Mathematical Machine Learning Theory, M1407.002700 E. Ryu Spring 2024

Homework 6 Due 5pm, Friday, May 31, 2024

Problem 1: Expectation of convex functions. Let $\omega \sim P$ be a random variable. Let $f(\cdot; \omega) \colon \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ be convex and assume $f(\cdot; \omega) \geq 0$ for (*P*-almost) all ω . Let

$$F(x) = \mathop{\mathbb{E}}_{\omega \sim P}[f(x;\omega)], \forall x \in \mathbb{R}^d$$

- (a) Show that F(x) is well defined and $F: \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$, i.e., F(x) is never $-\infty$.
- (b) Show that F is convex.

Remark. To be measure-theoretically precise, assume $f(x; \cdot)$ is *P*-measurable for all $x \in \mathbb{R}^d$.

Problem 2: Inactive constraints can be dropped in convex optimization. Let $f : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ and $g : \mathbb{R}^d \to \mathbb{R}$ be CCP. Let x^* be a solution to the optimization problem

$$\begin{array}{ll} \underset{x \in \mathbb{R}^d}{\text{minimize}} & f(x) \\ \text{subject to} & g(x) \le D, \end{array}$$

Assume $g(x^{\star}) < D$. Show that x^{\star} is a solution to

$$\underset{x \in \mathbb{R}^d}{\text{minimize}} \quad f(x)$$

Remark. The implication is not true without convexity.

Problem 3: Constrained to regularized formulation. Let $f : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ and $g : \mathbb{R}^d \to \mathbb{R}$ be CCP. Let x^* be a solution to the optimization problem

$$\begin{array}{ll} \underset{x \in \mathbb{R}^d}{\text{minimize}} & f(x) \\ \text{subject to} & g(x) \leq D. \end{array}$$

Assume the strict feasibility condition: there exists an $\tilde{x} \in \text{dom} f$ such that $g(\tilde{x}) < D$. Then there is a $\lambda \geq 0$ such that x^* is a solution to

$$\underset{x \in \mathbb{R}^d}{\text{minimize}} \quad f(x) + \lambda g(x)$$

Remark. The lecture provided a reasonably complete outline of the proof. This problem is asking you to fill in the gaps.

Problem 4: Analysis of SGD with smoothness. Let $0 < L < \infty$. Consider the stochastic optimization problem

$$\underset{x \in \mathbb{R}^d}{\text{minimize}} \quad \underset{\omega}{\mathbb{E}}[f(x;\omega)] = F(x),$$

where ω is a random variable. Assume $F \colon \mathbb{R}^d \to \mathbb{R}$ is convex *L*-smooth, and assume *F* has a minimizer x^* . Consider stochastic gradient descent with constant stepsize

$$x^{k+1} = x^k - \alpha g^k$$

for $k = 0, 1, \ldots$, where g^k is a stochastic gradient of F at x^k . Assume the stochastic gradient g^k satisfies

$$\mathbb{E}_k[g^k] = \nabla F(x^k), \qquad \operatorname{Var}_k(g^k) = \mathbb{E}_k[\|g^k - \nabla F(x^k)\|^2] \le \sigma^2$$

for $k = 0, 1, \ldots$ Let $x^0 \in \mathbb{R}^d$ be a starting point. Let K > 0 be the total iteration count. Consider SGD with the constant stepsize

$$\alpha_k = \alpha = \frac{\|x^0 - x^\star\|_2}{\sigma\sqrt{K+1}}.$$

(a) For k = 0, 1, ..., K, show

$$\mathbb{E}\big[\|x^{k+1} - x^{\star}\|^2 \,|\, x^0, \dots, x^k\big] \le \|x^k - x^{\star}\|^2 - 2\alpha \big(F(x^k) - F(x^{\star})\big) - \alpha \big(\frac{1}{L} - \alpha\big) \|\nabla F(x^k)\|^2 + \alpha^2 \sigma^2.$$

(b) Assume K is large enough so that $\alpha \leq 1/L$. Show

$$\mathbb{E}\left[f(\bar{x}^K;\omega) - f(x^\star;\omega)\right] = \mathbb{E}\left[F(\bar{x}^K) - F(x^\star)\right] \le \frac{\sigma \|x^0 - x^\star\|_2}{\sqrt{K+1}},$$

where

$$\bar{x}^K = \frac{1}{K+1} \sum_{k=0}^K x^k.$$

Problem 5: Let $\mathcal{X} = (-1, 1)$. Show that $K \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ defined as

$$K(x, x') = \frac{1}{1 - xx'}$$

is PDK.

Problem 6: Basic exercise on PDK. Let \mathcal{Z} be a nonempty set and let

$$\mathcal{X} = \{ A \subseteq \mathcal{Z} \mid |A| < \infty \}.$$

Show that $K \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ defined as

$$K(A, A') = 2^{|A \cap A'|}$$

is a PDK.

Clarification. |A| denotes the cardinality of the set A. Hint. Consider

$$\sum_{S\subseteq A\cup A'} \mathbf{1}_{S\subseteq A} \mathbf{1}_{S\subseteq A'}.$$

Problem 7: Basic exercise on PDK. Let \mathcal{Z} be a topological space, let μ be a nonnegative finite Borel measure on \mathcal{Z} , and let

 $\mathcal{X} = \{ A \subseteq \mathcal{Z} \mid A \text{ is Borel measurable} \}.$

Show that $K \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ defined as

$$K(A,B) = \mu(A \cap B)$$

is a PDK.

Hint. Consider the feature map $\phi(A) = \mathbf{1}_A \in L^2(\mu)$.

Problem 8: Simple RKHS facts. Let \mathcal{H} be an RKHS of functions defined on \mathcal{X} with RK $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$. Show the following.

- (i) $K(x, x) \ge 0$ for all $x \in \mathcal{X}$.
- (ii) If $f_k \to f_\infty$ in \mathcal{H} , then $f_k(x) \to f_\infty(x)$ for all $x \in \mathcal{X}$.
- (iii) Define $d_K \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ as

$$d_K(x, x') = \|K(\cdot, x) - K(\cdot, x')\|_{\mathcal{H}}$$

Then d_K is a pseudometric on \mathcal{X} . If K further is strictly positive definite, then d_K is a metric on \mathcal{X} .

- (iv) If K(x, x) = 0, then K(x, x') = 0 for all $x' \in \mathcal{X}$.
- (v) The normalized kernel $\tilde{K} \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ defined as

$$\tilde{K}(x,x') = \begin{cases} \frac{K(x,x')}{\sqrt{K(x,x)K(x',x')}} & \text{if } K(x,x)K(x',x') > 0\\ 0 & \text{otherwise} \end{cases}$$

is a PDK.