
Mathematical Machine Learning Theory, M1407.002700
E. Ryu
Spring 2024

Homework 2
Due 5pm, Wednesday, March 27, 2024

Problem 1: Variance of bounded RVs. Let X ∈ [a, b] with a < b be a random variable. Show
that

Var(X) ≤ (b− a)2

4
.

Hint. Show that
Var(X) ≤ E

[
(X − b+a

2 )2
]
.

Problem 2: Sample complexity with Hoeffding. LetX1, . . . , XN ∈ [a, b] be IID random variables
with mean µ ∈ R. Let X̄ = 1

N

∑N
i=1Xi. Show that

N ≥ (b− a)2

2ε2
log(2/δ) ⇒ P(|X̄ − µ| < ε) ≥ 1− δ,

for all ε > 0 and δ > 0.

Problem 3: Sample complexity with Bernstein. LetX1, . . . , XN ∈ [a, b] be IID random variables
with mean µ ∈ R and variance σ2 ∈ R. Let X̄ = 1

N

∑N
i=1Xi. Show that

N ≥
(2σ2

ε2
+

2(b− a)

3ε

)
log(2/δ) ⇒ P(|X̄ − µ| < ε) ≥ 1− δ,

for all ε > 0 and δ > 0.

Problem 4: Strictly convex losses admit unique Bayes optimal predictors. Let C ⊆ Rd be a
nonempty convex set. We say a function f : C → R is strictly convex if

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y), ∀x ̸= y ∈ C, θ ∈ (0, 1).

Assume Ỹ is nonempty convex and ℓ(y′, y) is strictly convex in y′ ∈ Ỹ for all y ∈ Y. Then,

f⋆(X) ∈ argmin
y′∈Ỹ

E
Y∼PY |X

[ℓ(y′, Y ) |X]

is unique (up to a P -measure 0 set), if it exists. In other words, show that the set argminy′∈Ỹ{· · · }
has exactly 0 or 1 elements.

Remark. Existence of the Bayes optimal predictor should not be taken for granted. Simple
settings such as (unregularized) logistic regression with separable data may fail to have a Bayes
optimal predictor. We will return to this in the future.
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Problem 5: Estimation error decomposition without minimizer. Let R be the true risk, and
assume |R[f ]| < ∞ for all f ∈ F . Likewise, let R̂ be the empirical risk, and assume |R̂[f ]| < ∞
for all f ∈ F . Assume

inf
f ′∈F

R[f ′] > −∞,

but do not assume argminf ′∈F R[f ′] exists. Show the following bound on the estimation error:

R[f̂ ]− inf
f ′∈F

R[f ′] ≤ sup
f∈F

{R[f ]− R̂[f ]}+ sup
f∈F

{R̂[f ]−R[f ]}+ (R̂[f̂ ]− inf
f∈F

R̂[f ]).

Problem 6: Computation and data complexity for PAC guarantee with covering number. As-
sume ℓ(·, Y ) is G-Lipschitz for all Y ∼ PY and 0 ≤ ℓ(f(X), Y ) ≤ ℓ∞ for all f ∈ F and
(X,Y ) ∼ P . Assume the function class F has an covering number m(ε) ≤ Ccov/ε

d for some
Ccov > 0. Assume we have access to IID training data D = (X1, Y1), . . . , (XN , YN ) ∼ P with
N ≥ 1. Consider a machine learning algorithm that uses the N data points in D and K amount
of computational cost (number of floating point operations) to compute f̂ ∈ F such that

R̂[f̂ ]− inf
f∈F

R̂[f ] ≤ Copt

√
N

K
.

for some Copt > 0. Let η ∈ (0, 1/2) and ε > 0.

(a) Show that if

N2η ≥ 1

4
+

1

d
logCcov +

1

2
logN,

then

R[f̂ ]− inf
f ′∈F

R[f ′] ≤
4G+

√
8ℓ2∞

(√
d+

√
log(2/δ)

)
N1/2−η

+ Copt

√
N

K

with probability > 1− δ.

(b) Show that if

8G+
√

32ℓ2∞

(√
d+

√
log(2/δ)

)
ϵ


2

1−2η

≤ N,
4C2

optN

ϵ2
≤ K,

holds, then
R[f̂ ]− inf

f ′∈F
R[f ′] ≤ ε with probability > 1− δ.

Problem 7: Basic properties of Rademacher complexity. Show the following.

(a) H ⊂ H′, then RadN (H) ≤ RadN (H′)

(b) RadN (H+H′) ≤ RadN (H) + RadN (H′)

(c) RadN (αH) ≤ |α|RadN (H)

(d) RadN (H) = RadN (conv(H))
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Problem 8: Computation and data complexity for PAC guarantee with Rademacher complexity.
Assume ℓ(·, Y ) is G-Lipschitz for all Y ∼ PY and 0 ≤ ℓ(f(X), Y ) ≤ ℓ∞ for all f ∈ F and
(X,Y ) ∼ P . Let ϕ : X → Rd be a given feature function such that ∥ϕ(X)∥2 ≤ R (P -almost
surely) for all X. Let

F =
{
fθ(x) = θ⊺ϕ(X)

∣∣ ∥θ∥2 ≤ D, θ ∈ Rd
}

for some D such that 0 < D < ∞. Assume we have access to IID training data D =
(X1, Y1), . . . , (XN , YN ) ∼ P with N ≥ 1. Consider a machine learning algorithm that uses
the N data points in D and K amount of computational cost (number of floating point opera-
tions) to compute f̂ ∈ F such that

R̂[f̂ ]− inf
f∈F

R̂[f ] ≤ Copt

√
N

K
.

for some Copt > 0. Let η ∈ (0, 1/2) and ε > 0.

(a) Show that

R[f̂ ]− inf
f ′∈F

R[f ′] ≤
4DGR+ ℓ∞

√
2 log(2/δ)√

N
+ Copt

√
N

K

with probability > 1− δ.

(b) Show that if

K ≥
C2
optN

2

(4DGR+ ℓ∞
√

2 log(2/δ))2
, N ≥

(8DGR+ ℓ∞
√
8 log(2/δ))2

ε2

furthermore holds, then

R[f̂ ]− inf
f ′∈F

R[f ′] ≤ ε with probability > 1− δ.

Problem 9: Linear algebra review for pseudo-inverses. Let v1, . . . , vr ∈ Rd be an orthonormal
set of vectors. Let

V =
[
v1 · · · vr

]
∈ Rd×r.

Show the following.

(a) V ⊺V = I.

(b) V V ⊺θ = θ if and only if θ ∈ R(V ).

Problem 10: Pseudo-inverses for full-rank matrices. Let A ∈ RN×d, and let A† denote the
pseudo-inverse. Show the following.

• If A has full column rank (which requires that N ≥ d), then A† = (A⊺A)−1A⊺.

• If A has full row rank (which requires that N ≤ d), then A† = A⊺(AA⊺)−1.
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