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Problem 1: Variance of bounded RVs. Let X € [a,b] with a < b be a random variable. Show
that

Var(X) <

Hint. Show that

Problem 2: Sample complexity with Hoeffding. Let X1,...,Xn € [a,b] be IID random variables
with mean 1 € R. Let X = + Zi\;l Xi. Show that

(b—a)?

N >

log(2/0) = P(X —p[<e)>1-4,

foralle >0 and § > 0.

Problem 3: Sample complexity with Bemstez’p. Let X1,...,Xn € [a,b] be IID random variables
with mean p € R and variance 02 € R. Let X = % Zfil X;. Show that

202 2(b—a)
> -
Nz ( g2 * 3e

for all e > 0 and 6 > 0.

)l0g(2/6) = P(X-pl<e)=1-4,

Problem 4: Strictly convex losses admit unique Bayes optimal predictors. Let C C R? be a
nonempty convex set. We say a function f: C' — R is strictly convex if

O+ (1= 0)y) < 0f(@) + (1 - 0)f(y),  VaryeC, 0e(0,1).
Assume Y is nonempty convex and 0y, y) is strictly convex in y' € Y for all y € Y. Then,

fH(X)ecargmin  E [{(y,Y)|X]
y’Ej/ Y~Py x

is unique (up to a P-measure 0 set), if it exists. In other words, show that the set argmin , {---}
has exactly 0 or 1 elements.

Remark. Existence of the Bayes optimal predictor should not be taken for granted. Simple
settings such as (unregularized) logistic regression with separable data may fail to have a Bayes
optimal predictor. We will return to this in the future.



Problem 5: Estimation error decomposition without minimizer. Let R be the true risk, and
assume |R[f]| < oo for all f € F. Likewise, let R be the empirical risk, and assume |R[f]| < oo
for all f € F. Assume

inf R[f'] > —o0,

inf R[f]> =00

but do not assume argmin ¢z R[f’] exists. Show the following bound on the estimation error:

RIf] = inf R[f'] < sup{R[f] — R[f]} + sup{R[f] — RIf]} + (R[f] — inf R[f]).
fler ferF ferF fer

Problem 6: Computation and data complexity for PAC guarantee with covering number. As-
sume /(-,Y) is G-Lipschitz for all Y ~ Py and 0 < /(f(X),Y) < ly for all f € F and
(X,Y) ~ P. Assume the function class F has an covering number m(g) < Ceoy/c? for some
Ceov > 0. Assume we have access to IID training data D = (X1, Y1),..., (XN, YNn) ~ P with
N > 1. Consider a machine learning algorithm that uses the N data points in D and K amount
of computational cost (number of floating point operations) to compute f € F such that

for some Copt > 0. Let n € (0,1/2) and € > 0.

(a) Show that if

1 1 1
N > 1 + &logCCOV + ilogN,

then

- 4G+ B (\/& + \/log(2/5)> \/ﬁ

R[f] —fl,réffR[f] < N + Copt\[ 77
with probability > 1 — 4.

(b) Show that if

2

3G+ V32U <ﬂ+ v log(2/5)> o <N 4C§ptN <K
c =

holds, then

PN

RIf] — fingrR[f'] <e  with probability > 1 — 4.
‘e

Problem 7: Basic properties of Rademacher complexity. Show the following.
(a) H C H', then Rady(H) < Rady(H')
(b) Rady(H +H') < Rady(H) + Rady(H')

(c) Rady(aH) < |a|Radn(H)
)

(d) Rady(H) = Rady(conv(H))



Problem 8: Computation and data complexity for PAC guarantee with Rademacher complexity.
Assume ((-,Y) is G-Lipschitz for all Y ~ Py and 0 < 4(f(X),Y) < l for all f € F and
(X,Y) ~ P. Let ¢: X — R? be a given feature function such that ||¢(X)|s < R (P-almost
surely) for all X. Let

F = {folw) = 076(X) | 18]l < D, 0 € R}

for some D such that 0 < D < oco. Assume we have access to IID training data D =
(X1,Y1),...,(XN,YNn) ~ P with N > 1. Consider a machine learning algorithm that uses
the N data points in D and K amount of computational cost (number of floating point opera-
tions) to compute f € F such that

R[f] — inf R[f] < copt\/g.

fer

for some Copy > 0. Let n € (0,1/2) and € > 0.

(a) Show that

. ;. ADGR + loo\/210g(2/6) \/ﬁ
R[f] — inf R[f] < Wi + Copt 7

with probability > 1 — 6.

(b) Show that if

C2,N? (8DGR + £oso+/810g(2/6))?
K> , N2>
(4DGR + loo+/210g(2/6))2 g2

furthermore holds, then

R[f] — inf R[f'] <e  with probability > 1 — 4.

fieF
Problem 9: Linear algebra review for pseudo-inverses. Let vq, ..., v, € R% be an orthonormal
set of vectors. Let
V=1[vy - v] R

Show the following.
(a) VIV =1I.
(b) VVT6 =0 if and only if § € R(V).

Problem 10: Pseudo-inverses for full-rank matrices. Let A € RV*? and let AT denote the
pseudo-inverse. Show the following.

e If A has full column rank (which requires that N > d), then AT = (ATA)~1AT.

e If A has full row rank (which requires that N < d), then AT = AT(AAT)~L.



