Mathematical Machine Learning Theory, M1407.002700 E. Ryu Spring 2024

Homework 5 Due 5pm, Thursday, May 09, 2024

Problem 1: Quadratic objectives in standard form II. Let

$$F(\theta) = \frac{1}{2}\theta^{\mathsf{T}}H\theta + b^{\mathsf{T}}\theta + c,$$

where $H = H^{\intercal} \in \mathbb{R}^{d \times d}$ is positive <u>semi</u>definite, $b \in \mathbb{R}^d$, and $c \in \mathbb{R}$.

(a) Assume $b \in \mathcal{R}(H)$. Show that there exists some $\theta^* \in \mathbb{R}^d$ and $c' \in \mathbb{R}$ such that

$$F(\theta) = \frac{1}{2}(\theta - \theta^*)^{\mathsf{T}}H(\theta - \theta^*) + c'.$$

(b) Assume $b \notin \mathcal{R}(H)$. Show that $\inf_{\theta \in \mathbb{R}^d} F(\theta) = -\infty$.

Problem 2: Explicit parameterization of affine sets I. Let $B \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$. Show that

$$A = \{ x \in \mathbb{R}^d \, | \, Bx = b \}$$

is an affine set.

Problem 3: Explicit parameterization of affine sets II. Let $A \subset \mathbb{R}^d$ be a nonempty affine set such that $A \neq \mathbb{R}^d$. Show that there is a $B \in \mathbb{R}^{m \times d}$ with full row rank, $b \in \mathbb{R}^m$, and $x_0 \in \mathcal{R}(B^{\intercal})$ such that $Bx_0 = b$ and

$$A = \{x \in \mathbb{R}^d \mid Bx = b\} = x_0 + \mathcal{N}(B).$$

Problem 4: Affine hull and span. Let $C \subseteq \mathbb{R}^d$ be nonempty and $x_0 \in C$. Recall

aff
$$C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_1, \dots, x_k \in C, \ \theta_1 + \dots + \theta_k = 1, \ k \ge 1\}$$

span $C = \{\alpha_1 x_1 + \dots + \alpha_k x_k \mid x_1, \dots, x_k \in C, \ \alpha_1, \dots, \alpha_k \in \mathbb{R}, \ k \ge 1\}.$

- (a) Show that aff $C = x_0 + \text{aff} (C x_0)$.
- (b) Show that aff $(C x_0) = \operatorname{span} (C x_0)$.

Conclude that

aff
$$C = x_0 + \text{aff} (C - x_0) = x_0 + \text{span} (C - x_0).$$

Hint. Note that

aff
$$(C - x_0) = \{\theta_1(x_1 - x_0) + \dots + \theta_k(x_k - x_0) \mid x_1, \dots, x_k \in C, \ \theta_1 + \dots + \theta_k = 1, \ k \ge 1\}.$$

Problem 5: Affine hull is the smallest affine set containing C. Let $C \subseteq \mathbb{R}^d$ be nonempty.

- (a) Show that aff C is an affine set.
- (b) Show that if A is an affine set such that $C \subseteq A$, then aff $C \subseteq A$.

Hint. Note that (a) is immediate from the previous problem. For (b), let $A = v_0 + V$, where $v_0 \in \mathbb{R}^d$ and V is a subspace. Assume for contradiction that there is an

 $x = \theta_1 x_1 + \dots + \theta_k x_k \in \operatorname{aff} C$

with $x_1, \ldots, x_k \in C \subseteq A$, $\theta_1 + \cdots + \theta_k = 1$, and $k \ge 1$, but $x \notin A$.

Problem 6: A closed convex set is the intersection of all <u>supporting</u> half-planes containing it. Let $C \subseteq \mathbb{R}^d$ be a nonempty closed convex set. We say $(p, v) \in \partial C \times \mathbb{R}^d$ defines a supporting hyperplane if $v \neq 0$ and $v^{\intercal} x \leq v^{\intercal} p$ for all $x \in C$. Show that

$$C = \bigcap_{\text{supporting hyperplane } (v, p)} \{ x \in \mathbb{R}^d \, | \, v^{\mathsf{T}} x \le v^{\mathsf{T}} p \}.$$

Problem 7: Indicator function is CCP. Let $C \subseteq \mathbb{R}^d$ be a nonempty closed convex set. Let $\delta_C \colon \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ be defined as

$$\delta_C(x) = \begin{cases} 0 & \text{if } x \in C \\ \infty & \text{if } x \notin C. \end{cases}$$

Show that δ_C is CCP.

Problem 8: Non-closed function. Let

$$C = \{ x \in \mathbb{R}^2 \mid ||x||_2 \le 1 \}, \qquad \partial C = \{ x \in \mathbb{R}^2 \mid ||x||_2 = 1 \}.$$

Let

$$f(x) = \begin{cases} 0 & \text{if } x \in \text{int } C \\ \infty & \text{if } x \notin C \\ \text{any value in } [0, \infty) & \text{if } x \in \partial C. \end{cases}$$

- (a) Show that f is convex and proper.
- (b) What choice of $f|_{\partial C}$ makes f closed?

Problem 9: Gradient descent is a descent algorithm. Let $F \colon \mathbb{R}^d \to \mathbb{R}$ be L-smooth convex. Show that if $\alpha \in [0, 2/L]$, then

$$F(\theta - \alpha \nabla F(\theta)) \le F(\theta).$$

Problem 10: Subgradient descent is <u>not</u> a descent algorithm. Consider the convex function $F \colon \mathbb{R}^2 \to \mathbb{R}$ defined as

$$F(\theta_1, \theta_2) = |\theta_1| + 2|\theta_2|.$$

Let $\theta = (1, 0)$.

- (a) Show that $g = (1, 2) \in \partial F(\theta)$.
- (b) Show that $F(\theta \alpha g) > F(\theta)$ for all $\alpha \neq 0$.

Problem 11: Subgradient descent with "any-time" guarantee. Let $F : \mathbb{R}^d \to \mathbb{R}$ be a *G*-Lipschitz continuous convex function. Assume *F* has a minimizer θ^* . Let $\theta^0 \in \mathbb{R}^d$ be a starting point, and let R > 0 satisfy $\|\theta^0 - \theta^*\|_2 \leq R$. Consider subgradient descent with the non-constant stepsize

$$\alpha_k = \frac{R}{G\sqrt{k+1}}$$

for $k = 0, 1, \ldots$ Consider subgradient method

$$g^k \in \partial F(\theta^k)$$
$$\theta^{k+1} = \theta^k - \alpha_k g^k,$$

for $k = 0, 1, \ldots$ Show that

$$\min_{0 \le s \le k} F(\theta^s) - f(\theta^*) \le \frac{GR(2 + \log(k+1))}{2\sqrt{k+1}}, \quad \text{for } k = 0, 1, \dots$$

and

$$F(\bar{\theta}^k) - F(\theta^\star) \le \frac{GR(2 + \log(k+1))}{2\sqrt{k+1}}, \quad \text{for } k = 0, 1, \dots,$$

where

$$\bar{\theta}^k = \frac{1}{\sum_{s=0}^k \alpha_s} \sum_{s=0}^k \alpha_s \theta^s, \quad \text{for } k = 0, 1, \dots$$