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Problem 1: Ezpectation of convex functions. Let w ~ P be arandom variable. Let f(-;w): R —
R U {oo} be convex and assume f(-;w) > 0 for (P-almost) all w. Let

F(x) = wINEP[f(:c;w)],Va: e R%.

(a) Show that F(x) is well defined and F': R — RU {co}, i.e., F(x) is never —oco.

(b) Show that F'is convex.

Remark. To be measure-theoretically precise, assume f(z;-) is P-measurable for all 2 € R,

Problem 2: Inactive constraints can be dropped in convex optimization. Let f: R? — RU {0}
and ¢g: R — R be CCP. Let 2* be a solution to the optimization problem

minimize  f(x)
z€RL
subject to g(z) < D.

Assume g(2*) < D. Show that z* is a solution to

minimize f(x).
z€R4

Remark. The implication is not true without convexity.

Problem 3: Constrained to reqularized formulation. Let f: R* = RU {co} and g: R? = R be
CCP. Let z* be a solution to the optimization problem
minimize  f(x)

z€R
subject to g(z) < D.

Assume the strict feasibility condition: there exists an & € domf such that g(Z) < D. Then
there is a A > 0 such that 2* is a solution to

minimize f(x) + Ag(x).
z€Rd

Remark. The lecture provided a reasonably complete outline of the proof. This problem is
asking you to fill in the gaps.



Problem 4: Analysis of SGD with smoothness. Let 0 < L < oo. Consider the stochastic
optimization problem

minimize E[f(z;w)] = F(z),
z€eR w

where w is a random variable. Assume F: R? — R is convex L-smooth, and assume F has a
minimizer x*. Consider stochastic gradient descent with constant stepsize

k+1 k

x =zF — agh

for k = 0,1,..., where ¢g* is a stochastic gradient of F' at 2¥. Assume the stochastic gradient

g* satisfies
Er[g"] = VF(a"),  Varg(¢") = Ex[lg" — VF(")|?] < 0®

for k = 0,1,.... Let 2° € R? be a starting point. Let K > 0 be the total iteration count.
Consider SGD with the constant stepsize

2% — 2*|2

ak:a:
ovK+1

(a) For k=0,1,..., K, show
E[||xk+1—x*|]2 | v, xk] < ||xk—x*||2—2a(F(xk)—F(:L‘*))—a(%—a) |V E(z%)]2+a?c2.
(b) Assume K is large enough so that o < 1/L. Show

K. *. o - . * O'”JZ‘O—SL'*HQ
B[/(5w) — 1)) = EIF@) - Pt < 22l

)

where



Problem 5: Let X = (—1,1). Show that K: X x X — R defined as

1
1— xa

K(z,2') =

is PDK.

Problem 6: Basic exercise on PDK. Let Z be a nonempty set and let
X ={AC Z||A] < c0}.
Show that K: X x X — R defined as
K(A, A') = 21404
is a PDK.
Clarification. |A| denotes the cardinality of the set A.

Hint. Consider

Z lscalscar.
SCAUA’

Problem 7: Basic exercise on PDK. Let Z be a topological space, let 1 be a nonnegative finite
Borel measure on Z, and let

X ={A C Z| A is Borel measurable}.
Show that K: X x X — R defined as
K(A,B) =u(ANB)
is a PDK.

Hint. Consider the feature map ¢(A) = 14 € L?(u).

Problem 8: Simple RKHS facts. Let H be an RKHS of functions defined on X with RK
K: X x X — R. Show the following.

(i) K(z,z) >0 for all z € X.
(ii) If fr = foo in H, then fr(x) — foo(z) for all x € X.
(iii) Define di: X x X — R as
di(z,2") = | K(,2) = K(,2') [

Then dg is a pseudometric on X. If K further is strictly positive definite, then dx is a
metric on X

(iv) If K(z,x) =0, then K(z,2') =0 for all 2’ € X.
(v) The normalized kernel K: X x X — R defined as

~ Lﬂ?/) f K K / / > 0
K(a;, x/) — K(z,0)K(z' 2 1 (3?7%) (a; , L )
0 otherwise

is a PDK.



