
Chapter 2
Linear Least Squares Regression

Ernest K. Ryu
Seoul National University

Mathematical Machine Learning Theory
Spring 2024

Why learn about linear least squares?

Linear least squares (LS) is a classical topic within the realm of classical
statistics. Why learn LS when we can learn about the more general
machinery involving Rademacher complexity?

Informative of what is achievable in the general learning case.

LS analysis plays a crucial role in kernel methods.

2

Outline

Linear learning with finite nonlinear features

Least squares objective and its solution

Statistical properties

Linear learning with finite nonlinear features 3

Linear learning with nonlinear features

Consider the setup with ϕ : X → Rd, where d may be smaller or larger
than the “dimension” of X . (We later consider infinite d.)

Consider
minimize

θ
E

(X,Y)∼P
[ℓ(fθ(X), Y)],

where fθ is a linear1 prediction function

fθ(·) = ⟨θ, ϕ(·)⟩ =
d∑

i=1

θiϕi(·)

and ⟨·, ·⟩ denotes the standard inner product in Rd.

Equivalently, consider the dataset

(X̆1, Y1), . . . , (X̆N , YN),

with X̆i = ϕ(Xi), and fθ(Xi) = ⟨θ, X̆i⟩.
1Linear in the parameters θ, but nonlinear in the input X.

Absorbing bias into linear weights

What if we want a bias? So, what if we want to learn

fθ,b(·) = ⟨θ, ϕ(·)⟩+ b.

Define

ϕ̃(·) =
[
ϕ(·)
1

]
∈ Rd+1, θ̃ =

[
θ
b

]
∈ Rd+1

and note
f̃θ̃(·) = ⟨θ̃, ϕ̃(·)⟩ = fθ,b(·).

Trick: Absorb bias into linear weights.
WLOG, consider fθ(·) = ⟨θ, ϕ(·)⟩ without biases.

Linear learning with finite nonlinear features 5

Decision boundaries linear in ϕ, nonlinear in X

Linear classifiers yield decision boundaries that are linear in the features.

Most ML tasks are nonlinear in X, and features nonlinear in X are
needed to perform classification well.

Linear learning with finite nonlinear features 6

Feature engineering

Feature engineering is the task of choosing (often hand-crafting) ϕ for a
given ML task.

There was a time when ML was primarily about feature engineering.2

In modern deep learning, features are learned. (More on this soon.)

The output dimension d of ϕ can be lower or higher than the “dimension”
of X . Usually you want nonlinear but informative features of X .

2One can argue that in modern machine learning practice, feature engineering is still
the main engineering challenge.

Linear learning with finite nonlinear features 7

Outline

Linear learning with finite nonlinear features

Least squares objective and its solution

Statistical properties

Least squares objective and its solution 8

Linear least squares

Let X1, . . . , XN ∈ X and Y1, . . . , YN ∈ Y = R such that (Xi, Yi) ∼ P
IID for i = 1, . . . , N . Consider the square loss

R[f] = E[(f(X)− Y)2].

The Bayes optimal estimator is

f⋆(X) = E
Y∼pY |X

[Y |X].

Of course, f⋆ depends on the joint distribution P .

In the context of linear least squares, we consider the linear function class

F = {fθ(x) = θ⊺ϕ(x) | θ ∈ Θ},

where ϕ : X → Rd is some feature map. In general, we expect f⋆ /∈ F . In
this sense, F is a misspecified model.

Least squares objective and its solution 9

Linear least squares

We consider the squared loss, leading to

minimize
θ∈Rd

1

2

N∑
i=1

(fθ(Xi)− Yi)
2

which is equivalent to

minimize
θ∈Rd

1

2

N∑
i=1

(θ⊺ϕ(Xi)− Yi)
2

which is, in turn, equivalent to

minimize
θ∈Rd

1
2∥Φθ − Y ∥2

where

Φ =

ϕ(X1)
⊺

...
ϕ(XN)⊺

 ∈ RN×d, Y =

Y1

...
YN

 ∈ RN .

Least squares objective and its solution 10

Least-norm-least-squares solution

Theorem
Consider the linear least squares optimization problem

minimize
θ∈Rd

1
2∥Φθ − Y ∥2,

where Φ ∈ RN×d and Y ∈ RN . Then,

θ⋆ = Φ†Y

is a solution (global minimizer) of the least squares problem. Let r be the
rank of Φ. If d = r ≤ N , then θ⋆ is the unique solution. Otherwise, θ⋆ is
not the unique solution, but it is the least-norm solution (achieving
minimum value of 1

2∥Φθ − Y ∥2 while having smallest ∥θ∥2).

Least squares objective and its solution 11

Proof. Since ∥ · ∥ is unitarily invariant,

minimize
θ∈Rd

1
2∥UΣV ⊺θ − Y ∥2

is equal to

minimize
θ∈Rd

1
2∥ΣV

⊺θ − U⊺Y ∥2 + 1
2∥Ũ

⊺Y ∥2,

where Ũ ∈ RN×(N−d) contains orthonormal columns such that
[U Ũ] ∈ RN×N is an orthonormal matrix. In turn, this is equivalent to

minimize
θ∈Rd

1
2∥ΣV

⊺θ − U⊺Y ∥2.

In turn, this is equivalent to

minimize
θ1∈R(V)

θ2∈R(V)⊥

1
2∥ΣV

⊺(θ1 + θ2)− U⊺Y ∥2.

In turn, this is equivalent to

minimize
θ1∈R(V)

θ2∈R(V)⊥

1
2∥ΣV

⊺θ1 − U⊺Y ∥2.

Least squares objective and its solution 12

At ΣV ⊺θ1 = U⊺Y , we achieve global optimality, so

V ⊺θ⋆1 = Σ−1U⊺Y

Since θ⋆1 ∈ R(V), we have V V ⊺θ⋆1 = θ⋆1 , and we conclude

θ⋆1 = V Σ−1U⊺︸ ︷︷ ︸
=Φ†

Y.

On the other hand, an arbitrary θ⋆2 ∈ R(V)⊥ will not affect the objective
value. The norm of the solution θ⋆ given by

∥θ⋆∥2 = ∥θ⋆1∥2 + ∥θ⋆2∥2,

which is mimimized when θ2 = 0. When d = r ≤ N , we have
R(V)⊥ = {0}, and θ⋆2 = 0 and θ⋆ is uniquely determined.

Least squares objective and its solution 13

LS solution with full column rank

Corollary
If Φ ∈ RN×d has full column rank (which requires that N ≥ d), then

Φ† = (Φ⊺Φ)−1Φ⊺,

and θ⋆ = Φ†Y provides the unique solution.

Proof. Φ† = (Φ⊺Φ)−1Φ⊺ follows from the compact SVD.

Least squares objective and its solution 14

LS solution with full row rank

Corollary
If Φ ∈ RN×d has full row rank (which requires that N ≤ d), then

Φ† = Φ⊺(ΦΦ⊺)−1

and θ⋆ = Φ†Y provides the least-norm solution.

Proof. Φ† = Φ⊺(ΦΦ⊺)−1 follows from the compact SVD.

Least squares objective and its solution 15

Geometric interpretation of LS solution

Lemma
When Φ has full column rank, the vector of predictions

Φθ̂ = Φ(Φ⊺Φ)−1Φ⊺Y

is the orthogonal projection of Y onto R(Φ).

Proof. Follows from simple arguments using the SVD.

Thus, we can interpret the LS solution as doing the following:

1. Compute Ȳ = ProjR(Φ)(Y).

2. Solve the linear system Ȳ = Φθ, which has a unique solution.

Least squares objective and its solution 16

Outline

Linear learning with finite nonlinear features

Least squares objective and its solution

Statistical properties

Statistical properties 17

Fixed vs. random design setups

Consider
Yi = θ⊺⋆ϕ(Xi) + εi

for i = 1, . . . , N . Assume that ε1, . . . , εN is an IID sequence such that

E[εi] = 0, E[ε2i] = σ2

for i = 1, . . . , N .

There are two settings we consider

▶ Fixed design: X1, . . . , XN is fixed (non-random).

▶ Random design: X1, . . . , XN is IID random (and independent from
ε1, . . . , εN).

The random design setting is more realistic in machine learning3 but the
fixed design setting is easier to analyze. (Whether X1, . . . , XN is fixed or
random has no affect on training. Only generalization is affected.)

3The fixed design setting is more relevant in statistics, where X1, . . . , XN are
chosen/designed for efficient learning.

Fixed vs. random design setups

The model
Yi = θ⊺⋆ϕ(Xi) + εi,

is a well-specified assumption. In general, additional approximation error
is incurred because of a misspecified model.

Define the uncentered empirical covariance matrix as

Σ̂ =
1

N
Φ⊺Φ =

1

N

N∑
i=1

ϕ(Xi)ϕ(Xi)
⊺, Φ =

ϕ(X1)
⊺

...
ϕ(XN)⊺

 ∈ RN×d.

For the fixed design setup, Σ̂ ∈ Rd×d is a fixed, deterministic matrix.
In the random design setup, Σ̂ → Σ = as N → ∞, where

Σ = E
X
[ϕ(X)ϕ(X)⊺]

is the uncentered covariance matrix.
Statistical properties 19

Fixed vs. random design setups

For reference, we formally state the definitions of the two setups. Let

Σ̂ =
1

N
Φ⊺Φ, Φ =

ϕ(X1)
⊺

...
ϕ(XN)⊺

 ∈ RN×d.

Fixed design setup:
▶ X1, . . . , XN is fixed and given.
▶ Φ has full column rank and Σ̂ is invertible.
▶ ε1, . . . , εN is an IID sequence such that E[εi] = 0 and E[ε2i] = σ2

for i = 1, . . . , N .
▶ Yi = θ⊺⋆ϕ(Xi) + εi for i = 1, . . . , N .

Random design setup:
▶ X1, . . . , XN is a random IID sequence
▶ Φ has full column rank and Σ̂ is invertible with probability 1.
▶ ε1, . . . , εN is an IID sequence such that E[εi] = 0 and E[ε2i] = σ2

for i = 1, . . . , N . Also, X1, . . . , XN and ε1, . . . , εN are independent.
▶ Yi = θ⊺⋆ϕ(Xi) + εi for i = 1, . . . , N .

Risk for fixed design

In the fixed design setting, we use the risk

R(θ) = E
ε1,...,εN

[1N ∥Φθ − Y ∥2]

Denote
R⋆ = inf

θ
R(θ).

In the fixed design setup, the goal is to learn θ that performs well on
X1, . . . , XN and only X1, . . . , XN . The uncertainty comes from the
noisiness of the labels Y1, . . . , YN , originating from ε1, . . . , εN .

Statistical properties 21

Risk for fixed design

Lemma
In the fixed design setting,

R(θ)−R⋆ = ∥θ − θ⋆∥2Σ̂.

(∥v∥2
Σ̂
= v⊺Σ̂v is called the (squared) Mahalanobis distance.)

Proof.

R(θ) = E
ε1,...,εN

[1N ∥Φθ − Y ∥2] = E
ε1,...,εN

[1N ∥Φθ − Φθ⋆ − ε∥2]

= E
ε1,...,εN

[1N ∥Φ(θ − θ⋆)− ε∥2]

(∗)
= 1

N (θ − θ⋆)
⊺Φ⊺Φ(θ − θ⋆) + E

ε1,...,εN
[1N ∥ε∥2]

= ∥θ − θ⋆∥2Σ̂ + σ2

In step (*), we use the fact that ε has zero-mean and the other term is
deterministic. Finally, note

R⋆ = inf
θ
R(θ) = σ2.Statistical properties 22

Bias-variance decomposition for fixed design

Lemma
If θ̂ ∈ Rd be random. In the fixed design setting, we have

E[R(θ̂)]−R⋆ = ∥E[θ̂]− θ⋆∥2Σ̂︸ ︷︷ ︸
bias

+E[∥θ̂ − E[θ̂]∥2
Σ̂
]︸ ︷︷ ︸

variance

,

where, to clarify, E[·] = Eθ̂[·].
Proof.

Ê
θ

[R(θ̂)−R⋆] = Ê
θ

[∥θ̂ − E[θ̂] + E[θ̂]− θ⋆∥2Σ̂]

= Ê
θ

[∥θ̂ − E[θ̂]∥2
Σ̂
] + Ê

θ

[∥E[θ̂]− θ⋆∥2Σ̂] + 2 Ê
θ

[
(θ̂ − E[θ̂])⊺Σ̂(E[θ̂]− θ⋆)

]
= variance+ bias+ 2(Ê

θ

[θ̂]− E[θ̂])⊺Σ̂(E[θ̂]− θ⋆)

= bias+ variance.

Statistical properties of LS estimator for fixed design

Theorem
In the fixed design setting, the least-square estimator

θ̂ = (Φ⊺Φ)−1Φ⊺Y = Σ̂−1 1

N
Φ⊺Y

satisfies
E[θ̂] = θ⋆

and

Cov[θ̂] = E[(θ̂ − θ⋆)(θ̂ − θ⋆)
⊺] =

σ2

N
Σ̂−1.

(Σ̂−1 is often called the precision matrix.)

Statistical properties 24

Proof. First, note that

θ̂ = (Φ⊺Φ)−1Φ⊺Y = (Φ⊺Φ)−1Φ⊺(Φθ⋆ + ε) = θ⋆ + (Φ⊺Φ)−1Φ⊺ε.

Then we have

E[θ̂] = θ⋆ + (Φ⊺Φ)−1Φ⊺E[ε] = θ⋆

and

Cov[θ̂] = E[(θ̂ − θ⋆)(θ̂ − θ⋆)
⊺] = E[(Φ⊺Φ)−1Φ⊺εε⊺Φ(Φ⊺Φ)−1]

= (Φ⊺Φ)−1Φ⊺E[εε⊺]Φ(Φ⊺Φ)−1

= σ2(Φ⊺Φ)−1Φ⊺Φ(Φ⊺Φ)−1

= σ2(Φ⊺Φ)−1 =
σ2

N
Σ̂−1.

Statistical properties 25

Excess risk of LS estimator for fixed design

Corollary
In the fixed design setting, the expected excess risk of the least-square
estimator is

E[R(θ̂)]−R⋆ =
σ2d

N
.

Proof. From the previous theorem, we have

E[θ̂] = θ⋆, Cov[θ̂] =
σ2

N
Σ̂−1.

Plug this into the bias-variance decomposition of a previous lemma to get

E[R(θ̂)−R⋆] = ∥E[θ̂]− θ⋆∥2Σ̂ + E[∥θ̂ − E[θ̂]]∥2
Σ̂
]

= 0 + E[∥θ̂ − θ⋆∥2Σ̂] = E[Tr((θ̂ − θ⋆)
⊺Σ̂(θ̂ − θ⋆))]

= Tr(Σ̂E[(θ̂ − θ⋆)(θ̂ − θ⋆)
⊺])

=
σ2

N
Tr(Σ̂Σ̂−1) =

σ2

N
Tr(I) =

σ2d

N
.

Statistical properties 26

Risk for random design

In the random design setting, we use the risk

R(θ) = E
X1,ε1

[(ϕ(X1)
⊺θ − Y1)

2] = E
X1,...,XN
ε1,...,εN

[1N ∥Φθ − Y ∥2].

In the random design setup, the goal is to learn θ that performs well on a
new data-label pair. The uncertainty comes from the noisiness of the
labels Y1, . . . , YN , originating from ε1, . . . , εN , and from the randomness
the data X1, . . . , XN .

Lemma
In the random design setting,

R(θ)−R⋆ = ∥θ − θ⋆∥2Σ.
Proof.

R(θ) = E
X,ε

[(ϕ(X)⊺(θ − θ⋆)− ε)2]

= (θ − θ⋆)
⊺ E
X
[ϕ(X)ϕ(X)⊺](θ − θ⋆) + E

ε
[ε2] = ∥θ − θ⋆∥2Σ + σ2.

Statistical properties 27

Bias-variance decomposition for random design

Lemma
If θ̂ ∈ Rd be random. In the random design setting, we have

E[R(θ̂)]−R⋆ = ∥E[θ̂]− θ⋆∥Σ2︸ ︷︷ ︸
bias

+E[∥θ̂ − E[θ̂]]∥Σ2]︸ ︷︷ ︸
variance

,

where, to clarify, E[·] = Eθ̂[·].

Proof. Same argument as in the fixed design case.

Statistical properties 28

Statistical properties of LS estimator for random design

Theorem
In the random design setting, the least-square estimator

θ̂ = (Φ⊺Φ)−1Φ⊺Y

satisfies
E[θ̂] = θ⋆

and

Cov[θ̂] = E[(θ̂ − θ⋆)(θ̂ − θ⋆)
⊺] =

σ2

N
E[Σ̂−1].

Proof. Same argument as in the fixed design case.

Statistical properties 29

Excess risk of LS estimator for random design

Corollary
In the random design setting, the expected excess risk of the least-square
estimator is

E[R(θ̂)]−R⋆ =
σ2

N
E[Tr(ΣΣ̂−1)].

Proof. From the previous theorem, we have

E[θ̂] = θ⋆, Cov[θ̂] =
σ2

N
E[Σ̂−1].

Plug this into the bias-variance decomposition of a previous lemma to get

E[R(θ̂)−R⋆] = ∥E[θ̂]− θ⋆∥2Σ + E[∥θ̂ − E[θ̂]]∥2Σ]

= 0 + E[∥θ̂ − θ⋆∥2Σ] = E[Tr((θ̂ − θ⋆)
⊺Σ(θ̂ − θ⋆))]

= Tr(ΣE[(θ̂ − θ⋆)(θ̂ − θ⋆)
⊺])

=
σ2

N
E[Tr(ΣΣ̂−1)].

Statistical properties 30

Excess risk of LS estimator for random design:

Gaussian features

Corollary
In the random design setting, assume ϕ(X1) is Gaussian with zero mean
and a symmetric (strictly) positive definite covariance matrix Σ. Then

E[R(θ̂)]−R⋆ =
σ2d

N − d− 1
.

Proof. For i = 1, . . . , N , since ϕ(Xi) is Gaussian with covariance Σ,

Zi = Σ−1/2ϕ(Xi)

is an IID Gaussian since E[Zi] = Σ−1/2E[ϕ(Xi)] = 0 and

E[ZiZ
⊺
i] = Σ−1/2E[ϕ(Xi)ϕ(Xi)

⊺]Σ−1/2 = Σ−1/2ΣΣ−1/2 = I.

Statistical properties 31

Let

Z =

Z⊺
1
...

Z⊺
N

 ∈ RN×d, Φ =

ϕ(X1)
⊺

...
ϕ(XN)⊺

 ∈ RN×d.

Then Z = ΦΣ−1/2 and

Σ̂ =
1

N
Φ⊺Φ =

1

N
Σ1/2(Z⊺Z)Σ1/2, Σ̂−1 = NΣ−1/2(Z⊺Z)−1Σ−1/2

By the previous corollary, we have

E[R(θ̂)]−R⋆ =
σ2

N
E[Tr(ΣΣ̂−1)] = σ2Tr(ΣΣ−1/2E[(Z⊺Z)−1]Σ−1/2)

= σ2Tr(E[(Z⊺Z)−1]),

where the Nd elements of Z ∈ RN×d are IID unit Gaussians. Then
(Z⊺Z)−1 is known to follow the inverse Wishart distribution, and it is
known that

E[(Z⊺Z)−1] =
1

n− d− 1
I.

Therefore,

E[R(θ̂)]−R⋆ =
σ2d

N − d− 1
.

Excess risk of LS estimator for random design

Lemma
In the random design setting, the expected excess risk of the least-square
estimator conditioned on Φ is

E
ε
[R(θ̂)−R⋆ |Φ] = σ2

N
Tr(ΣΣ̂−1).

Proof. Recall that we had established R(θ)−R⋆ = ∥θ− θ⋆∥2Σ. Plugging
in θ̂ = θ⋆ + (Φ⊺Φ)−1Φ⊺ε, we get

R(θ̂)−R⋆ = ∥(Φ⊺Φ)−1Φ⊺ε∥2Σ = ε⊺Φ(Φ⊺Φ)−1Σ(Φ⊺Φ)−1Φ⊺ε

Then we have

E
ε
[R(θ̂)−R⋆ |Φ] = E

ε
[Tr(ε⊺Φ(Φ⊺Φ)−1Σ(Φ⊺Φ)−1Φ⊺ε) |Φ]

= Tr(E
ε
[Φ(Φ⊺Φ)−1Σ(Φ⊺Φ)−1Φ⊺εε⊺ |Φ])

= σ2Tr((Φ⊺Φ)−1Σ(Φ⊺Φ)−1Φ⊺Φ)

=
σ2

N
Tr(Σ̂−1Σ)

PAC bound of LS estimator for random design

Theorem
In the random design setting, assume there is a ρ ≥ 1 such that

E
[
ϕ(X)⊺Σ−1ϕ(X)ϕ(X)ϕ(X)⊺

]
⪯ ρΣ.

If N ≥ 5ρ log(d/δ), then

Σ1/2Σ̂−1Σ1/2 ⪯ 4I

with probability ≥ 1− δ.

Statistical properties 34

PAC bound of LS estimator for random design:

Discussion of assumption

Let Zi = Σ−1/2ϕ(Xi), so that E[ZiZ
⊺
i] = I for i = 1, . . . , N . Let

Z =

Z⊺
1
...

Z⊺
N

 ∈ RN×d.

Then, the assumption is equivalent to

λmax

(
E[∥Zi∥2ZiZ

⊺
i]
)
≤ ρ

In particular, this condition is implied if ∥Zi∥2 ≤ ρ almost surely. When
Zi ∼ N (0, Id×d), then

λmax

(
E[∥Zi∥2ZiZ

⊺
i]
)
= 2 + d.

(Proof in homework.)

Statistical properties 35

PAC bound of LS estimator for random design

Proof. Let Mi = I − ZiZ
⊺
i . Then, E[Mi] = 0 and λmax(Mi) ≤ 1. Also,

E[M2
i] = E[∥Zi∥2ZiZ

⊺
i]− I, so

λmax(E[M2
i]) ≤ ρ− 1 ≤ ρ.

Since λmax is convex (as you will show in your homework), Jensen’s
inequality implies

λmax

(1

N

N∑
i=1

E[M2
i]
)
≤ ρ.

With the Matrix Bernstein’s inequality, we have

P
(
λmax(I − 1

NZ⊺Z) ≥ ε
)
≤ d exp

(
− Nε2/2

ρ+ ε/3

)
,

By plugging in ε = 3/4, setting the probability to δ, and solving for N ,
we get the stated condition N ≥ (32ρ/9 + 8/9) log(d/δ), which is
implied by N ≥ 5ρ log(d/δ), since ρ ≥ 1.

Statistical properties 36

PAC bound of LS estimator for random design

So, with probability ≥ 1− δ,

1

N
Z⊺Z ⪰ 1

4
I,

which is equivalent to

Σ−1/2Σ̂Σ−1/2 ⪰ 1

4
I

Σ1/2Σ̂−1Σ1/2 ⪯ 4I.

Statistical properties 37

PAC bound of LS estimator for random design

Corollary
In the random design setting, assume there is a ρ ≥ 1 such that

E
[
ϕ(X)⊺Σ−1ϕ(X)ϕ(X)ϕ(X)⊺

]
⪯ ρΣ.

If N ≥ 5ρ log(d/δ), then

R(θ̂)−R⋆ <
4σ2d

δN
with probability ≥ (1− δ)2.

Proof. By the previous theorem, with probability ≥ 1− δ, we get a

“good” Φ such that Eε[R(θ̂)−R⋆ |Φ] ≤ 4σ2d
N . On this good event, we

can apply Markov’s inequality, to get

P
ε
(R(θ̂)−R⋆ ≥ η |Φ) ≤ 4σ2d

ηN
.

We set the RHS equal to δ and solve to get η = 4σ2d
δN . Then, the stated

bound holds with probability ≥ (1− δ)2.

(δ-dependence can be improved with further assump., but we stop here.)

	Linear learning with finite nonlinear features
	Least squares objective and its solution
	Statistical properties

