Homework 2

Due 5pm, Wednesday, March 27, 2024

Problem 1: Variance of bounded RVs. Let $X \in[a, b]$ with $a<b$ be a random variable. Show that

$$
\operatorname{Var}(X) \leq \frac{(b-a)^{2}}{4}
$$

Hint. Show that

$$
\operatorname{Var}(X) \leq \mathbb{E}\left[\left(X-\frac{b+a}{2}\right)^{2}\right]
$$

Problem 2: Sample complexity with Hoeffding. Let $X_{1}, \ldots, X_{N} \in[a, b]$ be IID random variables with mean $\mu \in \mathbb{R}$. Let $\bar{X}=\frac{1}{N} \sum_{i=1}^{N} X_{i}$. Show that

$$
N \geq \frac{(b-a)^{2}}{2 \varepsilon^{2}} \log (2 / \delta) \quad \Rightarrow \quad \mathbb{P}(|\bar{X}-\mu|<\varepsilon) \geq 1-\delta,
$$

for all $\varepsilon>0$ and $\delta>0$.

Problem 3: Sample complexity with Bernstein. Let $X_{1}, \ldots, X_{N} \in[a, b]$ be IID random variables with mean $\mu \in \mathbb{R}$ and variance $\sigma^{2} \in \mathbb{R}$. Let $\bar{X}=\frac{1}{N} \sum_{i=1}^{N} X_{i}$. Show that

$$
N \geq\left(\frac{2 \sigma^{2}}{\varepsilon^{2}}+\frac{2(b-a)}{3 \varepsilon}\right) \log (2 / \delta) \quad \Rightarrow \quad \mathbb{P}(|\bar{X}-\mu|<\varepsilon) \geq 1-\delta,
$$

for all $\varepsilon>0$ and $\delta>0$.

Problem 4: Strictly convex losses admit unique Bayes optimal predictors. Let $C \subseteq \mathbb{R}^{d}$ be a nonempty convex set. We say a function $f: C \rightarrow \mathbb{R}$ is strictly convex if

$$
f(\theta x+(1-\theta) y)<\theta f(x)+(1-\theta) f(y), \quad \forall x \neq y \in C, \theta \in(0,1) .
$$

Assume $\tilde{\mathcal{Y}}$ is nonempty convex and $\ell\left(y^{\prime}, y\right)$ is strictly convex in $y^{\prime} \in \tilde{\mathcal{Y}}$ for all $y \in \mathcal{Y}$. Then,

$$
f^{\star}(X) \in \underset{y^{\prime} \in \tilde{\mathcal{Y}}}{\operatorname{argmin}} \underset{Y \sim P_{Y \mid X}}{\mathbb{E}}\left[\ell\left(y^{\prime}, Y\right) \mid X\right]
$$

is unique (up to a P-measure 0 set), if it exists. In other words, show that the set $\operatorname{argmin}_{y^{\prime} \in \tilde{\mathcal{Y}}}\{\cdots\}$ has exactly 0 or 1 elements.

Remark. Existence of the Bayes optimal predictor should not be taken for granted. Simple settings such as (unregularized) logistic regression with separable data may fail to have a Bayes optimal predictor. We will return to this in the future.

Problem 5: Estimation error decomposition without minimizer. Let \mathcal{R} be the true risk, and assume $|\mathcal{R}[f]|<\infty$ for all $f \in \mathcal{F}$. Likewise, let $\hat{\mathcal{R}}$ be the empirical risk, and assume $|\hat{\mathcal{R}}[f]|<\infty$ for all $f \in \mathcal{F}$. Assume

$$
\inf _{f^{\prime} \in \mathcal{F}} \mathcal{R}\left[f^{\prime}\right]>-\infty
$$

but do not assume $\operatorname{argmin}_{f^{\prime} \in \mathcal{F}} \mathcal{R}\left[f^{\prime}\right]$ exists. Show the following bound on the estimation error:

$$
\mathcal{R}[\hat{f}]-\inf _{f^{\prime} \in \mathcal{F}} \mathcal{R}\left[f^{\prime}\right] \leq \sup _{f \in \mathcal{F}}\{\mathcal{R}[f]-\hat{\mathcal{R}}[f]\}+\sup _{f \in \mathcal{F}}\{\hat{\mathcal{R}}[f]-\mathcal{R}[f]\}+\left(\hat{\mathcal{R}}[\hat{f}]-\inf _{f \in \mathcal{F}} \hat{\mathcal{R}}[f]\right)
$$

Problem 6: Computation and data complexity for PAC guarantee with covering number. Assume $\ell(\cdot, Y)$ is G-Lipschitz for all $Y \sim P_{Y}$ and $0 \leq \ell(f(X), Y) \leq \ell_{\infty}$ for all $f \in \mathcal{F}$ and $(X, Y) \sim P$. Assume the function class \mathcal{F} has an covering number $m(\varepsilon) \leq C_{\text {cov }} / \varepsilon^{d}$ for some $C_{\text {cov }}>0$. Assume we have access to IID training data $\mathcal{D}=\left(X_{1}, Y_{1}\right), \ldots,\left(X_{N}, Y_{N}\right) \sim P$ with $N \geq 1$. Consider a machine learning algorithm that uses the N data points in \mathcal{D} and K amount of computational cost (number of floating point operations) to compute $\hat{f} \in \mathcal{F}$ such that

$$
\hat{\mathcal{R}}[\hat{f}]-\inf _{f \in \mathcal{F}} \hat{\mathcal{R}}[f] \leq C_{\mathrm{opt}} \sqrt{\frac{N}{K}}
$$

for some $C_{\mathrm{opt}}>0$. Let $\eta \in(0,1 / 2)$ and $\varepsilon>0$.
(a) Show that if

$$
N^{2 \eta} \geq \frac{1}{4}+\frac{1}{d} \log C_{\mathrm{cov}}+\frac{1}{2} \log N
$$

then

$$
\mathcal{R}[\hat{f}]-\inf _{f^{\prime} \in \mathcal{F}} \mathcal{R}\left[f^{\prime}\right] \leq \frac{4 G+\sqrt{8 \ell_{\infty}^{2}}(\sqrt{d}+\sqrt{\log (2 / \delta)})}{N^{1 / 2-\eta}}+C_{\mathrm{opt}} \sqrt{\frac{N}{K}}
$$

with probability $>1-\delta$.
(b) Show that if

$$
\left(\frac{8 G+\sqrt{32 \ell_{\infty}^{2}}(\sqrt{d}+\sqrt{\log (2 / \delta)})}{\epsilon}\right)^{\frac{2}{1-2 \eta}} \leq N, \quad \frac{4 C_{\mathrm{opt}}^{2} N}{\epsilon^{2}} \leq K
$$

holds, then

$$
\mathcal{R}[\hat{f}]-\inf _{f^{\prime} \in \mathcal{F}} \mathcal{R}\left[f^{\prime}\right] \leq \varepsilon \quad \text { with probability }>1-\delta
$$

Problem 7: Basic properties of Rademacher complexity. Show the following.
(a) $\mathcal{H} \subset \mathcal{H}^{\prime}$, then $\operatorname{Rad}_{N}(\mathcal{H}) \leq \operatorname{Rad}_{N}\left(\mathcal{H}^{\prime}\right)$
(b) $\operatorname{Rad}_{N}\left(\mathcal{H}+\mathcal{H}^{\prime}\right) \leq \operatorname{Rad}_{N}(\mathcal{H})+\operatorname{Rad}_{N}\left(\mathcal{H}^{\prime}\right)$
(c) $\operatorname{Rad}_{N}(\alpha \mathcal{H}) \leq|\alpha| \operatorname{Rad}_{N}(\mathcal{H})$
(d) $\operatorname{Rad}_{N}(\mathcal{H})=\operatorname{Rad}_{N}(\operatorname{conv}(\mathcal{H}))$

Problem 8: Computation and data complexity for PAC guarantee with Rademacher complexity. Assume $\ell(\cdot, Y)$ is G-Lipschitz for all $Y \sim P_{Y}$ and $0 \leq \ell(f(X), Y) \leq \ell_{\infty}$ for all $f \in \mathcal{F}$ and $(X, Y) \sim P$. Let $\phi: \mathcal{X} \rightarrow \mathbb{R}^{d}$ be a given feature function such that $\|\phi(X)\|_{2} \leq R$ (P-almost surely) for all X. Let

$$
\mathcal{F}=\left\{f_{\theta}(x)=\theta^{\top} \phi(X) \mid\|\theta\|_{2} \leq D, \theta \in \mathbb{R}^{d}\right\}
$$

for some D such that $0<D<\infty$. Assume we have access to IID training data $\mathcal{D}=$ $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{N}, Y_{N}\right) \sim P$ with $N \geq 1$. Consider a machine learning algorithm that uses the N data points in \mathcal{D} and K amount of computational cost (number of floating point operations) to compute $\hat{f} \in \mathcal{F}$ such that

$$
\hat{\mathcal{R}}[\hat{f}]-\inf _{f \in \mathcal{F}} \hat{\mathcal{R}}[f] \leq C_{\text {opt }} \sqrt{\frac{N}{K}}
$$

for some $C_{\mathrm{opt}}>0$. Let $\eta \in(0,1 / 2)$ and $\varepsilon>0$.
(a) Show that

$$
\mathcal{R}[\hat{f}]-\inf _{f^{\prime} \in \mathcal{F}} \mathcal{R}\left[f^{\prime}\right] \leq \frac{4 D G R+\ell_{\infty} \sqrt{2 \log (2 / \delta)}}{\sqrt{N}}+C_{\mathrm{opt}} \sqrt{\frac{N}{K}}
$$

with probability $>1-\delta$.
(b) Show that if

$$
K \geq \frac{C_{\mathrm{opt}}^{2} N^{2}}{\left(4 D G R+\ell_{\infty} \sqrt{2 \log (2 / \delta)}\right)^{2}}, \quad N \geq \frac{\left(8 D G R+\ell_{\infty} \sqrt{8 \log (2 / \delta)}\right)^{2}}{\varepsilon^{2}}
$$

furthermore holds, then

$$
\mathcal{R}[\hat{f}]-\inf _{f^{\prime} \in \mathcal{F}} \mathcal{R}\left[f^{\prime}\right] \leq \varepsilon \quad \text { with probability }>1-\delta
$$

Problem 9: Linear algebra review for pseudo-inverses. Let $v_{1}, \ldots, v_{r} \in \mathbb{R}^{d}$ be an orthonormal set of vectors. Let

$$
V=\left[\begin{array}{lll}
v_{1} & \cdots & v_{r}
\end{array}\right] \in \mathbb{R}^{d \times r}
$$

Show the following.
(a) $V^{\top} V=I$.
(b) $V V^{\top} \theta=\theta$ if and only if $\theta \in \mathcal{R}(V)$.

Problem 10: Pseudo-inverses for full-rank matrices. Let $A \in \mathbb{R}^{N \times d}$, and let A^{\dagger} denote the pseudo-inverse. Show the following.

- If A has full column rank (which requires that $N \geq d$), then $A^{\dagger}=\left(A^{\top} A\right)^{-1} A^{\top}$.
- If A has full row rank (which requires that $N \leq d$), then $A^{\dagger}=A^{\top}\left(A A^{\top}\right)^{-1}$.

