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No free lunch theorem

Consider the binary classification problem with 0-1 loss, and let X be
infinite. Let A be an algorithm that takes in as input
Dy ={(X1,Y1),...,(Xn,Yn)} and outputs a prediction function:

foy = A(Dn(p)).

So fp, () € {—1,+1} for all z € X. Let p a probability distribution on
X x {—1,+1}. Then

Rp[f]: P (f(X)?éY)
(X, Y)~p
Theorem (No free lunch (NFL))

Let P denote the set of all probability distributions on X x {—1,+1}.
For any N > 0 and any algorithm A

o { B RN - R;} 2172



NFL: Corollaries

Corollary
Under the NFL assumptions, for any N > 0,

igf;gg { DE]ENP [Ry[A(DN)]] — 'R;} >1/2.

So, the best algorithm cannot do better than chance (1/2 accuracy).

Corollary
Under the NFL assumptions, for any N > 0 any algorithm A, there is a
p € P such that

DIEN [Rp[A(DN)]] - R > 1/2.

So, while an algorithm A can be good at some choices of p, it is not
possible for A to be uniformly good for all p € P.



NFL: Interpretation

The proof of NFL is based on a fairly obvious argument:

If there are k pieces of information to learn (the sign of rq,... %), you
cannot possibly learn them with N data points if £ > N. Since

|X| = oo, it is possible to encode the k pieces of information into p € P.

The resolution to the NFL theorem is that P cannot be the set of
arbitrary distributions. If p(Y | X) depends, say, smoothly as a function
of X, then we may be able to learn p(Y | X)) with N data points.



NFL: Proof

Proof. Let k be a positive integer. W.L.O.G., assume N C X. Given

r € {0,1}*, we define the joint distribution p(r) such that

P(X =4Y =r;)=1/k for j € {1,...,k}; that is, for X, we choose
one of the first k& elements of N uniformly at random, and then Y is
selected deterministically as Y = rx. Thus, R;(T) = 0 because there is a
deterministic relationship.

Let R

S(r)=_E [Rylfo,l]-

DN~p

Note

Ry[A(D R > S(r),

zs)lelg{DszENP[ p[ ( N)]] p} o 7EI?0%¥}"' (r)

since {p = p(r)|r € {0,1}*} C P and the RHS is a supremum over a
smaller set.



NFL: Proof

The maximum of S(r) over 7 € {0, 1}* is greater than the expectation of
S(r) for any probability distribution 7 on r, in particular the uniform

distribution over r € {0,1}* (each r; being an independent unbiased
Bernoulli variable). So

max S(r)> E S(r)= P (fou(X)#Y) =P (fou (X) # rx),

re{0,1}F reT T

p=p(r) p=p(r)
Dn~p Dn~p
(X,Y)~p Xr~op

because X is almost surely in {1,...,k} and Y = rx almost surely.



NFL: Proof
Next, we have
E,..S(r) =E [P(fDN(X) x| X1, ... ,XN,TXN...,TXN)}

ZE[P(fDN(X) #rx and X ¢{X17~-~,XN}|X1,---7XM,TX1’-~-,7”XN)}

1
=E |:2P(X ¢{X17~-~7XN}|X1a-~-7XN,TX17---7TXN):| 5

because
P(fpy(X) £ rx|X €{X1,.. ., Xn} X1, s XN Ty Txy) = 1/2

(the label X = rx has the same probability of being 0 or 1, given that it
was not observed). Thus,

EyoyS(r) > %IP’(X ¢ {X1,....Xn})

ﬂp(xi ;AX|X)] - % (1 - ;)N

i=1

1
=_-E
2

Finally, we let £ — oo to conclude the statement. U



NFL: Significance

The NFL theorem ends up saying something fairly obvious and intuitive.

However, the NFL theorem is the first example of formalizing arguments
for establishing complexity lower bounds. Further lower-bound results
follow the overall rubric established by the NFL theorem and present
non-obvious arguments and conclusions.



