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Binary classification

Consider the binary classification problem, where Ỹ = Y = {−1,+1} and
ℓ(y′, y) = 1{y′ ̸=y}. So

R[f ] = E
(X,Y )∼P

[ℓ(f(X), Y )] = P
(X,Y )∼P

(f(X) ̸= Y ).

Define
η(X) = P(Y = +1 |X).

Assume η(X) ̸= 1/2 with probability 1. Then,

f⋆(X) =

{
−1 if η(X) < 1/2
+1 if η(X) > 1/2

is a Bayes predictor, and

R⋆ = E
X∼PX

[min{1− η(X), η(X)}].
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Surrogate loss

We replace Φ0-1(u) with a surrogate loss such as

Φhinge(u) = max{1− u, 0}
Φlogistic(u) = log(1 + e−u)

Φsquare(u) = (1− u)2,

which are nice continuous, convex functions, and
solve the continuous convex optimization problem

minimize
g

E
(X,Y )∼P

[Φ(Y g(X))]︸ ︷︷ ︸
=RΦ[g]

or its approximation

minimize
g

1

N

N∑
i=1

Φ(Yig(Xi))︸ ︷︷ ︸
=R̂Φ[g]

.

u

Φ(u)

Φ0-1

Φlogistic
Φhinge

Φsquare
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Binary classification with square loss

Consider the square surrogate loss

RΦsquare [g] = E
(X,Y )∼P

[(1− Y g(X))2] = E
(X,Y )∼P

[(g(X)− Y )2].

Bayes predictor has a simple analytic form:

g⋆(X) = E[Y |X] = −1 · P(Y = −1 |X) + 1 · P(Y = +1 |X)

= 2η(X)− 1.

Also,

RΦsquare [g]−RΦsquare [g⋆] = E
(X,Y )∼P

[(g(X)− Y )2 − (g⋆(X)− Y )2]

= E
(X,Y )∼P

[g(X)2 − 2g(X)Y − g⋆(X)2 + 2g⋆(X)Y ]

= E
X

[
E
Y
[g(X)2 − 2g(X)Y − g⋆(X)2 + 2g⋆(X)Y |X]

]
= E

X

[
g(X)2 − 2g(X)E

Y
[Y |X]− g⋆(X)2 + 2g⋆(X)E

Y
[Y |X]

]
= E

X

[
g(X)2 − 2g(X) + g⋆(X)2

]
= E

X

[
(g(X)− g⋆(X))2

]
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Minimize surrogate loss
?⇒ Minimize original loss

However, we should not forget that we have changed the optimization
problem from minimizing RΦ0-1 to RΦ.

Is this valid? Does the following implication hold?

RΦ[g]−R⋆
Φ = 0

?⇒ RΦ0-1 [g]−R⋆
Φ0-1 = 0

In general, no.

Since Φ0-1 ≤ γΦ for some γ > 0, if R⋆
Φ = 0, then R⋆

Φ0-1 = 0 and

RΦ[g] = 0 ⇒ RΦ0-1 [g] = 0.

However, if R⋆
Φ > 0, the desired implication does not hold in general.
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When is minimizing RΦ valid?

We shall now study conditions that ensure:

argmin
g
RΦ[g] ⊆ argmin

g
RΦ0-1 [g].

If so, then (exactly) minimizing RΦ provides a minimizer to RΦ0-1 , the
actual risk that we care about, i.e.,

RΦ[g]−R⋆
Φ = 0 ⇒ RΦ0-1 [g]−R⋆

Φ0-1 = 0.
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Conditional Φ-risk

For any g : X → R, define the conditional Φ-risk as

RΦ[g |X] = E
Y∼PY |X

[Φ(Y g(X)) |X]

= η(X)Φ(g(X)) + (1− η(X))Φ(−g(X)).

(Of course, EX [RΦ[g |X]] = RΦ[g].)

Let
CΦ(α; η) = ηΦ(α) + (1− η)Φ(−α).

Then,
RΦ[g |X] = CΦ(g(X); η(X)).
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Bayes predictor from conditional Φ-risk

Recall that the Bayes predictor was obtained by

g⋆Φ(X) ∈ argmin
α∈R

E
Y∼PY |X

[Φ(Y α) |X] = argmin
α∈R

CΦ(α; η(X)).

For the true 0-1 loss, we have

argmin
α∈R

CΦ0-1(α; η(X)) = argmin
α∈R

{
η(X)1{α≤0} + (1− η(X))1{α≥0}

}
=

{
α > 0 if η(X) > 1/2
α < 0 if η(X) < 1/2.

(For simplicity, assume η(X) ̸= 1/2 with probability 1.) I.e., it is optimal
to output α > 0 if Y = +1 is more likely and α < 0 if Y = −1 is more
likely. Does this hold for the surrogate loss function?
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Calibrated surrogate loss

We say a surrogate loss Φ is classification calibrated or calibrated if

argmin
α∈R

CΦ(α; η(X)) ⊆ argmin
α∈R

CΦ0-1(α; η(X)) =

{
α > 0 if η(X) > 1/2
α < 0 if η(X) < 1/2.

Lemma
Let Φ be classification calibrated. Then,

argmin
g
RΦ[g] ⊆ argmin

g
RΦ0-1 [g].

Proof. Let g⋆Φ ∈ argmingRΦ[g]. Then,

g⋆Φ(X) ∈ argmin
α∈R

CΦ(α; η(X))

for P -almost all X. Then,

g⋆Φ(X) ∈ argmin
α∈R

CΦ0-1(α; η(X))

for P -almost all X, and we conclude

g⋆Φ ∈ argmin
g
RΦ0-1 [g].



Bayes predictor for square loss is optimal for 0-1 loss

Recall that
g⋆Φsquare(X) = 2η(X)− 1.

Since g⋆Φsquare(X) > 0 if η(X) > 1/2 and vice versa,

g⋆Φsquare(X) ∈ argmin
α∈R

CΦ0-1(α; η(X)).

Therefore,
g⋆Φsquare ∈ argmin

g
RΦ0-1 [g].

How about

g⋆Φlogistic

?
∈ argmin

g
RΦ0-1 , g⋆Φhinge

?
∈ argmin

g
RΦ0-1
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Calibrated surrogate loss

Theorem
Let Φ: R→ R be convex. If Φ is differentiable at 0 and Φ′(0) < 0, then
Φ is classification-calibrated.

Proof. Convexity of Φ implies CΦ(α; η) is convex in α for any fixed
η ∈ [0, 1]. If η > 1/2, then

d

dα
CΦ(α; η)

∣∣
α=0

= ηΦ′(0)− (1− η)Φ′(0) < 0.

Therefore, argminα∈R CΦ(α; η) ⊆ (0,∞) by convexity.

If η < 1/2, then

d

dα
CΦ(α; η)

∣∣
α=0

= ηΦ′(0)− (1− η)Φ′(0) > 0.

Therefore, argminα∈R CΦ(α; η) ⊆ (−∞, 0) by convexity.
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Calibrated surrogate loss

Therefore, all three surrogate losses are calibrated, and

g⋆Φlogistic ∈ argmin
g
RΦ0-1 [g]

g⋆Φhinge ∈ argmin
g
RΦ0-1 [g]

g⋆Φsquare ∈ argmin
g
RΦ0-1 [g].
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When is approximately minimizing RΦ valid?

If Φ is calibrated, then

RΦ[g]−R⋆
Φ = 0 ⇒ RΦ0-1 [g]−R⋆

Φ0-1 = 0.

However, do we have?

RΦ[g]−R⋆
Φ < small ⇒ RΦ0-1 [g]−R⋆

Φ0-1 < small

After all, we can only hope to approximately minimize RΦ.

RΦ0-1 −R⋆
Φ0-1

?
≤ H(RΦ −R⋆
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RΦ0-1 [g]−R⋆
Φ0-1 ≤ RΦhinge [g]−R⋆

Φhinge

For the hinge loss, we can carry out the analysis with direct arguments.

Recall,

CΦ0-1(α; η) = η1{α≤0} + (1− η)1{α≥0}

CΦhinge(α; η) = η(1− α)+ + (1− η)(1 + α)+.

With direct calculations, we get

inf
α∈R

CΦ0-1(α; η) = min{η, 1− η}, inf
α∈R

CΦhinge(α; η) = 2min{η, 1− η}.

With direct (albeit tedious) arguments, we can show

CΦ0-1(α; η)− inf
α∈R

CΦ0-1(α; η) ≤ CΦhinge(α; η)− inf
α∈R

CΦhinge(α; η)

for all α ∈ R and η ∈ [0, 1], which implies

RΦ0-1 [g]−R⋆
Φ0-1 ≤ RΦhinge [g]−R⋆

Φhinge .

RΦ0-1 −R⋆
Φ0-1

?
≤ H(RΦ −R⋆
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RΦ0-1 [g]−R⋆
Φ0-1 ̸≤ RΦlogistic [g]−R⋆

Φlogistic

For the logistic loss, we have

CΦ0-1(α; η) ≤ 1

log 2
CΦlogistic(α; η)

However,

CΦ0-1(α; η)− inf
α∈R

CΦ0-1(α; η) ̸≤ γ
(
CΦlogistic(α; η)− inf

α∈R
CΦlogistic(α; η)

)
for any constant γ > 0, and we cannot proceed with the same argument.

The same problem arises with the square loss.

RΦ0-1 −R⋆
Φ0-1

?
≤ H(RΦ −R⋆
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Lemma
Let g⋆ ∈ argmingRΦ0-1 [g]. Then,

RΦ0-1 [g]−RΦ0-1 [g⋆] = E
[
1{g(X)g⋆(X)<0}|2η(X)− 1|

]
≤ E

[
1{g(X)g⋆(X)<0}|2η(X)− 1− b(g(X))|

]
for any b : R→ R such that sign(b(x)) = sign(x) for all x ∈ R.

RΦ0-1 −R⋆
Φ0-1

?
≤ H(RΦ −R⋆
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Proof. The first claim follows from

RΦ0-1 [g]−RΦ0-1 [g⋆]

= E
[
E
[
1{sign(g(X))̸=Y } − 1{sign(g⋆(X)) ̸=Y }

∣∣X]]
= E

[
E
[
− 1{g(X)>0, g⋆(X)<0}1{Y=+1} + 1{g(X)>0, g⋆(X)<0}1{Y=−1}

+ 1{g(X)<0, g⋆(X)>0}1{Y=+1} − 1{g(X)<0, g⋆(X)>0}1{Y=−1}
∣∣X]]

= E
[
− 1{g(X)>0, g⋆(X)<0}η(X) + 1{g(X)>0, g⋆(X)<0}(1− η(X))

+ 1{g(X)<0, g⋆(X)>0}η(X)− 1{g(X)<0, g⋆(X)>0}(1− η(X))
]

= E
[
1{g(X)>0, g⋆(X)<0}(1− 2η(X))− 1{g(X)<0, g⋆(X)>0}(1− 2η(X))

]
= E

[
1{g(X)>0, g⋆(X)<0}|1− 2η(X)|+ 1{g(X)<0, g⋆(X)>0}|1− 2η(X)|

]
= E

[
1{g(X)g⋆(X)<0}|1− 2η(X)|

]
,

where we use the fact that g⋆(X) < 0 implies η(X) < 1/2.

RΦ0-1 −R⋆
Φ0-1

?
≤ H(RΦ −R⋆
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For the second claim,

E
[
1{g(X)g⋆(X)<0}|2η(X)− 1|

]
= E

[
1{g(X)g⋆(X)<0, g⋆(X)>0, η(X)>1/2}(2η(X)− 1)

]
+ E

[
1{g(X)g⋆(X)<0, g⋆(X)<0, η(X)<1/2}(−2η(X) + 1)

]
≤ E

[
1{g(X)g⋆(X)<0, g⋆(X)>0, η(X)>1/2}(2η(X)− 1− b(g(X)))

]
+ E

[
1{g(X)g⋆(X)<0, g⋆(X)<0, η(X)<1/2}(−2η(X) + 1 + b(g(X)))

= E
[
1{g(X)g⋆(X)<0, g⋆(X)>0, η(X)>1/2}|2η(X)− 1− b(g(X))|

]
+ E

[
1{g(X)g⋆(X)<0, g⋆(X)<0, η(X)<1/2}|2η(X)− 1− b(g(X))|

]
= E

[
1{g(X)g⋆(X)<0}|2η(X)− 1− b(g(X))|

]
.

RΦ0-1 −R⋆
Φ0-1

?
≤ H(RΦ −R⋆
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Square loss

Equipped with this lemma, we can now analyze the relationship between
RΦ0-1 [g]−R⋆

Φ0-1 and RΦsquare [g]−R⋆
Φsquare :

RΦ0-1 [g]−RΦ0-1 [g⋆] ≤ E
[
1{g(X)g⋆(X)<0}|2η(X)− 1− g(X)|

]
≤

(
E
[
1{g(X)g⋆(X)<0}| 2η(X)− 1︸ ︷︷ ︸

=g⋆(X)

−g(X)|2
])1/2

≤
(
E[|g⋆(X)− g(X)|2]

)1/2
=

(
RΦsquare [g]−RΦsquare [g⋆]

)1/2

,

where the second inequality follows from Jensen.

Therefore,

RΦsquare −R⋆
Φsquare < small ⇒ RΦ0-1 −R⋆

Φ0-1 <
√
small.

RΦ0-1 −R⋆
Φ0-1

?
≤ H(RΦ −R⋆
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Logistic loss

Lemma
For any x, u ∈ R

log(e−x/2 + ex/2)− ux− inf
x∈R
{log(e−x/2 + ex/2)− ux} ≥ 2

(
u− ex − 1

2(ex + 1)

)2

.

Proof. A brute-force proof:

inf
x
{log(e−x/2 + ex/2)− ux} =

{
1
2 (1− 2u) log 1+2u

1−2u + log 2
1+2u if − 2 < u < 2

−∞ otherwise.

≤ log(e−x/2 + ex/2)− ux− 2
(
u− ex − 1

2(ex + 1)

)2

with a Taylor expansion argument. Rearrange the inequality to conclude
the statement. (Better proof later.)

RΦ0-1 −R⋆
Φ0-1

?
≤ H(RΦ −R⋆
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Logistic loss

Recall that
Φlogistic(u) = log(1 + e−u).

Then,

CΦlogistic(α; η) = η log(1 + e−α) + (1− η) log(1 + eα)

= log(e−α/2 + eα/2)− 2η − 1

2
α

Appealing to the previous lemma, we have

CΦlogistic(α; η)− inf
α∈R

CΦlogistic(α; η) ≥ 1

2

(
2η − 1− eα − 1

eα + 1

)2

.

RΦ0-1 −R⋆
Φ0-1

?
≤ H(RΦ −R⋆
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Logistic loss

Plug in α← g(X) and η ← η(X), and take the expectation to get

RΦlogistic [g]−R⋆
Φlogistic ≥

1

2
E
[(

2η(X)− 1− eg(X) − 1

eg(X) + 1

)2]
≥ 1

2

(
E
[∣∣∣2η(X)− 1− eg(X) − 1

eg(X) + 1

∣∣∣])2

≥ 1

2

(
RΦ0-1 [g]−R⋆

Φ0-1

)2

.

Therefore, we conclude

RΦ0-1 [g]−R⋆
Φ0-1 ≤

√
2
(
RΦlogistic [g]−R⋆

Φlogistic

)1/2

the same (up to constant) guarantee as for the square loss.

RΦ0-1 −R⋆
Φ0-1

?
≤ H(RΦ −R⋆
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Calibration function

We established guarantees of the form

RΦ0-1 −R⋆
Φ0-1

?
≤ H(RΦ −R⋆

Φ),

where H is a monotonically increasing function. H is called the
calibration function.

The guarantee for the hinge loss is better than the guarantee for the
square or logistic loss. However, we will later see that the hinge loss is
harder to optimize due to its non-differentiability. So there is a trade-off.

RΦ0-1 −R⋆
Φ0-1

?
≤ H(RΦ −R⋆
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Impact on approximation errors

So far, our analysis was carried out without any restriction on the set of
functions.

In practice, however, we use a restricted function class F (often with a
controlled Rademacher complexity). The choice of the surrogate loss Φ
affects the Bayes predictor (even though the set of Bayes predictor for
Φ0-1 is always the same), so the approximation error is affected by the
choice of Φ.

In particular,

g⋆Φhinge(X) = sign(2η(X)− 1)

g⋆Φlogistic(X) = atanh(2η(X)− 1)

g⋆Φsquare(X) = 2η(X)− 1.

If Φ admits a g⋆Φ that is well approximated by F , that is a reason to favor
Φ. (Having a favorable calibration function and the ease of optimization
are two other reasons to favor a choice of Φ.)

RΦ0-1 −R⋆
Φ0-1

?
≤ H(RΦ −R⋆
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Logistic loss

Lemma
For any x, u ∈ R

log(e−x/2 + ex/2)− ux− inf
x∈R
{log(e−x/2 + ex/2)− ux} ≥ 2(u− b(x))2,

where b : R→ R is a sign-preserving function.

Better Proof. Note that

f(x) = log(e−x/2 + ex/2)

is a convex L-smooth function with L = 1/4. (Easy to check that
0 ≤ f ′′(x) ≤ 1/4 for all x ∈ R.) Then, by the Fenchel–Young inequality
for smooth convex functions, we have

f(x) + f∗(u)− ux ≥ 1

2L
∥y − f ′(x)∥2.

Finally, it is straightforward to verify f ′(0) = 0 and f ′ is strictly
increasing.
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Calibration functions for square and logistic losses

Assume
Φ(u) = a(u)− γu+ β,

where a(0) = 0, a is convex L-smooth, a is even, γ > 0, and β ∈ R.
Recall

Φsquare(u) = (1− u)2 = u2 − 2u+ 1 (2-smooth)

Φlogistic(u) = log(1 + e−u) = log(e−u/2 + eu/2)− 1

2
u ( 14 -smooth)

Then,

CΦ(α; η) = ηΦ(α) + (1− η)Φ(−α) + β

= a(α)− γ(2η − 1)α+ β

Using Fenchel–Young for smooth convex functions, we have

CΦ(α; η)− inf
α∈R

CΦ(α; η) ≥
γ2

2L

(
2η − 1− 1

γ a
′(α)

)2

.
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Calibration functions for square and logistic losses

Plug in α← g(X) and η ← η(X), and take the expectation to get

RΦ[g]−R⋆
Φ ≥

γ2

2L
E
[(

2η(X)− 1− 1
γ a

′(g(X))
)2]

≥ γ2

2L

(
E
[∣∣∣2η(X)− 1− 1

γ a
′(g(X))

∣∣∣])2

≥ γ2

2L

(
RΦ0-1 [g]−R⋆

Φ0-1

)2

.

Therefore, we conclude

RΦ0-1 [g]−R⋆
Φ0-1 ≤

√
2L

γ

(
RΦ[g]−R⋆

Φ

)1/2

.
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Ridge regression

Consider the ridge regression problem with µ > 0

minimize
θ∈Rd

1
N ∥Y − Φθ∥2 + µ∥θ∥22,

which has the minimizer

θ̂µ =
1

N
(Σ̂ + µI)−1Φ⊺y = (Φ⊺Φ+NµI)−1Φ⊺y = Φ⊺(ΦΦ⊺ +NµI)−1y.

(Proof involving matrix inversion lemma in homework.)

Recall

Σ̂ =
1

N
Φ⊺Φ ∈ Rd×d.

Notably, we will no longer assume that Σ̂ is invertible. Not assuming
invertibility will be important when we consider kernel methods, where
d =∞ and N <∞.
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Ridge regression

Even though we consider a regularized optimization problem to obtain
θ̂µ, we still consider the same (unregularized) risk

R(θ) = E
ε1,...,εN

[ 1N ∥Φθ − Y ∥2].

Theorem
For the fixed design setting, with θ̂µ = 1

N (Σ̂ + µI)−1Φ⊺Y has expected
excess risk

E[R(θ̂)]−R⋆ = µ2θ⊺⋆ (Σ̂ + µI)−2Σ̂θ⋆︸ ︷︷ ︸
bias

+
σ2

N
Tr(Σ̂2(Σ̂ + µI)−2)︸ ︷︷ ︸

variance

.
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Proof. Recall that we had shown

E[R(θ̂)]−R⋆ = ∥E[θ̂]− θ⋆∥2Σ̂︸ ︷︷ ︸
bias

+E[∥θ̂ − E[θ̂]∥2
Σ̂
]︸ ︷︷ ︸

variance

,

First, we have

E[θ̂µ] =
1

N
E[(Σ̂ + µI)−1Φ⊺(Φθ⋆ + ε)]

= (Σ̂ + µI)−1Σ̂θ⋆ = (Σ̂ + µI)−1(Σ̂ + µI − µI)θ⋆

= θ⋆ − µ(Σ̂ + µI)−1θ⋆.

So

bias = ∥µ(Σ̂ + µI)−1θ⋆∥2Σ̂ = µ2θ⊺⋆ (Σ̂ + µI)−1Σ̂(Σ̂ + µI)−1θ⋆

= µ2θ⊺⋆ (Σ̂ + µI)−2Σ̂θ⋆,

which accounts for the first term.

Ridge least squares regression 34



Next, we have

θ̂ − E[θ̂] =
1

N
(Σ̂ + µI)−1Φ⊺ε.

So,

variance = E
[
∥θ̂ − E[θ̂]]∥2

Σ̂

]
=

1

N2
E
[
Tr

(
ε⊺Φ(Σ̂ + µI)−1Σ̂(Σ̂ + µI)−1Φ⊺ε

)]
=

σ2

N2
Tr

(
Φ(Σ̂ + µI)−1Σ̂(Σ̂ + µI)−1Φ⊺

)
=

σ2

N
Tr

(
(Σ̂ + µI)−1Σ̂(Σ̂ + µI)−1Σ̂

)
=

σ2

N
Tr

(
Σ̂2(Σ̂ + µI)−2

)
.
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Should we use µ > 0?

For small µ > 0, we have

E[R(θ̂µ)]−R⋆ = µ2θ⊺⋆ (Σ̂ + µI)−2Σ̂θ⋆ +
σ2

N
Tr(Σ̂2(Σ̂ + µI)−2)

= O(µ2) +
σ2

N

min{d,N}∑
i=1

λ2
i

(λi + µ)2

= O(µ2) +
σ2

N

min{d,N}∑
i=1

1

(1 + µ/λi)2

=
σ2

N

min{d,N}∑
i=1

(1− 2µλi) +O(µ2)

= O(1)− 2σ2Tr(Σ̂)

N
µ+O(µ2).

So the optimal value of µ is positive.
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Optimizing regularization parameter

Theorem
Assume θ⋆ ̸= 0. With

µ◦ =
σTr(Σ̂)1/2

∥θ⋆∥2
√
N

we have

E[R(θ̂µ◦)]−R⋆ ≤ σTr(Σ̂)1/2∥θ⋆∥2.√
N

(As we will see from the proof, µ◦ is not the exact optimum, but rather a
choice that optimizes an upper bound.)
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Proof. Previously, we had shown that E[R(θ̂µ)]−R⋆ = bias+ variance.

First, bound the bias:

bias = µ2θ⊺⋆ (Σ̂ + µI)−2Σ̂θ⋆ = µθ⊺⋆ (Σ̂ + µI)−2µΣ̂︸ ︷︷ ︸
⪯ 1

2 I

θ⋆ ≤
µ

2
∥θ⋆∥2,

where we use the fact that

µλ

(λ+ µ)2
≤ 1

2
∀µ > 0, λ > 0.

Next, bound the variance:

variance =
σ2

N
Tr

(
Σ̂2(Σ̂ + µI)−2

)
=

σ2

µN
Tr

(
Σ̂µΣ̂(Σ̂ + µI)−2︸ ︷︷ ︸

⪯ 1
2 I

)
≤ σ2

2µN
Tr Σ̂.

Finally, plugging in µ← µ◦ (which minimizes the upper bounds on
bias+ variance), we conclude the statement.
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Compared to the expected excess risk of the least squares estimator
without regularization

E[R(θ̂0)]−R⋆ =
σ2d

N

the bound with regularization

E[R(θ̂µ◦)]−R⋆ ≤ σTr(Σ̂)1/2∥θ⋆∥2√
N

does not have an explicit dependence on d. Such bounds are said to be
dimension-independent.

If ∥φ(x)∥ ≤ R for all x, then

Tr(Σ̂) =
1

N

N∑
i=1

∥φ(Xi)∥22 ≤ R2,

and the only remaining (implicit) dependence on d is in ∥θ⋆∥2.

However, the O(1/
√
N)-rate is slower than the O(1/N)-rate. This is a

common tradeoff in machine learning theory: a “fast rate” with bad
constants vs. “slow rate” with good constants.
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