Mathematical Machine Learning Theory, M1407.002700 E. Ryu Spring 2024

Homework 3 Due 5pm, Tuesday, April 9, 2024

Problem 1: Numerical resolution of LS. When solving the least squares problem in practice, it is more efficient to use the QR decomposition than to use the SVD. Given $\Phi \in \mathbb{R}^{N \times d}$ with full column rank, the QR factorization has the form

$$\Phi = QR,$$

where $Q \in \mathbb{R}^{N \times d}$ contains orthonormal columns and $R \in \mathbb{R}^{d \times d}$ is upper triangular. Show the following.

- (a) R has non-zero diagonal components, i.e., $R_{ii} \neq 0$ for i = 1, ..., d.
- (b) Assuming $\Phi = QR$, has already been computed, propose an algorithm for computing $\hat{\theta} = \Phi^{\dagger}Y$ for $Y \in \mathbb{R}^N$. The algorithm may not use a matrix inverse or utilize any matrix decomposition aside from the already computed QR decomposition.

Problem 2: Linear regression in the random design setting is harder than the fixed design setting. Consider the least square estimator

$$\hat{\theta} = (\Phi^{\mathsf{T}}\Phi)^{-1}\Phi^{\mathsf{T}}.$$

Recall that the expected excess risk of the least-squares estimator is

$$\mathbb{E}[\mathcal{R}(\hat{\theta})] - \mathcal{R}^{\star} = \frac{\sigma^2 d}{N}$$

for the fixed design setting, where we assume $\widehat{\Sigma} = \frac{1}{N} \Phi^{\dagger} \Phi$ is invertible, and

$$\mathbb{E}[\mathcal{R}(\hat{\theta})] - \mathcal{R}^{\star} = \frac{\sigma^2}{N} \mathbb{E}[\mathrm{Tr}(\Sigma \widehat{\Sigma}^{-1})]$$

for the random design setting, where we assume $\widehat{\Sigma}$ is invertible almost surely and $\Sigma = \mathbb{E}_X[\phi(X)\phi(X)^{\dagger}]$ is invertible. Show that

$$\frac{\sigma^2}{N} \mathbb{E}[\operatorname{Tr}(\Sigma \widehat{\Sigma}^{-1})] \ge \frac{\sigma^2 d}{N}.$$

You may use the following fact without proof: The mapping $M \mapsto \text{Tr}(M^{-1})$ is convex on the set of symmetric positive definite matrices. Do not assume $\phi(X_1)$ is Gaussian.

Hint. Define $Z = \Phi \Sigma^{-1/2}$ as in the lecture, and use Jensen on $\mathbb{E}[\operatorname{Tr}(Z^{\intercal}Z)^{-1}]$.

Problem 3: Convex functions have convex sublevel sets. Let $f : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$. Define the α -sublevel set of f as

$$C_{\alpha} = \{ x \in \mathbb{R}^d \, | \, f(x) \le \alpha \}.$$

Show that if f is convex as a function, then C_{α} is convex as a set.

Problem 4: Convex functions have convex epigraphs. Let $f \colon \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$. Define the epigraph of f as

$$epi(f) = \{(x,t) \mid f(x) \le t, x \in \mathbb{R}^d, t \in \mathbb{R}\} \subset \mathbb{R}^{d+1}.$$

Show that f is convex as a function if and only if epi(f) is convex as a set.

Problem 5: Convexity of maximum eigenvalues. Show that λ_{\max} , as a function on the set of symmetric matrices, is convex.

Hint. Use $\lambda_{\max}(M) = \sup_{\|v\|=1} v^{\mathsf{T}} M v$.

Problem 6: Projection onto convex sets is well defined. Let $A \subseteq \mathbb{R}^d$ be a nonempty closed convex set and let $p \in \mathbb{R}^d$. Show that

$$\operatorname*{argmin}_{x \in A} \|x - p\|_2,$$

where $\|\cdot\|_2$ denotes the Euclidean norm, exists and is unique.

Hint. For uniqueness, show that $f(x) = ||x - p||^2$ is *strictly convex* function and then argue that if $x, x' \in A$ are two distinct minimizes, then $\frac{1}{2}x + \frac{1}{2}x' \in A$ would be closer to p.

Problem 7: A subgradient may not exist on the boundary of the domain. Let $f: [0, \infty) \to \mathbb{R}$ defined by $f(x) = -\sqrt{x}$. Show that f does not have a subgradient at x = 0, i.e., there is no g such that

$$f(y) \ge f(0) + g \cdot y, \qquad \forall y \in [0, \infty).$$

Problem 8: A subgradient provides a cutting plane for argmin f. Let $f : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ be convex. Show the following.

(a) If $g \in \partial f(x)$ and $g \neq 0$, then

$$\operatorname{argmin} f \subset \{ y \in \mathbb{R}^d \, | \, g^{\mathsf{T}} y \le g^{\mathsf{T}} x \}.$$

(b) If f is differentiable, and $g = \nabla f(x) \neq 0$, then

$$\operatorname{argmin} f \subset \{ y \in \mathbb{R}^d \, | \, g^{\mathsf{T}} y < g^{\mathsf{T}} x \}.$$

Problem 9: Closure of convex set is convex. Let $C \subseteq \mathbb{R}^d$ be a convex set, and let $\overline{C} \subseteq \mathbb{R}^d$ be its closure. (Closure in the sense of open sets and closed sets.) Show that \overline{C} is convex.

Problem 10: Strict separating hyperplane theorem. Let $C \subseteq \mathbb{R}^d$ be a nonempty open convex set. Let $p \in \mathbb{R}^d$ be such that $p \notin C$. Then, there is a non-zero $v \in \mathbb{R}^d$ such that

$$v^{\mathsf{T}}x < v^{\mathsf{T}}p, \quad \forall x \in C.$$

Hint. Consider the two cases $p \notin \partial C$ and $p \in \partial C$ and work with \overline{C} .

Problem 11: Expectation on a convex set is in the convex set. Let $C \subseteq \mathbb{R}^d$ be a nonempty open convex set. Let $X \in \mathbb{R}^d$ be a random variable such that $X \in C$ almost surely and $\mathbb{E}[X] \in \mathbb{R}^d$ is well defined. Show that $\mathbb{E}[X] \in C$.

Hint. Assume for contradiction that $\mathbb{E}[X] \notin C$. Then there is a strict separating hyperplane between $\mathbb{E}[X]$ and C given by v. Consider $\mathbb{E}[v^{\intercal}X]$.

Remark. The statement holds even if C is a nonempty convex set (not necessarily open). The proof of the general case involves extending the arguments of this exercise using the notion of relative interiors.

Problem 12: Jensen for φ with open convex domain. Let $C \subseteq \mathbb{R}^d$ be a nonempty open convex set. Let $X \in \mathbb{R}^d$ be a random variable such that $X \in C$ almost surely and $\mathbb{E}[X] \in \mathbb{R}^d$ is well defined. Let $\varphi \colon C \to \mathbb{R}$ be convex. Show that

$$\varphi(\mathbb{E}[X]) \le \mathbb{E}[\varphi(X)].$$

Remark. Jensen's inequality holds even if C is a nonempty convex set (not necessarily open). The proof of the general case involves extending the arguments of this exercise using the notion relative interiors.