Mathematical Machine Learning Theory, M1407.002700 E. Ryu Spring 2024

Homework 2 Due 5pm, Wednesday, March 27, 2024

Problem 1: Variance of bounded RVs. Let $X \in [a, b]$ with a < b be a random variable. Show that

$$\operatorname{Var}(X) \le \frac{(b-a)^2}{4}.$$

Hint. Show that

$$\operatorname{Var}(X) \le \mathbb{E}\left[(X - \frac{b+a}{2})^2\right].$$

Problem 2: Sample complexity with Hoeffding. Let $X_1, \ldots, X_N \in [a, b]$ be IID random variables with mean $\mu \in \mathbb{R}$. Let $\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$. Show that

$$N \ge \frac{(b-a)^2}{2\varepsilon^2} \log(2/\delta) \quad \Rightarrow \quad \mathbb{P}(|\bar{X}-\mu| < \varepsilon) \ge 1-\delta,$$

for all $\varepsilon > 0$ and $\delta > 0$.

Problem 3: Sample complexity with Bernstein. Let $X_1, \ldots, X_N \in [a, b]$ be IID random variables with mean $\mu \in \mathbb{R}$ and variance $\sigma^2 \in \mathbb{R}$. Let $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$. Show that

$$N \ge \left(\frac{2\sigma^2}{\varepsilon^2} + \frac{2(b-a)}{3\varepsilon}\right)\log(2/\delta) \quad \Rightarrow \quad \mathbb{P}(|\bar{X}-\mu| < \varepsilon) \ge 1 - \delta,$$

for all $\varepsilon > 0$ and $\delta > 0$.

Problem 4: Strictly convex losses admit unique Bayes optimal predictors. Let $C \subseteq \mathbb{R}^d$ be a nonempty convex set. We say a function $f: C \to \mathbb{R}$ is strictly convex if

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y), \qquad \forall x \neq y \in C, \, \theta \in (0, 1).$$

Assume $\tilde{\mathcal{Y}}$ is nonempty convex and $\ell(y', y)$ is *strictly* convex in $y' \in \tilde{\mathcal{Y}}$ for all $y \in \mathcal{Y}$. Then,

$$f^{\star}(X) \in \operatorname*{argmin}_{y' \in \tilde{\mathcal{Y}}} \mathbb{E}_{Y \sim P_{Y|X}}[\ell(y', Y) \,|\, X]$$

is unique (up to a *P*-measure 0 set), if it exists. In other words, show that the set $\operatorname{argmin}_{y' \in \tilde{\mathcal{Y}}} \{\cdots\}$ has exactly 0 or 1 elements.

Remark. Existence of the Bayes optimal predictor should not be taken for granted. Simple settings such as (unregularized) logistic regression with separable data may fail to have a Bayes optimal predictor. We will return to this in the future.

Problem 5: Estimation error decomposition without minimizer. Let \mathcal{R} be the true risk, and assume $|\mathcal{R}[f]| < \infty$ for all $f \in \mathcal{F}$. Likewise, let $\hat{\mathcal{R}}$ be the empirical risk, and assume $|\hat{\mathcal{R}}[f]| < \infty$ for all $f \in \mathcal{F}$. Assume

$$\inf_{f'\in\mathcal{F}}\mathcal{R}[f'] > -\infty,$$

but do not assume $\operatorname{argmin}_{f' \in \mathcal{F}} \mathcal{R}[f']$ exists. Show the following bound on the estimation error:

$$\mathcal{R}[\hat{f}] - \inf_{f' \in \mathcal{F}} \mathcal{R}[f'] \le \sup_{f \in \mathcal{F}} \{\mathcal{R}[f] - \hat{\mathcal{R}}[f]\} + \sup_{f \in \mathcal{F}} \{\hat{\mathcal{R}}[f] - \mathcal{R}[f]\} + (\hat{\mathcal{R}}[\hat{f}] - \inf_{f \in \mathcal{F}} \hat{\mathcal{R}}[f]).$$

Problem 6: Computation and data complexity for PAC guarantee with covering number. Assume $\ell(\cdot, Y)$ is G-Lipschitz for all $Y \sim P_Y$ and $0 \leq \ell(f(X), Y) \leq \ell_{\infty}$ for all $f \in \mathcal{F}$ and $(X, Y) \sim P$. Assume the function class \mathcal{F} has an covering number $m(\varepsilon) \leq C_{\text{cov}}/\varepsilon^d$ for some $C_{\text{cov}} > 0$. Assume we have access to IID training data $\mathcal{D} = (X_1, Y_1), \ldots, (X_N, Y_N) \sim P$ with $N \geq 1$. Consider a machine learning algorithm that uses the N data points in \mathcal{D} and K amount of computational cost (number of floating point operations) to compute $\hat{f} \in \mathcal{F}$ such that

$$\hat{\mathcal{R}}[\hat{f}] - \inf_{f \in \mathcal{F}} \hat{\mathcal{R}}[f] \le C_{\text{opt}} \sqrt{\frac{N}{K}}$$

for some $C_{\text{opt}} > 0$. Let $\eta \in (0, 1/2)$ and $\varepsilon > 0$.

(a) Show that if

$$N^{2\eta} \ge \frac{1}{4} + \frac{1}{d} \log C_{\text{cov}} + \frac{1}{2} \log N,$$

then

$$\mathcal{R}[\hat{f}] - \inf_{f' \in \mathcal{F}} \mathcal{R}[f'] \le \frac{4G + \sqrt{8\ell_{\infty}^2} \left(\sqrt{d} + \sqrt{\log(2/\delta)}\right)}{N^{1/2 - \eta}} + C_{\text{opt}} \sqrt{\frac{N}{K}}$$

with probability $> 1 - \delta$.

(b) Show that if

$$\left(\frac{8G + \sqrt{32\ell_{\infty}^2} \left(\sqrt{d} + \sqrt{\log(2/\delta)}\right)}{\epsilon}\right)^{\frac{2}{1-2\eta}} \le N, \qquad \frac{4C_{\text{opt}}^2 N}{\epsilon^2} \le K,$$

holds, then

$$\mathcal{R}[\hat{f}] - \inf_{f' \in \mathcal{F}} \mathcal{R}[f'] \le \varepsilon$$
 with probability $> 1 - \delta$

Problem 7: Basic properties of Rademacher complexity. Show the following.

- (a) $\mathcal{H} \subset \mathcal{H}'$, then $\operatorname{Rad}_N(\mathcal{H}) \leq \operatorname{Rad}_N(\mathcal{H}')$
- (b) $\operatorname{Rad}_N(\mathcal{H} + \mathcal{H}') \leq \operatorname{Rad}_N(\mathcal{H}) + \operatorname{Rad}_N(\mathcal{H}')$
- (c) $\operatorname{Rad}_N(\alpha \mathcal{H}) \leq |\alpha| \operatorname{Rad}_N(\mathcal{H})$
- (d) $\operatorname{Rad}_N(\mathcal{H}) = \operatorname{Rad}_N(\operatorname{conv}(\mathcal{H}))$

Problem 8: Computation and data complexity for PAC guarantee with Rademacher complexity. Assume $\ell(\cdot, Y)$ is G-Lipschitz for all $Y \sim P_Y$ and $0 \leq \ell(f(X), Y) \leq \ell_{\infty}$ for all $f \in \mathcal{F}$ and $(X, Y) \sim P$. Let $\phi: \mathcal{X} \to \mathbb{R}^d$ be a given feature function such that $\|\phi(X)\|_2 \leq R$ (P-almost surely) for all X. Let

$$\mathcal{F} = \left\{ f_{\theta}(x) = \theta^{\mathsf{T}} \phi(X) \, \big| \, \|\theta\|_2 \le D, \, \theta \in \mathbb{R}^d \right\}$$

for some D such that $0 < D < \infty$. Assume we have access to IID training data $\mathcal{D} = (X_1, Y_1), \ldots, (X_N, Y_N) \sim P$ with $N \geq 1$. Consider a machine learning algorithm that uses the N data points in \mathcal{D} and K amount of computational cost (number of floating point operations) to compute $\hat{f} \in \mathcal{F}$ such that

$$\hat{\mathcal{R}}[\hat{f}] - \inf_{f \in \mathcal{F}} \hat{\mathcal{R}}[f] \le C_{\text{opt}} \sqrt{\frac{N}{K}}$$

for some $C_{\text{opt}} > 0$. Let $\eta \in (0, 1/2)$ and $\varepsilon > 0$.

(a) Show that

$$\mathcal{R}[\hat{f}] - \inf_{f' \in \mathcal{F}} \mathcal{R}[f'] \le \frac{4DGR + \ell_{\infty}\sqrt{2\log(2/\delta)}}{\sqrt{N}} + C_{\text{opt}}\sqrt{\frac{N}{K}}$$

with probability $> 1 - \delta$.

(b) Show that if

$$K \ge \frac{C_{\text{opt}}^2 N^2}{(4DGR + \ell_{\infty}\sqrt{2\log(2/\delta)})^2}, \qquad N \ge \frac{(8DGR + \ell_{\infty}\sqrt{8\log(2/\delta)})^2}{\varepsilon^2}$$

furthermore holds, then

$$\mathcal{R}[\hat{f}] - \inf_{f' \in \mathcal{F}} \mathcal{R}[f'] \le \varepsilon$$
 with probability $> 1 - \delta$.

Problem 9: Linear algebra review for pseudo-inverses. Let $v_1, \ldots, v_r \in \mathbb{R}^d$ be an orthonormal set of vectors. Let

$$V = \begin{bmatrix} v_1 & \cdots & v_r \end{bmatrix} \in \mathbb{R}^{d \times r}.$$

Show the following.

- (a) $V^{\intercal}V = I$.
- (b) $VV^{\mathsf{T}}\theta = \theta$ if and only if $\theta \in \mathcal{R}(V)$.

Problem 10: Pseudo-inverses for full-rank matrices. Let $A \in \mathbb{R}^{N \times d}$, and let A^{\dagger} denote the pseudo-inverse. Show the following.

- If A has full column rank (which requires that $N \ge d$), then $A^{\dagger} = (A^{\intercal}A)^{-1}A^{\intercal}$.
- If A has full row rank (which requires that $N \leq d$), then $A^{\dagger} = A^{\dagger} (AA^{\dagger})^{-1}$.