Homework 1

Due 5pm, Wednesday, March 13, 2024

Problem 1: Norms are convex. Let $\|\cdot\|$ be a norm on \mathbb{R}^{d}. Show that $\|\cdot\|$ is convex.

Problem 2: Dual norms are norms. Let $\|\cdot\|$ be a norm on \mathbb{R}^{d}. Show that the dual norm $\|\cdot\|_{*}$ defined as

$$
\|y\|_{*}=\sup \left\{y^{\top} x \mid x \in \mathbb{R}^{d},\|x\| \leq 1\right\}
$$

for all $y \in \mathbb{R}^{d}$ is a norm on \mathbb{R}^{d}.

Problem 3: Bound on surrogate loss bounds original loss. Consider the binary classification problem, where $(X, Y) \sim P$ with $X \in \mathbb{R}^{d}$ and $Y \in\{-1,+1\}$. Let $f(x)=\operatorname{sign}(g(x))$, where $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $\operatorname{sign}(0)=0$. Let

$$
\mathcal{R}_{\Phi^{\text {logistic }}}[g]=\underset{(X, Y) \sim P}{\mathbb{E}}\left[\Phi^{\text {logistic }}(Y g(X))\right], \quad \Phi^{\text {logistic }}(u)=\log \left(1+e^{-u}\right) .
$$

Show that

$$
\mathcal{R}_{\Phi \text { logistic }}[g]<\varepsilon \quad \Rightarrow \quad \mathbb{P}(f(X)=Y)>1-\frac{\varepsilon}{\log 2}
$$

for any $\varepsilon>0$.

Problem 4: Practice with Jensen and indicator functions. Let $X \in \mathbb{R}$ be a random variable. Show the following.
(i) If $\mathbb{E}[X] \in \mathbb{R}$ is well defined, i.e., $\mathbb{E}[|X|]<\infty$, then

$$
\mathbb{E}[X] \leq \mathbb{E}[|X|] \leq \sqrt{\mathbb{E}\left[X^{2}\right]} .
$$

(ii) It always holds, even when $\mathbb{E}[|X|]=\infty$, that

$$
\mathbb{E}[|X|] \leq \sqrt{\mathbb{E}\left[X^{2}\right]} .
$$

Hint. Use Jensen. For the case $\mathbb{E}[|X|]=\infty$, use

$$
|X|=|X| \mathbf{1}_{\{|X| \leq 1\}}+|X| \mathbf{1}_{\{|X|>1\}}, \quad X^{2}=X^{2} \mathbf{1}_{\{|X| \leq 1\}}+X^{2} \mathbf{1}_{\{|X|>1\}} .
$$

Problem 5: Max of expectation \leq expectation of max. Let $f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$. Let P be a probability measure on \mathcal{X}. Show that

$$
\sup _{y \in \mathcal{Y}} \underset{X \sim P}{\mathbb{E}}[f(X, y)] \leq \underset{X \sim P}{\mathbb{E}}\left[\sup _{y \in \mathcal{Y}} f(X, y)\right] .
$$

(Assume $\sup _{y \in \mathcal{Y}} f(x, y)$ is P-measurable.)

Problem 6: Equality in distribution. Let $X \in \mathcal{X}$ and $Y \in \mathcal{X}$ be random variables. We say X and Y are equal in distribution and write $X \stackrel{\mathcal{D}}{=} Y$ if and only if

$$
\mathbb{E}[\varphi(X)]=\mathbb{E}[\varphi(Y)]
$$

for all bounded $\varphi: \mathcal{X} \rightarrow \mathbb{R}$. Let us furthermore assume that $X \in \mathbb{R}$ and $Y \in \mathbb{R}$ are continuous random variables with density functions f_{X} and f_{Y}. Show that $X \stackrel{\mathcal{D}}{=} Y$ if and only if $f_{X}=f_{Y}$. Remark. More generally, it is possible to show (using simple functions) that $X \stackrel{\mathcal{D}}{=} Y$ if and only if the probability measures for $X \in \mathcal{X}$ and $Y \in \mathcal{X}$ are equal.

Problem 7: Equal almost surely vs. in distribution. We say $X \in \mathcal{X}$ and $Y \in \mathcal{X}$ are equal (almost surely) and write $X=Y$ if the outcomes of X and Y are the same with probability 1.
(a) Construct a pair of random variables X and Y such that $X \stackrel{\mathcal{D}}{=} Y$ but $X \neq Y$.
(b) Show that $X=Y$ implies $X \stackrel{\mathcal{D}}{=} Y$.

Problem 8: Symmetric random variables. We say a random variable $X \in \mathbb{R}^{d}$ is symmetric if $X \stackrel{\mathcal{D}}{=}-X$. Let X_{1}, \ldots, X_{N} be scalar-valued independent symmetric random variables. Let $\varepsilon_{1}, \ldots, \varepsilon_{N}$ be IID Rademacher random variables, i.e., $\varepsilon_{i} \in\{-1,+1\}$ with probability $1 / 2$ for each outcome for $i=1, \ldots, N$. Assume $X_{1}, \ldots, X_{N}, \varepsilon_{1}, \ldots, \varepsilon_{N}$ are mutually independent. Show

$$
f\left(X_{1}, \ldots, X_{N}\right) \stackrel{\mathcal{D}}{=} f\left(\varepsilon_{1} X_{1}, \ldots, \varepsilon_{N} X_{N}\right)
$$

for any f.
Hint. Show that

$$
\mathbb{E}\left[\varphi\left(f\left(X_{1}, \ldots, X_{N}\right)\right)\right]=\mathbb{E}\left[\varphi\left(f\left(\varepsilon_{1} X_{1}, \ldots, \varepsilon_{N} X_{N}\right)\right)\right]
$$

for any bounded φ by conditioning on $\varepsilon_{1}, \ldots, \varepsilon_{N}$, i.e., first take the conditional expectation of X_{1}, \ldots, X_{N} given $\varepsilon_{1}, \ldots, \varepsilon_{N}$.

Problem 9: Expected error to $P A C$. Let $\mathcal{R}^{\star}=\inf _{g} \mathcal{R}[g]$ so that $\mathcal{R}[g]-\mathcal{R}^{\star} \geq 0$. Assume

$$
\underset{g}{\mathbb{E}}\left[\mathcal{R}[g]-\mathcal{R}^{\star}\right]<\delta
$$

holds for some $\delta>0$. Show that

$$
\underset{g}{\mathbb{P}}\left(\mathcal{R}[g]-\mathcal{R}^{\star}<\varepsilon\right)>1-\frac{\delta}{\varepsilon}, \quad \forall \varepsilon>0
$$

Problem 10: Generalized Markov. Let $\varphi:[0, \infty) \rightarrow[0, \infty)$ be a strictly increasing function and $X \in \mathbb{R}$ a nonnegative random variable. Show that

$$
\mathbb{P}(X \geq \varepsilon) \leq \frac{1}{\varphi(\varepsilon)} \mathbb{E}[\varphi(X)], \quad \forall \varepsilon>0
$$

Problem 11: Let $X_{1}, \ldots, X_{N} \in \mathbb{R}$ be independent sub-Gaussian random variables with constant τ. Show that $\bar{X}=\frac{1}{N} \sum_{i=1}^{N} X_{i}$ is sub-Gaussian with constant τ / \sqrt{N}.

Problem 12: Let $X \in[a, b]$ be a continuous random variable with density function $f(x)$. Show that X is sub-Gaussian with constant $\tau^{2}=(b-a)^{2} / 4$.

