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No free lunch theorem

Consider the binary classification problem with 0-1 loss, and let X be
infinite. Let A be an algorithm that takes in as input
DN = {(X1, Y1), . . . , (XN , YN )} and outputs a prediction function:

f̂DN
= A(DN (p)).

So f̂DN
(x) ∈ {−1,+1} for all x ∈ X . Let p a probability distribution on

X × {−1,+1}. Then

Rp[f ] = P
(X,Y )∼p

(
f(X) ̸= Y

)
.

Theorem (No free lunch (NFL))
Let P denote the set of all probability distributions on X × {−1,+1}.
For any N > 0 and any algorithm A

sup
p∈P

{
E

DN∼p

[
Rp[A(DN )]

]
−R∗

p

}
≥ 1/2.
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NFL: Corollaries

Corollary
Under the NFL assumptions, for any N > 0,

inf
A

sup
p∈P

{
E

DN∼p

[
Rp[A(DN )]

]
−R∗

p

}
≥ 1/2.

So, the best algorithm cannot do better than chance (1/2 accuracy).

Corollary
Under the NFL assumptions, for any N > 0 any algorithm A, there is a
p ∈ P such that

E
DN∼p

[
Rp[A(DN )]

]
−R∗

p ≥ 1/2.

So, while an algorithm A can be good at some choices of p, it is not
possible for A to be uniformly good for all p ∈ P.
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NFL: Interpretation

The proof of NFL is based on a fairly obvious argument:
If there are k pieces of information to learn (the sign of r1, . . . , rk), you
cannot possibly learn them with N data points if k ≫ N . Since
|X | = ∞, it is possible to encode the k pieces of information into p ∈ P.

The resolution to the NFL theorem is that P cannot be the set of
arbitrary distributions. If p(Y |X) depends, say, smoothly as a function
of X, then we may be able to learn p(Y |X) with N data points.
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NFL: Proof

Proof. Let k be a positive integer. W.L.O.G., assume N ⊂ X . Given
r ∈ {0, 1}k, we define the joint distribution p(r) such that
P(X = j, Y = rj) = 1/k for j ∈ {1, . . . , k}; that is, for X, we choose
one of the first k elements of N uniformly at random, and then Y is
selected deterministically as Y = rX . Thus, R∗

p(r) = 0 because there is a
deterministic relationship.

Let
S(r) = E

DN∼p

[
Rp[f̂DN

]
]
.

Note
sup
p∈P

{
E

DN∼p

[
Rp[A(DN )]

]
−R∗

p

}
≥ max

r∈{0,1}k
S(r),

since {p = p(r) | r ∈ {0, 1}k} ⊂ P and the RHS is a supremum over a
smaller set.
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NFL: Proof

The maximum of S(r) over r ∈ {0, 1}k is greater than the expectation of
S(r) for any probability distribution π on r, in particular the uniform
distribution over r ∈ {0, 1}k (each rj being an independent unbiased
Bernoulli variable). So

max
r∈{0,1}k

S(r) ≥ E
r∼π

S(r) = P
r∼π

p=p(r)
DN∼p

(X,Y )∼p

(
f̂DN

(X) ̸= Y
)
= P

r∼π
p=p(r)
DN∼p
X∼p

(
f̂DN

(X) ̸= rX
)
,

because X is almost surely in {1, . . . , k} and Y = rX almost surely.
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NFL: Proof

Next, we have

Er∼πS(r) = E
[
P(f̂DN

(X) ̸= rX |X1, . . . , XN , rX1 , . . . , rXN
)
]

≥ E
[
P(f̂DN

(X) ̸= rX and X ̸∈ {X1, . . . , XN} |X1, . . . , XM , rX1 , . . . , rXN
)
]

= E
[
1

2
P(X ̸∈ {X1, . . . , XN}|X1, . . . , XN , rX1

, . . . , rXN
)

]
,

because

P(f̂DN
(X) ̸= rX |X ̸∈ {X1, . . . , XN}, X1, . . . , XN , rX1 , . . . , rXN

) = 1/2

(the label X = rX has the same probability of being 0 or 1, given that it
was not observed). Thus,

Er∼qS(r) ≥
1

2
P(X ̸∈ {X1, . . . , XN})

=
1

2
E

[
N∏
i=1

P(Xi ̸= X|X)

]
=

1

2

(
1− 1

k

)N

.

Finally, we let k → ∞ to conclude the statement.
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NFL: Significance

The NFL theorem ends up saying something fairly obvious and intuitive.

However, the NFL theorem is the first example of formalizing arguments
for establishing complexity lower bounds. Further lower-bound results
follow the overall rubric established by the NFL theorem and present
non-obvious arguments and conclusions.

8


