
in ML do not have this problem. (Countable supremum of measurable functions is
measurable, and we can usually choose a countable dense subset of the parameters.)



Symmetrization technique

In the supervised learning setup, let Z = (X,Y ) and

h(Z) = ℓ(f(X), Y ), H = {ℓ(f(x), y) | f ∈ F}.
So

E sup
f∈F

{
R[f ]− R̂[f ]

}
= E sup

h∈H

{
E

Z∼P
[h(Z)]− 1

N

N∑
i=1

h(Zi)
}
.

Theorem
E sup

h∈H

{
E

Z∼P
[h(Z)]− 1

N

N∑
i=1

h(Zi)
}
≤ 2RadN (H)

and

E sup
h∈H

{ 1

N

N∑
i=1

h(Zi)− E
Z∼P

[h(Z)]
}
≤ 2RadN (H).

Proof. We use the symmetrization technique, which introduces
Z ′
1, . . . , Z

′
N ∼ P as independent copies of Z1, . . . , ZN ∼ P to write

E
Z∼P

[h(Z)] = E
Z′

1,...,Z
′
N∼P

[
1

N

N∑
i=1

h(Z ′
i)

]
.



E
Z1,...,ZN∼P

[
sup
h∈H

{
E

Z∼P
[h(Z)]−

1

N

N∑
i=1

h(Zi)

}]

= E
Z1,...,ZN∼P

[
sup
h∈H

{
E

Z′
1,...,Z

′
N

∼P

[
1

N

N∑
i=1

h(Z′
i)
∣∣∣Z1, . . . , ZN

]
−

1

N

N∑
i=1

h(Zi)

}]

= E
Z1,...,ZN∼P

[
sup
h∈H

{
E

Z′
1,...,Z

′
N

∼P

[
1

N

N∑
i=1

h(Z′
i)−

1

N

N∑
i=1

h(Zi)
∣∣∣Z1, . . . , ZN

]}]

≤ E
Z1,...,ZN∼P

[
E

Z′
1,...,Z

′
N

∼P

[
sup
h∈H

{
1

N

N∑
i=1

h(Z′
i)−

1

N

N∑
i=1

h(Zi)

}∣∣∣Z1, . . . , ZN

]]

= E
Z1,...,ZN∼P

Z′
1,...,Z

′
N∼P

[
sup
h∈H

{
1

N

N∑
i=1

(h(Z′
i)− h(Zi))

}]

(∗)
= E

Z1,...,ZN∼P

Z′
1,...,Z

′
N∼P

ε1,...,εN

[
sup
h∈H

{
1

N

N∑
i=1

εi(h(Z
′
i)− h(Zi))

}]

≤ E
Z1,...,ZN∼P

Z′
1,...,Z

′
N∼P

ε1,...,εN

[
sup
h∈H

1

N

N∑
i=1

εih(Z
′
i) + sup

h∈H

1

N

N∑
i=1

(−εi)h(Zi)

]
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Symmetrization technique

= E
Z′

1,...,Z
′
N∼P

ε1,...,εN

[
sup
h∈H

1

N

N∑
i=1

εih(Z
′
i)

]
+ E

Z1,...,ZN∼P
ε1,...,εN

[
sup
h∈H

1

N

N∑
i=1

εih(Zi)

]

= 2 E
Z′

1,...,Z
′
N∼P

ε1,...,εN

[
sup
h∈H

1

N

N∑
i=1

εih(Z
′
i)

]

= 2RadN (H).

The other bound

E
Z1,...,ZN∼P

[{
1

N

N∑
i=1

h(Zi)− sup
h∈H

E
Z∼P

[h(Z)]

}]
≤ 2RadN (H).

follows from the same reasoning.



Symmetrization technique

We clarify the step

E
Z1,...,ZN∼P
Z′

1,...,Z
′
N∼P

[
sup
h∈H

{
1

N

N∑
i=1

(h(Z ′
i)− h(Zi))

}]

(∗)
= E

Z1,...,ZN∼P
Z′

1,...,Z
′
N∼P

ε1,...,εN

[
sup
h∈H

{
1

N

N∑
i=1

εi(h(Z
′
i)− h(Zi))

}]

Since Z1, . . . , ZN , Z ′
1, . . . , Z

′
N are IID,

h(Z ′
1)− h(Z1)

...
h(Z ′

i)− h(Zi)
...

h(Z ′
N )− h(ZN )


D
=


h(Z ′

1)− h(Z1)
...

h(Zi)− h(Z ′
i)

...
h(Z ′

N )− h(ZN )


for any i = 1, . . . , N .



Symmetrization technique

For any (non-random) ε1, . . . , εN ∈ {−1,+1}, we have
h(Z ′

1)− h(Z1)
...

h(Z ′
i)− h(Zi)

...
h(Z ′

N )− h(ZN )


D
=


ε1(h(Z

′
1)− h(Z1))
...

εi(h(Zi)− h(Z ′
i))

...
εN (h(Z ′

N )− h(ZN ))


Therefore, for any (non-random) ε1, . . . , εN ∈ {−1,+1}, we have

sup
h∈H

{
1

N

N∑
i=1

(h(Z ′
i)− h(Zi))

}
D
= sup

h∈H

{
1

N

N∑
i=1

εi(h(Z
′
i)− h(Zi))

}

Taking the expectation with respect to Z, Z ′, and ε justifies
(∗)
= .



Contraction principle

Theorem
Let a1, . . . , aN and b be functions from Θ to R (no assumption). Let
φ1, . . . , φN be 1-Lipschitz functions from R to R. Let ε1, . . . , εN be IID
Rademacher random variables. Then,

E
ε1,...,εN

[
sup
θ∈Θ

{
b(θ)+

N∑
i=1

εiφi(ai(θ))
}]

≤ E
ε1,...,εN

[
sup
θ∈Θ

{
b(θ)+

N∑
i=1

εiai(θ)
}]

.

Proof. Use induction. Statement holds trivially with N = 0.

Now assume statement holds for N − 1.
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E
ε1,...,εN

[
sup
θ∈Θ

{
b(θ) +

N∑
i=1

εiφi(ai(θ))
}]

=
1

2
E

ε1,...,εN−1

[
sup
θ∈Θ

{
b(θ) +

N−1∑
i=1

εiφi(ai(θ)) + φN (aN (θ))
}]

+
1

2
E

ε1,...,εN−1

[
sup
θ′∈Θ

{
b(θ′) +

N−1∑
i=1

εiφi(ai(θ
′))− φN (aN (θ′))

}]

= E
ε1,...,εN−1

[
sup

θ,θ′∈Θ

{ b(θ) + b(θ′)

2
+

N−1∑
i=1

εi
φi(ai(θ)) + φi(ai(θ

′))

2
+

φN (aN (θ))− φN (aN (θ′))

2

}]
(∗)
= E
ε1,...,εN−1

[
sup

θ,θ′∈Θ

{ b(θ) + b(θ′)

2
+

N−1∑
i=1

εi
φi(ai(θ)) + φi(ai(θ

′))

2
+

|φN (aN (θ))− φN (aN (θ′))|
2

}]

≤ E
ε1,...,εN−1

[
sup

θ,θ′∈Θ

{ b(θ) + b(θ′)

2
+

N−1∑
i=1

εi
φi(ai(θ)) + φi(ai(θ

′))

2
+

|aN (θ)− aN (θ′)|
2

}]
(∗)
= E
ε1,...,εN−1

[
sup

θ,θ′∈Θ

{ b(θ) + b(θ′)

2
+

N−1∑
i=1

εi
φi(ai(θ)) + φi(ai(θ

′))

2
+

aN (θ)− aN (θ′)

2

}]

=
1

2
E

ε1,...,εN−1

[
sup
θ∈Θ

{
b(θ) +

N−1∑
i=1

εiφi(ai(θ)) + aN (θ)
}]

+
1

2
E

ε1,...,εN−1

[
sup
θ′∈Θ

{
b(θ′) +

N−1∑
i=1

εiφi(ai(θ
′))− aN (θ′)

}]



(∗)
= follows from considering the max over (θ, θ′) and (θ′, θ).

=
1

2
E

ε1,...,εN−1

[
sup
θ∈Θ

{
b(θ) +

N−1∑
i=1

εiφi(ai(θ)) + aN (θ)
}]

+
1

2
E

ε1,...,εN−1

[
sup
θ′∈Θ

{
b(θ′) +

N−1∑
i=1

εiφi(ai(θ
′))− aN (θ′)

}]

= E
εN

[
E

ε1,...,εN−1

[
sup
θ∈Θ

{
b(θ) + εNaN (θ) +

N−1∑
i=1

εiφi(ai(θ))
}] ∣∣∣ εN

]

≤ E
εN

[
E

ε1,...,εN−1

[
sup
θ∈Θ

{
b(θ) + εNaN (θ) +

N−1∑
i=1

εiai(θ)
}] ∣∣∣ εN

]

= E
ε1,...,εN

[
sup
θ∈Θ

{
b(θ) +

N∑
i=1

εiai(θ)
}]

,

where the final inequality holds by the induction hypothesis.
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Contraction principle: Corollary

Corollary
Let ℓ(·, Y ) be G-Lipschitz for all Y ∼ PY . Let ε1, . . . , εN be IID
Rademacher random variables. Then,

E
ε1,...,εN

[
sup
f∈F

1

N

N∑
i=1

εiℓ(f(Xi), Yi)
∣∣∣ {(Xi, Yi)}Ni=1

]
≤ G · E

ε1,...,εN

[
sup
f∈F

1

N

N∑
i=1

εif(Xi)
∣∣∣ {(Xi, Yi)}Ni=1

]
.

Taking expectation with respect to {(Xi, Yi)}Ni=1, we conclude

RadN (H) ≤ G · RadN (F).

To be pedantic, we should write

RadN (H;PX,Y ) ≤ G · RadN (F ;PX),

Since the LHS depends on the joint distribution PX,Y while the RHS
depends only on the marginal distribution PX .



Outline

Decision theory

Estimation error

Rademacher complexity

Example: Ball constrained linear prediction

Example: Ball constrained linear prediction 42



Ball constrained linear prediction

Let
F =

{
fθ(x) = θ⊺x

∣∣ ∥θ∥ ≤ D, θ ∈ Rd
}
,

where ∥ · ∥ is some norm. Then,

RadN (F) = E
X1,...,XN

iid∼PX

ε1,...,εN
iid∼Rad

[
sup

∥θ∥≤D

1

N

N∑
i=1

εiθ
⊺Xi

]
= E

X1,...,XN
ε1,...,εN

[
sup

∥θ∥≤D

1

N
ε⊺Xθ

]

=
D

N
E

X1,...,XN
ε1,...,εN

[
sup

∥θ∥≤1

θ⊺(X⊺ε)

]
=

D

N
E

X1,...,XN
ε1,...,εN

[∥X⊺ε∥∗],

where ∥ · ∥∗ denotes the dual norm and

ε =

 ε1...
εN

 ∈ RN , X =

X
⊺
1
...

X⊺
N

 ∈ RN×d.
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Euclidean norm case

Assume ∥X∥2 ≤ R for all X ∼ PX . When ∥ · ∥ = ∥ · ∥∗ = ∥ · ∥2,

RadN (F) =
D

N
E[∥X⊺ε∥2] ≤

D

N

√
E[∥X⊺ε∥22]

=
D

N

√
E[Tr(ε⊺XX⊺ε)] =

D

N

√
E[Tr(XX⊺εε⊺)] =

D

N

√
E[Tr(XX⊺I)]

=
D

N

√√√√ N∑
i=1

E[∥Xi∥22] =
D√
N

√
E

X∼P
[∥X∥22]

≤ DR√
N

,

where we used Jensen’s inequality and the trace trick.

Example: Ball constrained linear prediction 44



ℓ1-ℓ∞-norm case

Assume ∥X∥∞ ≤ R for all X ∼ PX . When ∥ · ∥ = ∥ · ∥1 and
∥ · ∥∗ = ∥ · ∥∞,

RadN (F) =
D

N
E[∥X⊺ε∥∞]

=
D

N
E
[

max
j=1,...,d

∣∣ N∑
i=1

(Xi)jεi
∣∣]

≤ DR√
N

√
2 log(2d),

since (Xi)jεi ∈ [−R,R] is a sub-Gaussian with τ = R, and the sum of N

such sub-Gaussians is a sub-Gaussian with τ =
√
NR.
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Estimation error

Let ∥ · ∥ be the Euclidean norm. Assume ∥X∥ ≤ R for all X ∼ PX .
Assume ℓ(·, Y ) is G-Lipschitz for all Y ∼ PY . Then,

E[R[fθ̂]]− inf
∥θ∥≤D

R[fθ] ≤ E sup
f∈F

{R[f ]− R̂[f ]}+ E sup
f∈F

{R̂[f ]−R[f ]}

+ E (R̂[f̂ ]− inf
f∈F

R̂[f ])︸ ︷︷ ︸
=Opt. error

≤ 4RadN (H) + Opt. error

≤ 4GRadN (F) + Opt. error

≤ 4DGR√
N

+ Opt. error.

The first ineq. is by the estimation error decomposition, the second by
the symmetrization technique, and the third by the contraction principle.
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