Homework 4
Due 5pm, Thursday, April 25, 2024

Problem 1: Gaussian expectations for matrix Bernstein. Let $Z \sim \mathcal{N}\left(0, I_{d \times d}\right)$. Show that

$$
\lambda_{\max }\left(\mathbb{E}\left[\|Z\|^{2} Z Z^{\top}\right]\right)=2+d
$$

Hint. Note that if $Z=\left[Z_{1}, \ldots, Z_{d}\right]^{\top}$, then $\mathbb{E}\left[Z_{1}\right]=0, \mathbb{E}\left[Z_{1}^{2}\right]=1, \mathbb{E}\left[Z_{1}^{3}\right]=0, \mathbb{E}\left[Z_{1}^{4}\right]=3$, and

$$
\left(\mathbb{E}\left[\|Z\|^{2} Z Z^{\top}\right]\right)_{i j}=\sum_{k=1}^{d} \mathbb{E}\left[Z_{k}^{2} Z_{i} Z_{j}\right], \quad \text { for } i, j \in\{1, \ldots, d\} .
$$

Problem 2: Exercise with Pseudo-inverse. Let $\Phi^{N \times d}$ and let Φ^{\dagger} be the pseudo-inverse of Φ. Show that

$$
\Phi^{\top}\left(\Phi \Phi^{\dagger}-I\right)=0 .
$$

Problem 3: Solution to ridge regression. Let $\Phi \in \mathbb{R}^{N \times d}$ and $\widehat{\Sigma}=\frac{1}{N} \Phi^{\top} \Phi \in \mathbb{R}^{d \times d}$. Let $\mu>0$. Consider the optimization problem

$$
\underset{\theta \in \mathbb{R}^{d}}{\operatorname{minimize}} \frac{1}{N}\|Y-\Phi \theta\|^{2}+\mu\|\theta\|_{2}^{2} .
$$

Do not make any assumptions about the rank of Φ or $\widehat{\Sigma}$.
(a) Show that

$$
\hat{\theta}_{\mu}=\frac{1}{N}(\widehat{\Sigma}+\mu I)^{-1} \Phi^{\top} Y=\left(\Phi^{\top} \Phi+N \mu I\right)^{-1} \Phi^{\top} Y=\Phi^{\top}\left(\Phi \Phi^{\top}+N \mu I\right)^{-1} Y
$$

is the unique solution to the optimization problem.
(b) Generically, if $A \in \mathbb{R}^{\ell \times m}$ and $B \in \mathbb{R}^{m \times n}$, then computing $A B$ requires $\mathcal{O}(\ell m n)$ computation. If $C \in \mathbb{R}^{n \times n}$ is invertible, computing C^{-1} requires $\mathcal{O}\left(n^{3}\right)$ computation. What are the computational costs of directly computing $\left(\Phi^{\top} \Phi+N \mu I\right)^{-1} \Phi^{\top} Y$ and $\Phi^{\top}\left(\Phi \Phi^{\top}+N \mu I\right)^{-1} Y$?

Hint. For (a), use the matrix inversion lemma.

Problem 4: Cocoercivity inequality from L-smoothness. Let $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be L-smooth convex with $0<L<\infty$. Show that

$$
\langle\nabla F(\theta)-\nabla F(\eta), \theta-\eta\rangle \geq \frac{1}{L}\|\nabla F(\theta)-\nabla F(\eta)\|^{2}, \quad \forall \theta, \eta \in \mathbb{R}^{d}
$$

Problem 5: Strong monotonicity inequality from μ-convexity. Let $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be differentiable and μ-strongly convex with $0<\mu<\infty$. Show that

$$
\langle\nabla F(\theta)-\nabla F(\eta), \theta-\eta\rangle \geq \mu\|\theta-\eta\|^{2}, \quad \forall \theta, \eta \in \mathbb{R}^{d}
$$

Problem 6: Distance to solution \Rightarrow function-value suboptimality. Let $0<L<\infty$. Let $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be L-smooth convex with minimizer θ^{\star}. Assume we have shown a guarantee of

$$
\left\|\theta^{k}-\theta^{\star}\right\|^{2} \leq h(k)\left\|\theta^{0}-\theta^{\star}\right\|^{2}
$$

for $k=0,1, \ldots$, where $h: \mathbb{N} \rightarrow[0, \infty)$. Show that

$$
F\left(\theta^{k}\right)-F\left(\theta^{\star}\right) \leq \frac{L h(k)}{2}\left\|\theta^{0}-\theta^{\star}\right\|^{2}
$$

for $k=0,1, \ldots$.

Problem 7: Quadratic objectives only need symmetric matrices. Let

$$
F(\theta)=\theta^{\top} H \theta+b^{\top} \theta+c
$$

where $H \in \mathbb{R}^{d \times d}, b \in \mathbb{R}^{d}$, and $c \in \mathbb{R}$. Show that

$$
F(\theta)=\frac{1}{2} \theta^{\top}\left(H+H^{\top}\right) \theta+b^{\top} \theta+c
$$

Problem 8: Convex quadratic objectives. Let

$$
F(\theta)=\frac{1}{2} \theta^{\top} H \theta+b^{\top} \theta+c
$$

where $H=H^{\top} \in \mathbb{R}^{d \times d}, b \in \mathbb{R}^{d}$, and $c \in \mathbb{R}$.
(a) Show that $F(\theta)$ is convex if and only if $H \succeq 0$.
(b) Show that if H has a negative eigenvalue, then $\inf _{\theta \in \mathbb{R}^{d}} F(\theta)=-\infty$.

Problem 9: Quadratic objectives in standard form. Let

$$
F(\theta)=\frac{1}{2} \theta^{\top} H \theta+b^{\top} \theta+c
$$

where $H=H^{\top} \in \mathbb{R}^{d \times d}$ is strictly positive definite, $b \in \mathbb{R}^{d}$, and $c \in \mathbb{R}$. Show that there exists some $\theta^{\star} \in \mathbb{R}^{d}$ and $c^{\prime} \in \mathbb{R}$ such that

$$
F(\theta)=\frac{1}{2}\left(\theta-\theta^{\star}\right)^{\top} H\left(\theta-\theta^{\star}\right)+c^{\prime}
$$

