
Mathematical Machine Learning Theory, M1407.002700
E. Ryu
Spring 2024

Homework 6
Due 5pm, Friday, May 31, 2024

Problem 1: Expectation of convex functions. Let ω ∼ P be a random variable. Let f(·;ω) : Rd →
R ∪ {∞} be convex and assume f(·;ω) ≥ 0 for (P -almost) all ω. Let

F (x) = E
ω∼P

[f(x;ω)],∀x ∈ Rd.

(a) Show that F (x) is well defined and F : Rd → R ∪ {∞}, i.e., F (x) is never −∞.

(b) Show that F is convex.

Remark. To be measure-theoretically precise, assume f(x; ·) is P -measurable for all x ∈ Rd.

Problem 2: Inactive constraints can be dropped in convex optimization. Let f : Rd → R∪{∞}
and g : Rd → R be CCP. Let x⋆ be a solution to the optimization problem

minimize
x∈Rd

f(x)

subject to g(x) ≤ D.

Assume g(x⋆) < D. Show that x⋆ is a solution to

minimize
x∈Rd

f(x).

Remark. The implication is not true without convexity.

Problem 3: Constrained to regularized formulation. Let f : Rd → R ∪ {∞} and g : Rd → R be
CCP. Let x⋆ be a solution to the optimization problem

minimize
x∈Rd

f(x)

subject to g(x) ≤ D.

Assume the strict feasibility condition: there exists an x̃ ∈ domf such that g(x̃) < D. Then
there is a λ ≥ 0 such that x⋆ is a solution to

minimize
x∈Rd

f(x) + λg(x).

Remark. The lecture provided a reasonably complete outline of the proof. This problem is
asking you to fill in the gaps.
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Problem 4: Analysis of SGD with smoothness. Let 0 < L < ∞. Consider the stochastic
optimization problem

minimize
x∈Rd

E
ω
[f(x;ω)] = F (x),

where ω is a random variable. Assume F : Rd → R is convex L-smooth, and assume F has a
minimizer x⋆. Consider stochastic gradient descent with constant stepsize

xk+1 = xk − αgk

for k = 0, 1, . . . , where gk is a stochastic gradient of F at xk. Assume the stochastic gradient
gk satisfies

Ek[g
k] = ∇F (xk), Vark(g

k) = Ek[∥gk −∇F (xk)∥2] ≤ σ2

for k = 0, 1, . . . . Let x0 ∈ Rd be a starting point. Let K > 0 be the total iteration count.
Consider SGD with the constant stepsize

αk = α =
∥x0 − x⋆∥2
σ
√
K + 1

.

(a) For k = 0, 1, . . . ,K, show

E
[
∥xk+1−x⋆∥2

∣∣x0, . . . , xk] ≤ ∥xk−x⋆∥2−2α
(
F (xk)−F (x⋆)

)
−α

(
1
L−α

)
∥∇F (xk)∥2+α2σ2.

(b) Assume K is large enough so that α ≤ 1/L. Show

E
[
f(x̄K ;ω)− f(x⋆;ω)

]
= E[F (x̄K)− F (x⋆)] ≤ σ∥x0 − x⋆∥2√

K + 1
,

where

x̄K =
1

K + 1

K∑
k=0

xk.
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Problem 5: Let X = (−1, 1). Show that K : X × X → R defined as

K(x, x′) =
1

1− xx′

is PDK.

Problem 6: Basic exercise on PDK. Let Z be a nonempty set and let

X = {A ⊆ Z | |A| < ∞}.

Show that K : X × X → R defined as

K(A,A′) = 2|A∩A′|

is a PDK.

Clarification. |A| denotes the cardinality of the set A.

Hint. Consider ∑
S⊆A∪A′

1S⊆A1S⊆A′ .

Problem 7: Basic exercise on PDK. Let Z be a topological space, let µ be a nonnegative finite
Borel measure on Z, and let

X = {A ⊆ Z |A is Borel measurable}.

Show that K : X × X → R defined as

K(A,B) = µ(A ∩B)

is a PDK.

Hint. Consider the feature map ϕ(A) = 1A ∈ L2(µ).

Problem 8: Simple RKHS facts. Let H be an RKHS of functions defined on X with RK
K : X × X → R. Show the following.

(i) K(x, x) ≥ 0 for all x ∈ X .

(ii) If fk → f∞ in H, then fk(x) → f∞(x) for all x ∈ X .

(iii) Define dK : X × X → R as

dK(x, x′) = ∥K(·, x)−K(·, x′)∥H.

Then dK is a pseudometric on X . If K further is strictly positive definite, then dK is a
metric on X .

(iv) If K(x, x) = 0, then K(x, x′) = 0 for all x′ ∈ X .

(v) The normalized kernel K̃ : X × X → R defined as

K̃(x, x′) =

{
K(x,x′)√

K(x,x)K(x′,x′)
if K(x, x)K(x′, x′) > 0

0 otherwise

is a PDK.
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