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E. Ryu
Spring 2024

Homework 3
Due 5pm, Tuesday, April 9, 2024

Problem 1: Numerical resolution of LS. When solving the least squares problem in practice,
it is more efficient to use the QR decomposition than to use the SVD. Given Φ ∈ RN×d with
full column rank, the QR factorization has the form

Φ = QR,

where Q ∈ RN×d contains orthonormal columns and R ∈ Rd×d is upper triangular. Show the
following.

(a) R has non-zero diagonal components, i.e., Rii ̸= 0 for i = 1, . . . , d.

(b) Assuming Φ = QR, has already been computed, propose an algorithm for computing
θ̂ = Φ†Y for Y ∈ RN . The algorithm may not use a matrix inverse or utilize any matrix
decomposition aside from the already computed QR decomposition.

Problem 2: Linear regression in the random design setting is harder than the fixed design
setting. Consider the least square estimator

θ̂ = (Φ⊺Φ)−1Φ⊺.

Recall that the expected excess risk of the least-squares estimator is

E[R(θ̂)]−R⋆ =
σ2d

N

for the fixed design setting, where we assume Σ̂ = 1
NΦ⊺Φ is invertible, and

E[R(θ̂)]−R⋆ =
σ2

N
E[Tr(ΣΣ̂−1)]

for the random design setting, where we assume Σ̂ is invertible almost surely and Σ = EX [ϕ(X)ϕ(X)⊺]
is invertible. Show that

σ2

N
E[Tr(ΣΣ̂−1)] ≥ σ2d

N
.

You may use the following fact without proof: The mapping M 7→ Tr(M−1) is convex on the
set of symmetric positive definite matrices. Do not assume ϕ(X1) is Gaussian.

Hint. Define Z = ΦΣ−1/2 as in the lecture, and use Jensen on E[Tr(Z⊺Z)−1].
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Problem 3: Convex functions have convex sublevel sets. Let f : Rd → R ∪ {∞}. Define the
α-sublevel set of f as

Cα = {x ∈ Rd | f(x) ≤ α}.

Show that if f is convex as a function, then Cα is convex as a set.

Problem 4: Convex functions have convex epigraphs. Let f : Rd → R ∪ {∞}. Define the
epigraph of f as

epi(f) = {(x, t) | f(x) ≤ t, x ∈ Rd, t ∈ R} ⊂ Rd+1.

Show that f is convex as a function if and only if epi(f) is convex as a set.

Problem 5: Convexity of maximum eigenvalues. Show that λmax, as a function on the set of
symmetric matrices, is convex.

Hint. Use λmax(M) = sup∥v∥=1 v
⊺Mv.

Problem 6: Projection onto convex sets is well defined. Let A ⊆ Rd be a nonempty closed
convex set and let p ∈ Rd. Show that

argmin
x∈A

∥x− p∥2,

where ∥ · ∥2 denotes the Euclidean norm, exists and is unique.

Hint. For uniqueness, show that f(x) = ∥x − p∥2 is strictly convex function and then argue
that if x, x′ ∈ A are two distinct minimizes, then 1

2x+ 1
2x

′ ∈ A would be closer to p.

Problem 7: A subgradient may not exist on the boundary of the domain. Let f : [0,∞) → R
defined by f(x) = −

√
x. Show that f does not have a subgradient at x = 0, i.e., there is no g

such that
f(y) ≥ f(0) + g · y, ∀ y ∈ [0,∞).

Problem 8: A subgradient provides a cutting plane for argmin f . Let f : Rd → R ∪ {∞} be
convex. Show the following.

(a) If g ∈ ∂f(x) and g ̸= 0, then

argmin f ⊂ {y ∈ Rd | g⊺y ≤ g⊺x}.

(b) If f is differentiable, and g = ∇f(x) ̸= 0, then

argmin f ⊂ {y ∈ Rd | g⊺y < g⊺x}.
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Problem 9: Closure of convex set is convex. Let C ⊆ Rd be a convex set, and let C ⊆ Rd be
its closure. (Closure in the sense of open sets and closed sets.) Show that C is convex.

Problem 10: Strict separating hyperplane theorem. Let C ⊆ Rd be a nonempty open convex
set. Let p ∈ Rd be such that p /∈ C. Then, there is a non-zero v ∈ Rd such that

v⊺x < v⊺p, ∀x ∈ C.

Hint. Consider the two cases p /∈ ∂C and p ∈ ∂C and work with C.

Problem 11: Expectation on a convex set is in the convex set. Let C ⊆ Rd be a nonempty open
convex set. Let X ∈ Rd be a random variable such that X ∈ C almost surely and E[X] ∈ Rd is
well defined. Show that E[X] ∈ C.

Hint. Assume for contradiction that E[X] /∈ C. Then there is a strict separating hyperplane
between E[X] and C given by v. Consider E[v⊺X].

Remark. The statement holds even if C is a nonempty convex set (not necessarily open). The
proof of the general case involves extending the arguments of this exercise using the notion of
relative interiors.

Problem 12: Jensen for φ with open convex domain. Let C ⊆ Rd be a nonempty open convex
set. Let X ∈ Rd be a random variable such that X ∈ C almost surely and E[X] ∈ Rd is well
defined. Let φ : C → R be convex. Show that

φ(E[X]) ≤ E[φ(X)].

Remark. Jensen’s inequality holds even if C is a nonempty convex set (not necessarily open).
The proof of the general case involves extending the arguments of this exercise using the notion
relative interiors.
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