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MDP Basics
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Markov decision process
RL considers sequential decision making within a Markov decision process (MDP):

• Time 𝑡 = 0,1, … , 𝑇

• Trajectory

• State 𝑠𝑡 ∈ 𝒮. Define 𝒮+ = 𝒮 ∪ <term> . (Always assume 𝒮 ≠ ∅.)

• Action 𝑎𝑡 ∈ 𝒜. (Always assume 𝒜 ≠ ∅.)

• Reward 𝑟𝑡 ∈ ℝ. We will choose policy to maximize sum of reward.

• 𝑇 is terminal time / stopping time. Defined by 𝑠𝑇 = <term> = terminal state.

• 𝑇 = ∞ possible. If probability of transition to 𝑠 = <term> is zero, then necessarily 𝑇 = ∞.

If 𝑇 = ∞, the MDP is said to be a continual task and otherwise an episodic task.

• Initial distribution 𝑠0 ∼ 𝑝0. Often 𝑠0 is fixed.

• Transition probability 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 given by environment (usually not precisely known) and 

𝑟𝑡 , 𝑠𝑡+1 ∼ 𝑝 ⋅,⋅ 𝑠𝑡 , 𝑎𝑡 . 3



MDP base definitions

• 𝑟𝑡 is sometimes a fully deterministic function of 𝑠𝑡 , 𝑎𝑡 . If so, write 𝑟𝑡 = 𝑟 𝑠𝑡 , 𝑎𝑡 .

• 𝑠𝑡+1 is sometimes a fully deterministic function of 𝑠𝑡 , 𝑎𝑡 .

• For now, assume the dynamics is stationary. In general, 𝑟𝑡 , 𝑠𝑡+1 ∼ 𝑝𝑡 ⋅,⋅ 𝑠𝑡 , 𝑎𝑡 .

Stationarity means 𝑝𝑡 𝑟, 𝑠′ 𝑠, 𝑎 = 𝑝 𝑟, 𝑠′ 𝑠, 𝑎

• 𝑎𝑡 is chosen by the agent via a policy 𝜋, given 𝑠𝑡 .

• If 𝜋 is stochastic, then 𝜋 𝑎 𝑠 is a probability distribution and 𝑎𝑡 ∼ 𝜋 ⋅ 𝑠𝑡 .

• If 𝜋 is deterministic, then 𝑎𝑡 = 𝜋 𝑠𝑡 . 

• Often, 𝜋 = 𝜋𝜃, i.e., 𝜋 will be a neural network parameterized by 𝜃.
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State vs. observation

In general, an agent may not be able to observe the full state. The system may not be 

Markovian with respect to the observation. E.g., if you see a tiger hide behind a tree, the 

past observation is relevant, and the fact that you can no longer see the tiger does not 

mean you are safe.

This leads to the Partially Observable Markov Decision Process (POMDP) formulation, 

which is much more challenging than MDPs. 

For us, assume the agent has fully observes the state 𝑠𝑡.

In LLMs, this is not an issue since the language model has the full

conversational history.
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MDP generalizations

There are many generalizations of the standard MDP. We won’t cover them in this course.

• Non-stationary dynamics: 𝑝0, 𝑝1, …

• The terminal time 𝑇 may be pre-determined. This is an example of non-stationary 

dynamics, since 𝑝𝑇−1 𝑠𝑇 = <term> 𝑠𝑇−1, 𝑎𝑇−1 = 1, while 𝑝𝑡 𝑠𝑡+1 = <term> 𝑠𝑡 , 𝑎𝑡 = 0 for 

any 𝑡 = 0,… , 𝑇 − 2.

• The policy 𝜋𝑡 can be time-dependent. (Time-dependent policy is necessary only if 

dynamics is non-stationary.)

• Set of possible actions may depend on 𝑠𝑡. If so, 𝑎𝑡 ∈ 𝒜 𝑠𝑡 .

In practice, the MDP you work with will incorporate some of these variations. You must 

understand the principles, and adapt the base theory to the particular MDP at hand.
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Terminal time notation

Note, terminal time 𝑇 is a random variable. Therefore, σ𝑡=0
𝑇 requires caution to work with. 

For example, 𝔼 σ𝑡=0
𝑇 ⋅ ≠ σ𝑡=0

𝑇 𝔼 ⋅ and the RHS makes no sense, since the random variable 

𝑇 is outside of the expectation.

For notational and theoretical convenience, define an equivalent MDP that never stops by 

making the terminal state an absorbing state.

• The MDP nominally never stops, i.e., terminal time is 𝑇 = ∞.

• State 𝑠𝑡 ∈ 𝒮 ∪ <term> , and we view <term> as a normal non-terminal state. 

• The transition probability 𝑝 𝑟, 𝑠′ 𝑠, 𝑎 is defined such that if 𝑠𝑡 = <term>, then 𝑟𝑡 = 0 and 

𝑠𝑡+1 = <term> with probability 1, regardless of the choice of 𝑎𝑡.

• I.e., Once 𝑠𝑡 = <term>, we no longer collect rewards and never escape <term>.

• Therefore, the policy at terminal state 𝜋 ⋅ <term> is irrelevant.

• No matter what action you take, we never move from 𝑠𝑡 = <term>. 7



Imitation learning and behavior cloning

In imitation learning or behavior cloning, we train a 𝜋𝜃 ≈ 𝜋expert, where 𝜋expert is the policy 

of an expert agent by observing actions made by 𝜋expert (usually human demonstrations).

Behavior cloning:

Step 1: Sample trajectories                                                                                          and 
form a dataset of state-action pairs: 𝒟expert = 𝑠𝑖 , 𝑎𝑖 . (No rewards.)

Step 2: Train the model by solving

where ℓ is the cross-entropy loss. This is basically supervised learning.
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Imitation learning and behavior cloning

Observation: Next token prediction in LLMs can be thought of as behavior cloning.

Behavior cloning may serve as a good starting point (initialization) as we will see with 

AlphaGo and LLM pre-training.

In many RL settings, the requirement of expert demonstrations can be onerous.

In the LLM setting, however, pre-training data is plentiful.

However, behavior cloning by itself does not work very well.
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Distribution shift in behavior cloning

In supervised learning, a model trained on one distribution will perform when tested on the 

same distribution, but not on another distribution. A change of distribution from training to 

test is called distribution shift, distribution mismatch, covariate shift, concept drift etc.

Behavior cloning fails due to covariate shift. At test time, the trained model observes 

trajectories                        . But recall, training was done on trajectories                              .

As a result, 𝜋𝜃 will encounter states it was not trained on. Maybe 𝜋expert is very good and 

never drives the MDP to a “bad” state, but 𝜋𝜃 may be imperfect and may drift into such bad 

states. Although 𝜋expert may know how to recover from such a bad state, 𝜋𝜃 was never 

taught this knowledge.
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Off-policy vs. on-policy learning

Key insight: In reinforcement learning, the training data depends on the policy. This is true 

for both imitation learning or reward-based learning.

In off-policy learning, the RL agent trains on actions taken by another policy (or its old self).

In on-policy learning, the RL agent trains on actions taken by the current policy.

Off-policy RL suffers from distribution shift.

Behavior cloning is off-policy learning.
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DAgger

Dataset Aggregation (Dagger) is more on-policy imitation learning. In each round, the 
current policy is used to generate trajectories and the expert provides labels for the states. 
By retraining on this aggregated dataset, DAgger mitigates distribution shift.

0.  Sample trajectory 𝜏 ∼ 𝑝0, 𝜋expert, 𝑝 and form 𝒟 ← 𝒟expert = 𝑠𝑖 , 𝑎𝑖 .

1.  Train 𝜋𝜃 from demonstration data 𝒟.

2.  Sample trajectory 𝜏 ∼ 𝑝0, 𝜋𝜃 , 𝑝 and form 𝒟𝜋𝜃
= 𝑠𝑖 . (No actions, no rewards.)

3.  Ask human to label 𝑠𝑖 ∈ 𝒟𝜋𝜃
with actions 𝑎𝑖. Then let 𝒟𝜋𝜃

= 𝑠𝑖 , 𝑎𝑖 .

4.  Aggregate 𝒟 ← 𝒟 ∪𝒟𝜋𝜃
. Loop back to Step 1.

Asking human experts to take an action on states generated by 𝜋𝜃 is often very unnatural. 
Not really something you can do with LLMs anyway.

12S. Ross, G. Gordon, and D. Bagnell, A reduction of imitation learning and structured prediction to no-regret online learning, AISTATS, 2011.



MDP objective

So far, we have described the dynamics of the MDP. The goal/objective of an MDP is to 

maximize expected discounted return:

• Cumulative discounted return 

• 𝐺0 is (cumulative) return, 𝑟𝑡 is (instantaneous) reward.

• Discount factor γ ∈ ሺ0, ሿ1 .

When 𝑇 = ∞ possible and reward is bounded, use 𝛾 < 1 to ensure return is finite.

• 𝔼𝜋 means expectation over 𝑎𝑡 ∼ 𝜋 ⋅ 𝑠𝑡 , 𝑟𝑡 , 𝑠𝑡+1 ∼ 𝑝 ⋅,⋅ 𝑠𝑡 , 𝑎𝑡 .

• Define the return from time 𝑡 as
13



State value function 𝑉𝜋 and
State-action value function 𝑄𝜋

Define the (state) value function (V-value function)

𝑉𝜋 𝑠 = 𝔼𝜋 𝐺0|𝑠0 = 𝑠

as the expected return starting at state 𝑠 following policy 𝜋. 

Note, 𝑉𝜋 <term> = 0.

Define the state-action value function (Q-value function)

𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋 𝐺0|𝑠0 = 𝑠, 𝑎0 = 𝑎

as the expected return starting at state 𝑠 taking action 𝑎 following policy 𝜋 thereafter.

Note, 𝑄𝜋 <term>, 𝑎 = 0 for all 𝑎 ∈ 𝒜.
14



Basic properties of 𝑉𝜋 and 𝑄𝜋

Since 𝔼𝜋 denotes expectation over 𝑎𝑡 ∼ 𝜋 ⋅ 𝑠𝑡 , 𝑟𝑡 , 𝑠𝑡+1 ∼ 𝑝 ⋅,⋅ 𝑠𝑡 , 𝑎𝑡 , we have

By stationarity,

𝑉𝜋 𝑠 = 𝔼𝜋 𝐺𝑡|𝑠𝑡 = 𝑠

and

𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋 𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎
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1-step transition property of 𝑉𝜋

by the Markovian property:
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1-step transition property of 𝑄𝜋

by the Markovian property:
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Prelim: Banach fixed point theorem

Let 𝒳 be a metric space with metric 𝑑. Then, we say 𝒯 ∶ 𝒳 → 𝒳 is 𝛾-contractive if

𝑑 𝒯 𝑥 , 𝒯 𝑦 ≤ 𝛾𝑑 𝑥, 𝑦 ∀ 𝑥, 𝑦 ∈ 𝒳

Theorem) Let 𝒳 be a complete metric space with metric 𝑑. Let 𝒯:𝒳 → 𝒳 be a 𝛾-contractive 

mapping with 𝛾 < 1. Then 𝒯 has a fixed point and the fixed point is unique. Furthermore, for 

any 𝑥 ∈ 𝒳,

𝒯𝑘 𝑥 → 𝑥⋆

as 𝑘 → ∞, where 𝑥⋆ is the unique fixed point.

(ℝ𝑛 is a complete metric space with any norm.)
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Bellman equation for 𝑉𝜋

Theorem) Let 𝜋 be a policy. Assume 𝛾 ∈ 0,1 , 𝒮 < ∞, and 𝑟 ≤ 𝑅 < ∞ almost surely.#

Then 𝑉𝜋 ∶ 𝒮+ → ℝ, the value function of 𝜋, exists, and it satisfies the Bellman equation:

Conversely, if a function 𝑉 ∶ 𝒮+ → ℝ satisfies the Bellman equation, then 𝑉 = 𝑉𝜋.

19#These assumptions can be relaxed.



Proof) Existence follows from

so the expectation is well defined.

Let ℬ𝜋 be the Bellman operator (for 𝑉) mapping from a function to a function:

So, ℬ𝜋 𝑉𝜋 = 𝑉𝜋 by the 1-step transition property, i.e., 𝑉𝜋 is a fixed point of ℬ𝜋.

Let 𝑉 ∞ = max
𝑠∈𝒮+

𝑉 𝑠 . Then ⋅ ∞ is a norm on the space of functions from 𝒮+ to ℝ.

If ℬ𝜋 is a strict contraction with respect to ⋅ ∞, then 𝑉𝜋 is the unique fixed-point by Banach.

20



Finally, we show ℬ𝜋 is a 𝛾-contraction in the ⋅ ∞-norm:

21

∎



Bellman equation for 𝑄𝜋

Theorem) Let 𝜋 be a policy. Assume 𝛾 ∈ 0,1 , 𝒮 < ∞, 𝒜 < ∞, and 𝑟 ≤ 𝑅 < ∞ almost 

surely. Then the state-action value function 𝑄𝜋 exists, and it satisfies the Bellman equation

Conversely, if a function 𝑄 ∶ 𝒮+ ×𝒜 → ℝ satisfies the Bellman equation, then 𝑄 = 𝑄𝜋.
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Proof) First, 𝑄𝜋 is well defined since 𝑟 is almost surely bounded.

Let ℬ𝜋 be the Bellman operator (for 𝑄) mapping from a function to a function:

Clearly, ℬ𝜋 𝑄𝜋 = 𝑄𝜋 by the 1-step transition property, i.e., 𝑄𝜋 is a fixed point of ℬ𝜋.

Let 𝑄 ∞ = max
𝑠∈𝒮+,𝑎∈𝒜

𝑄 𝑠, 𝑎 .

Then, ⋅ ∞ is a norm on the space of functions from 𝒮+ ×𝒜 to ℝ.

If ℬ𝜋 is a strict contraction with respect to ⋅ ∞, then 𝑄𝜋 is the unique fixed-point by Banach. 

In the hw, you will prove that ℬ𝜋 is a strict contraction.

23
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Optimal policy and value functions

We say a policy 𝜋⋆ is optimal if 

𝑉𝜋⋆ 𝑠 ≥ 𝑉𝜋 𝑠 ∀ 𝑠 ∈ 𝒮+, ∀ policy 𝜋.

(Optimal policy does not depend on starting state 𝑠.)

Write 𝑉⋆ = 𝑉𝜋⋆ for the optimal value function.

Write 𝑄⋆ = 𝑄𝜋⋆ for the optimal Q-value function.

As we soon establish, the optimal value functions 𝑉⋆ and 𝑄⋆ are unique, but optimal policy 

𝜋⋆ is not unique. However, all optimal policies yield the same value functions.

24



Bellman optimality equation for 𝑉⋆

Theorem) Assume 𝛾 ∈ 0,1 , 𝒮 < ∞, 𝒜 < ∞, and 𝑟 ≤ 𝑅 < ∞ almost surely. Then the 

optimal value function 𝑉⋆ ∶ 𝒮+ → ℝ exists, and it satisfies the Bellman optimality equation:

Conversely, if a function 𝑉 ∶ 𝒮+ → ℝ satisfies the Bellman optimality equation, then 𝑉 = 𝑉⋆. 

Finally, 

is an optimal deterministic policy.
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Quick lemma

Lemma) For any 𝑢 𝑠 and 𝑣 𝑠 , 

Proof)

and symmetrically, 

We conclude with

26
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Proof) Let ℬ⋆ be the Bellman optimality operator (for 𝑉) mapping from a function to a 

function:

By the following reasoning, ℬ⋆ is a strict contraction with respect to ⋅ ∞.

So ℬ⋆ has a unique fixed-point that we denote as 𝑉⋆.

(We don’t yet know if 𝑉⋆ is the optimal value function.)

27



Next, define 𝜋⋆ to be a deterministic policy defined by

where ties in the argmax are broken arbitrarily. (We don’t yet know if 𝜋⋆ is the optimal policy.)

Then, 𝑉⋆ = 𝑉𝜋⋆ by 

28



Lemma) Let 𝜋 be a policy. Let ℬ𝜋 be the Bellman operator and ℬ⋆ the Bellman optimality 

operator. For any 𝑉 ∶ 𝒮+ → ℝ, we have

ℬ𝜋 𝑉 ≤ ℬ⋆ 𝑉

Moreover, for any 𝑈 ∶ 𝒮+ → ℝ and 𝑉 ∶ 𝒮+ → ℝ satisfying 𝑈 ≤ 𝑉, we have

ℬ⋆ 𝑈 ≤ ℬ⋆ 𝑉

(Here, ≤ denotes pointwise inequality. So 𝑈 ≤ 𝑉 means 𝑈 𝑠 ≤ 𝑉 𝑠 for all 𝑠 ∈ 𝒮+.)

Proof) Exercise.
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We now show that 𝜋⋆ is optimal. Let 𝜋 be any policy. Then,

𝑉𝜋 = ℬ𝜋 𝑉𝜋 ≤ ℬ⋆ 𝑉𝜋 ≤ ℬ⋆ 2 𝑉𝜋 ≤ ⋯ ≤ ℬ⋆ 𝑘 𝑉𝜋 → 𝑉⋆ = 𝑉𝜋⋆

(𝑉𝜋 = ℬ𝜋 𝑉𝜋 follows from the Bellman equation theorem. ℬ𝜋 𝑉𝜋 ≤ ℬ⋆ 𝑉𝜋 follows from the 

previous lemma. Since 𝑉𝜋 ≤ ℬ⋆ 𝑉𝜋 , we can apply ℬ⋆ to both sides to get

ℬ⋆ 𝑉𝜋 ≤ ℬ⋆ 2 𝑉𝜋 . Convergence is due to Banach.)

So 𝑉𝜋 ≤ 𝑉𝜋⋆ for any policy 𝜋. So 𝜋⋆ is optimal and 𝑉⋆ is the optimal value function.

Finally, since 𝑉⋆ = 𝑉𝜋⋆, we have

30
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Bellman optimality equation for 𝑄⋆

Theorem) Assume 𝛾 ∈ 0,1 , 𝒮 < ∞, 𝒜 < ∞, and 𝑟 ≤ 𝑅 < ∞ almost surely. Then the 

optimal state-action value function 𝑄⋆ ∶ 𝒮+ ×𝒜 → ℝ exists, and it satisfies the Bellman 

optimality equation:

Conversely, if a function 𝑄 ∶ 𝒮+ ×𝒜 → ℝ satisfies the Bellman optimality equation, then 𝑄 =
𝑄⋆. Finally, 

is an optimal deterministic policy.
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Proof) Let ℬ⋆ be the Bellman optimality operator (for 𝑄) mapping from a function to a 

function:

I will leave it as an exercise to show ℬ⋆ is a strict contraction with respect to ⋅ ∞. So ℬ⋆

has a unique fixed-point that we denote as 𝑄⋆.

It remains to show that 𝑄⋆ is the optimal state-value function.

We have max
𝑎∈𝒜

𝑄⋆ 𝑠, 𝑎 = 𝑉⋆ 𝑠 since

32

(ℬ⋆ for 𝑉)



By our previous theorem, an optimal policy 𝜋⋆ exists and 𝑉⋆ = 𝑉𝜋⋆.

We conclude 𝑄⋆ = 𝑄𝜋⋆ with 

33
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Value iteration (VI)

V-value iteration:

Q-value iteration:

34



Value iteration (VI)

V-value iteration:

Q-value iteration:

Theorem) For 𝛾 ∈ 0,1 , both iterations converge with rate 

for 𝑘 = 0,1,…. (For 𝛾 = 1, convergence is not guaranteed.)

Proof) This follows from 𝛾-contractiveness of ℬ⋆.

VI is usually not implemented in its exact form. But VI serves as a conceptual framework for 
designing and understanding many practical deep RL algorithms such as DQN.

35
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Accelerated value iteration

Aside) VI is suboptimal, and it can be accelerated with anchored value iteration (AncVI):

for 𝑘 = 0,1,…, where 𝛽𝑘 =
1

σ𝑖=0
𝑘 𝛾−2𝑖

and 𝑈0 is an initial point. 𝑈𝑘 = 𝑉𝑘 or 𝑈𝑘 = 𝑄𝑘.

Theorem) If 𝑈0 ≤ ℬ⋆ 𝑈0 , then AncVI exhibits the rate

for 𝑘 = 0,1,…. This rate is faster than that of VI, and it matches a complexity lower bound up 

to a constant factor of 4 (and thus is optimal).

This result suggests that methods designed as approximations of vanilla VI may be 

theoretically suboptimal (in the sense of worst-case guarantees).

36J. Lee and E. K. Ryu, Accelerating value iteration with anchoring, NeurIPS, 2023.



Policy iteration

Policy iteration (PI) is a classical algorithm that alternates policy evaluation and policy 

improvement steps. 

Start with 𝜋0

for 𝑘 = 0,1,…

• Compute 𝑉𝜋𝑘 and/or 𝑄𝜋𝑘 (Policy Evaluation)

• Compute                                                                               (Policy Improvement)

PI is usually not implemented in its exact form. But PI serves as a conceptual framework for 

designing and understanding many practical deep RL algorithms such as PPO.

37



Policy improvement theorem

Theorem) Consider the PI iteration. Assume 𝛾 ∈ 0,1 , 𝒮 < ∞ , 𝒜 < ∞, and 𝑟 ≤ 𝑅 < ∞
almost surely. Then,

𝑉𝜋𝑘+1 ≥ 𝑉𝜋𝑘

for 𝑘 = 0,1,…. Furthermore, there is a 𝐾 ∈ ℕ such that 𝑉𝜋𝑘 = 𝑉⋆ and 𝜋𝑘 is an optimal policy

for all 𝑘 ≥ 𝐾. (Policies become optimal after finitely many steps.)

38



What can go wrong at          ?

It is instructive to understand when undiscounted (𝛾 = 1) MDPs lead to pathologies.

Scenario 1: There is no problem. (There is an optimal policy 𝜋⋆ and 𝑉⋆ = ℬ⋆ 𝑉⋆ = 𝑉𝜋⋆.)

This is the case when 𝒮 and 𝒜 are finite and 𝑉𝜋 is well defined and finite for all policy 𝜋.

E.g. If you only get a reward at the end of the episode (and never get any reward if the 

episode never terminates), then everything is well defined. The RL-LLM setting without KL-

penalty falls under this case.

39M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1994.



What can go wrong at          ?

Scenario 2: You can get +∞ reward by exploiting a cycle with positive reward.

This it not a problem with discounted MDPs; when 𝛾 < 1, even if the optimal policy exploits 

a positive-reward cycle, the optimal cumulative discounted return will be finite.

40

END

r = 100

r = 1
START



What can go wrong at          ?

Scenario 2: You can get +∞ reward with a cycle with positive reward.

One resolution is to consider the average-reward MDP formulation, instead of the 

undiscounted total return MDP. An average-reward MDP maximizes 𝑅𝜋:

Analyzing average-reward MDPs tends to be more technical than the total return MDPs, 

and it is an active area of research.#

41
#M. Zurek and Y. Chen, Span-based optimal sample complexity for weakly communicating and general average reward MDPs, NeurIPS, 2024.
#J. Lee and E. K. Ryu, Optimal non-asymptotic rates of value iteration for average-reward Markov decision processes, ICLR, 2025.



Scenario 3: Total return (infinite sum) may not be well defined.

For example, if 𝑟0, 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, … = +1,−1,+1,−1,+1,−1,… , then the total return is 

not summable. 

A reasonable remedy would be to consider a Cesàro (Abel) sum or the liminf of the partial 

sums, but this is a complication we will not go into.

42

What can go wrong at          ?



Deep Policy Evalution
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Policy evaluation vs. optimization

The goal of RL is to find a good policy 𝜋.

We start by studying how to evaluate a given policy 𝜋.

• Called policy evaluation.

We later talk about how to optimize/improve the policy policy 𝜋. 

• Called policy optimization, policy improvement, control. 

44



Policy evaluation: Monte Carlo

First consider approximating the value function 𝑉𝜋 of a given policy 𝜋.

For a given 𝑠 ∈ 𝒮, Monte Carlo (MC) method is

where

If the size of 𝒮 is small, we could do this for all 𝑠 ∈ 𝒮 to approximate 𝑉𝜋 ⋅ .

45

𝑁 independent trajectoris

with 𝑠0
𝑖
= 𝑠



𝑉𝜙 ≈ 𝑉𝜋 with MC
When the size of 𝒮 is large or infinite, we must approximate 𝑉𝜋 via a neural network 𝑉𝜙:

Gradient of ℒ:

46

Since 𝑉𝜋 <term> = 0, we usually let
𝑉𝜙 ∶ 𝒮 → ℝ

i.e., we don’t allow 𝑉𝜙 <term> and

hard-code the case when 

𝑉𝜋 <term> = 0 is needed.



𝑉𝜙 ≈ 𝑉𝜋 with MC + SGD

47



𝑉𝜙 ≈ 𝑉𝜋 with MC + SGD
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Policy evaluation: Temporal difference

In Temporal difference (TD) learning, we use the reward of one transition.

49

Exactly actionable only if 𝑉𝜋 is known.

𝑁 independent 1-step transitions

with 𝑠0
𝑖
= 𝑠



𝑉𝜙 ≈ 𝑉𝜋 with TD + (apx) SGD 

Gradient of ℒ:
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SGD implementation

Approximate SGD implementation (𝑔 is no longer an unbiased estimate of 𝛻ℒ)

𝑉𝜙 ≈ 𝑉𝜋 with TD + (apx) SGD 

51

not actionable



𝑉𝜙 ≈ 𝑉𝜋 with TD + (apx) SGD 

More precisely, the implementation should be

52



Stop-gradient operator

How should we compute the approximate stochastic gradient?

Option 1. Compute                                        (a scalar) and                 and multiply the two.

This is correct, but it is cumbersome. 

Option 2. Forward-evaluate                                            and backprop to compute   

This is incorrect! If you apply the chain rule, you don’t ge the same 𝑔.
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Stop-gradient operator

How should we compute the approximate stochastic gradient?

Option 3. Forward-evaluate           , forward-evaluate                                               and 

backprop to compute 

where ⋅ denotes the stop-gradient operator.
(In PyTorch, use .detach() to perform stop-gradient.)

The stop-gradient operator treats its input as a constant, and stops backpropagation, i.e., 

the chain rule is not invoked on the input of ⋅ .
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𝑉𝜙 ≈ 𝑉𝜋 with TD + (apx) SGD 

Using the stop-gradient operator, express TD with approximate SGD as
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Semi-gradient method
TD + apx SGD with                                                           is provably not an instance of 

gradient descent.#

These methods are called semi-gradient methods, in the sense that it kind of resembles a 

gradient method.

One can replace the gradient computation with                                                       , i.e., try to 

directly minimize the Bellman error.

This has been explored under the name gradient TD (GTD)%, but GTD tends to perform 

worse& than the semi-gradient TD.
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#Appendix I, E. Barnard, Temporal-difference methods and Markov models, IEEE Transactions on Systems, Man, and Cybernetics, 1993.
%R. S. Sutton, H. Maei, C. Szepesvári, A convergent O(n) temporal-difference algorithm for off-policy learning with linear function approximation, NeurIPS, 

2008.
&R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvári, and E. Wiewiora, Fast gradient-descent methods for temporal-difference lea

rning with linear function approximation, ICML, 2009.



𝑘-step TD policy evaluation

𝑘-step TD interpolates between MC and (1-step) TD using the 𝑘-step transition property:

where 𝑘 ∧ 𝑇 = minሺ𝑘, 𝑇). 

57



𝑘-step transition property

58
Exactly actionable only if 𝑉𝜋 is known.

𝑁 independent partial trajectories

with 𝑠0
𝑖
= 𝑠



𝑉𝜋 ≈ 𝑉𝜙 with 𝑘-step TD

Gradient of ℒ:
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𝑉𝜋 ≈ 𝑉𝜙 with 𝑘-step TD + SGD 

60

not actionable



𝑉𝜋 ≈ 𝑉𝜙 with 𝑘-step TD + SGD 

61

not actionable



𝑉𝜋 ≈ 𝑉𝜙 with 𝑘-step TD + (apx) SGD 

62

Approximate SGD implementation (𝑔 is no longer an unbiased estimate of 𝛻ℒ)



𝑉𝜋 ≈ 𝑉𝜙 with 𝑘-step TD + (apx) SGD 

Using the stop-gradient operator, express 𝑘-step TD with approximate SGD as

(Here, the random sampling of 𝑟𝑡 does not depend on 𝜙, so 𝜕𝑟𝑡/𝜕𝜙 = 0.

This is will change when we perform policy optimization.)
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MC vs. TD(=bootstraping)

The goal is to train 𝑉𝜙 ≈ 𝑉𝜋. When we need to use 𝑉𝜋, we replace it with 𝑉𝜙.

This is called bootstrapping.

• MC evaluation updates 𝑉𝜙 by waiting for the episode to terminate.

• TD evaluation updates 𝑉𝜙 without waiting for the episode to terminate; they instead 

bootstrap and use 𝑉𝜙.

• Initially, when 𝑉𝜙 is inaccurate, bootstrapping may cause instabilities.

• Later, when 𝑉𝜙 is accurate, waiting for the episode to terminate may be wasteful. 

As a rule of thumb, an intermediate value of 𝑘 = 5 is a good compromise.
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𝑄𝜙 ≈ 𝑄𝜋 with MC

Policy evaluation for 𝑄𝜋 follows the same principles.

For MC, 

where

65

𝑁 independent trajectoris

with 𝑠0
𝑖
= 𝑠 and 𝑎0

𝑖
= 𝑎



𝑄𝜙 ≈ 𝑄𝜋 with MC
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Gradient of ℒ:



𝑄𝜙 ≈ 𝑄𝜋 with MC + SGD
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𝑄𝜙 ≈ 𝑄𝜋 with MC + SGD
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𝑄𝜙 ≈ 𝑄𝜋 with TD + (apx) SGD

1-step TD works with the same principles.
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𝑁 independent 1-step transitions

and action 𝑎1
𝑖

with 𝑠0
𝑖
= 𝑠 and 𝑎0

𝑖
= 𝑎

Exactly actionable only if 𝑄𝜋 is known.



𝑄𝜙 ≈ 𝑄𝜋 with TD + (apx) SGD

Gradient of ℒ:
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SGD implementation

Approximate SGD implementation (𝑔 is no longer an unbiased estimate of 𝛻ℒ)

𝑄𝜙 ≈ 𝑄𝜋 with TD + (apx) SGD

71

not actionable



𝑄𝜙 ≈ 𝑄𝜋 with TD + (apx) SGD

Using the stop-gradient operator, express TD with approximate SGD as
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𝑘-step TD policy evaluation

𝑘-step TD works with the same principles.

73

Exactly actionable only if 𝑄𝜋 is known.

𝑁 independent partial trajectories

with 𝑠0
𝑖
= 𝑠 and 𝑎0

𝑖
= 𝑎



𝑄𝜙 ≈ 𝑄𝜋 with 𝑘-step TD + SGD

Gradient of ℒ:
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𝑄𝜙 ≈ 𝑄𝜋 with 𝑘-step TD + SGD 

75

not actionable



𝑄𝜙 ≈ 𝑄𝜋 with
𝑘-step TD + SGD 

76

not actionable



𝑄𝜙 ≈ 𝑄𝜋 with 𝑘-step TD + (apx) SGD

Approximate SGD implementation (𝑔 is no longer an unbiased estimate of 𝛻ℒ)
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𝑄𝜙 ≈ 𝑄𝜋 with 𝑘-step TD + (apx) SGD

Using the stop-gradient operator, express 𝑘-step TD with approximate SGD as
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Deep Policy Gradient Methods:
A3C, TRPO, PPO, GRPO
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Policy optimization

So far, we talked about policy evaluation: approximating 𝑉𝜋 and 𝑄𝜋 given a policy 𝜋.

Next, let’s talk about policy optimization: solving

where 𝜋𝜃 is represented by a neural network with parameter 𝜃.
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Expectation with trajectory

For policy gradient methods, Assume 𝑇 < ∞ with probability 1.

Write                                                                  for the trajectory and use the notation

The probabaility distribution of 𝜏 can ben written as 
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Policy after stopping

For notational convenience, let ෤𝑎 ∈ 𝒜 be a certain action and let

I.e., once we reach the termina state 𝑠 = <term>, always take the action ෤𝑎.

(Remember, actions are irrelevant once we reach <term>.)

Then,
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Stochastic gradient of objective 𝒥 𝜃

So 𝑔 𝜏  with 𝜏 ∼ 𝑝0, 𝜋𝜃 , 𝑝 is an unbiased estimator of 𝛻𝒥 𝜃 .

However, current 𝑔 𝜏 has large variance, so we must reduce it.
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Enhancement #1: Removing past rewards
We can reduce the variance by removing past rewards until time 𝑡 − 1:
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Justification of 

Let                                                                . Then

Here,    is the only random term since                         is deterministic conditioned on      .

85

Intuitively, 𝛻𝜃 here examines how the probabilities for 

𝑎𝑡 should change. However, a change of

𝑎𝑡 does not affect the past rewards 𝑟1, … , 𝑟𝑡−1.

Past rewards only contribute to unnecessary variance.



Justification of 

By the tower property,       

has expectation 0 (with respect to                       ), so 

Let us further reduce the variance.
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∎



Enhancement #2: State-dependent baseline

87

Let 𝑏 ∶ 𝒮 → ℝ be a state-dependent baseline.

Then, 

is an unbiased estimator of 𝛻𝒥 𝜃 .



Why unbiased?

88

Let                                                                 . Then

By the tower property, the following is a sum of zero-mean random variables



Enhancement #3: Q-estimates

Theorem) Let ෠𝑄𝑡 𝑡=0

𝑇−1
be a random variable such that 

Let 𝑏 𝑠 be any (measurable) deterministic function of 𝑠 ∈ 𝒮. Then

(Note. Previous enhancements are all instances of this theorem.)
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Proof) We already established

Next, 

follows from

90∎

Remember, 



Enhancement #3: Q-estimates

With the choice ෠𝑄𝑡 = 𝑄𝜋𝜃 and 𝑏 = 𝑉𝜙

is an unbiased estimator of 𝛻𝒥 𝜃 by the policy gradient theorem. Here, 𝜏 ∼ 𝑝0, 𝜋𝜃 , 𝑝 and 
𝑉𝜙 is a neural network approximating 𝑉𝜋𝜃.

(This is an unbiased estimate regardless of the accuracy of 𝑉𝜙 ≈ 𝑉𝜋𝜃. However, we must 

use the exact 𝑄𝜋𝜃 to have exact unbiasedness.)

This choice ෠𝑄𝑡 = 𝑄𝜋𝜃 and 𝑏 = 𝑉𝜙 leads to small (but not optimally small) variance. Why?
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Exactly actionable only if 𝑄𝜋𝜃 is known.



Rao–Blackwell Theorem

Theorem) Let 𝑋 and 𝑌 be random variables. Let መ𝐼1 𝑋, 𝑌 be an unbiased estimator of 𝐼, i.e.,

Let                                                 Then     is also an unbiased estimator of    and

መ𝐼2 𝑌 is called a Rao–Blackwellized estimator of መ𝐼1 𝑋, 𝑌 .

This motivates ෠𝑄𝑡 = 𝑄𝜋𝜃 with 𝑌 = 𝜏 𝑡 , 𝑎𝑡 and 𝑋 = 𝑟𝑡+1, 𝑠𝑡+1, 𝑎𝑡+1, … , i.e., 𝑄𝜋𝜃 𝑠𝑡 , 𝑎𝑡 is a 

good choice as it has all variance beyond 𝑠𝑡 , 𝑎𝑡 removed through conditional expectation 

and therefore has low variance.
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Proof) Unbiasedness of መ𝐼2 follows from the tower property of expectation.

Variance bound follows from Jensen’s inequality:

93

∎



Minimum-variance conditional estimator lemma

Lemma) Let 𝑠 and 𝑎 be random variables. Let 𝑤 𝑠, 𝑎 , 𝑄 𝑠, 𝑎 , and 𝑏 𝑠 be functions. Then

with

(When 𝑤 𝑠, 𝑎 = 1, this lemma reduces to a standard result in Bayesian statistics: 

Conditional mean is the minimum mean squared error estimator. In fact, if 𝜌 𝑠, 𝑎 is a 

probability density function of 𝑠, 𝑎 , then 𝑏⋆ 𝑠 is the conditional mean of 𝑄 𝑠, 𝑎 with 

respect to the probability distribution proportional to 𝑤2𝜌.)
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Proof)

with equality attained at 𝑏 𝑠 = 𝑏⋆ 𝑠 . The step      follows from the definition of 𝑏⋆ 𝑠 :
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∎



The minimum-variance conditional estimator lemma suggests the choice

However, this choice is cumbersome as it is an entirely new quantity not used later in the 

estimation of                  . Therefore, use the simplified surrogate

The choice 𝑏 = 𝑉𝜙 ≈ 𝑉𝜋𝜃 is not optimal, but it is a reasonable proxy of the optimal choice.

96

Why 𝑏 = 𝑉𝜙?



Interpretation via advantage estimation

So, we have

𝐴𝜋𝜃 𝑠𝑡 , 𝑎𝑡 = 𝑄𝜋𝜃 𝑠𝑡 , 𝑎𝑡 − 𝑉𝜋𝜃 𝑠𝑡 is called the advantage of 𝑎𝑡 at 𝑠𝑡.

• If 𝐴𝜋𝜃 𝑠𝑡 , 𝑎𝑡 > 0, then 𝑎𝑡 is a good action, better than the average action of 𝜋𝜃.

• If 𝐴𝜋𝜃 𝑠𝑡 , 𝑎𝑡 < 0, then 𝑎𝑡 is a bad action, worse than the average action of 𝜋𝜃.

This gradient estimate uses 𝑄𝜋𝜃 𝑠𝑡 , 𝑎𝑡 − 𝑉𝜙 𝑠𝑡 , an approximation of the advantage.

• If 𝑎𝑡 is good, ∇𝜃 points in a direction to make 𝑎𝑡 more likely.

• If 𝑎𝑡 is bad, ∇𝜃 points in a direction to make 𝑎𝑡 less likely
97



Interpretation via advantage estimation

Aside: For an optimal policy 𝜋⋆, 

𝐴𝜋
⋆
𝑠𝑡 , 𝑎𝑡 = 𝑄𝜋⋆ 𝑠𝑡 , 𝑎𝑡 − 𝑉𝜋⋆ 𝑠𝑡 ≤ 0

Proof) Hw assignment.

Without the baseline, 

the sign of 𝑄𝜋𝜃 𝑠𝑡 , 𝑎𝑡 is not directly correlated with whether 𝑎𝑡 is good or bad. (In fact, many 

MDPs only have positive rewards and thus have 𝑄𝜋𝜃 𝑠𝑡 , 𝑎𝑡 ≥ 0.) Rather, ∇𝜃 will adjust the 

probability of 𝑎𝑡, and 𝑎𝑡 becomes more likely by being pushed up harder than the other 

actions due to the normalization of 𝜋𝜃 ⋅ 𝑠𝑡 .

With the baseline, 𝑎𝑡 should be push up only when 𝑎𝑡 is good. 98

∎



Interpretation as an actor-critic method

Loosely speaking actor-critic methods have an “actor” (i.e., policy 𝜋𝜃) and a separate “critic” 

that evaluates the actor’s action.

In policy gradient methods, the learned state-value function 𝑉𝜙 serves as the critic.
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Replacing 𝑄𝜋𝜃 with 𝑄𝜙?

Should we replace 𝑄𝜋𝜃 with 𝑄𝜙 ≈ 𝑄𝜋𝜃?

Then 𝑔 is a biased estimator of 𝛻𝜃ℒ 𝜃 . This is possible, but a few problems:

• We must learn both 𝑄𝜙 and 𝑉𝜙.

• Replacing 𝐺𝑡 with 𝑄𝜙 𝑠𝑡 , 𝑎𝑡 will reduce the variance, but the bias will initially be large 

since 𝑄𝜙 ≉ 𝑄𝜋𝜃 initially.
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Exactly actionable only if 𝑄𝜋𝜃 is known.



Enhancement #4: 𝑘-step TD

Use 𝑘-step TD

So with 

is an unbiased estimator of 𝛻𝒥 𝜃 , but is not implementable without 

is a biased estimator of 𝛻𝒥 𝜃 .

101

# unbiased estimate of 𝑄𝜋𝜃 𝑎𝑡, 𝑠𝑡

# biased estimate  of 𝑄𝜋𝜃 𝑎𝑡, 𝑠𝑡



Enhancement #4: 𝑘-step TD

Now, we only need to learn 𝑉𝜙 ≈ 𝑉𝜋𝜃. No need to separately learn 𝑄𝜙.

Even when 𝑉𝜙 is initially wrong, then 
෠𝑄𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 +⋯+ 𝛾𝑘−1𝑟𝑡+𝑘−1 + 𝛾𝑘𝑉𝜙 𝑠𝑡+𝑘

is still reasonably informative since the rewards 𝑟𝑡 , … , 𝑟𝑡+𝑘−1 provide informative unbiased 

information of the quality of the action 𝑎𝑡, even if 𝑉𝜙 𝑠𝑡+𝑘 has large bias and is completely 

non-informative. (Especially so when 𝛾 < 1.)
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Policy Gradient Algorithm #1
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Stop-gradient operator for 𝑔𝜃

For ease of practical implementation, use the stop-gradient operator for 𝑔𝜃:

Note that sampling of 𝑟0, … , 𝑟𝑇−1 and 𝑠1, … , 𝑠𝑇 does depend on 𝜋𝜃. Therefore, it is dubious to 

claim 𝜕 ෠𝑄/𝜕𝜃 = 0 and 𝜕𝑉𝜙 𝑠𝑡 /𝜕𝜃 = 0. It is best to avoid these derivatives by through the 

stop-gradient operator.
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The -trick

When 𝛾 = 1,

where 

Let ෤𝛾 < 1 but ෤𝛾 ≈ 1. Let ෠𝑄𝑡
෥𝛾

be a random variable such that

Then
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Introducing the artificial discount factor ෤𝛾 (not part of the MDP) introduces bias in the 

gradient estimates but can reduce the variance.

Most deep RL setups consider the undiscounted problem (so 𝛾 = 1) but introduces the 

artificial discount factor (so ෤𝛾 < 1).

For notational simplicity, we will not distinguish 𝛾, the discount factor of the MDP, from ෤𝛾, the 

artificial discount factor, and write 𝛾 = ෤𝛾.
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The -trick



Policy Gradient Algorithm #2

107

no 𝛾 factor here



SGD with non-uniform selection rules

Let

where 𝑁 is fixed (non-random). If 𝑖 𝑘 ∼ Uniform 1,… ,𝑁 , then 𝑔𝑖 𝑘 is a stochastic 

gradient (up to a factor of Τ1 𝑁) and

is an instance of SGD with unbiased stochastic gradients. 

However, cyclic SGD

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝑔𝑚𝑜𝑑 𝑘,𝑁 +1

which gradient selection 𝑔1, … , 𝑔𝑁 , 𝑔1, … , 𝑔𝑁 , … is not an instance SGD with unbiased 

stochastic gradients. Nevertheless, cyclic SGD is commonly used in practice.
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SGD with non-uniform selection rules

In the context of MDPs, we have 

with a random 𝑇. Then

is an instance of SGD with unbiased stochastic gradients, but it is an inefficient algorithm as 

only one of 𝑔0, … , 𝑔𝑇−1 is used in the update.
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SGD with non-uniform selection rules

We can use all of 𝑔1, … , 𝑔𝑇 in the update:

This is an instance of SGD with unbiased stochastic gradients, but it is inefficient as it 

updates infrequently. (In supervised learning, full-batch GD is less efficient than SGD.)

Finally,

is not an instance of SGD, but it updates the policy frequently and therefore is efficient 

despite using biased gradients.
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Advantage actor-critic (A2C)
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A2C

Mnih et al. published the asynchronous advantage actor-critic (A3C) method. A2C is a 

version of A3C without the multiple CPU cores performing gradient updates asynchronously.

Action space 𝒜 may be discrete or continuous. Further details through examples.

112
V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, K. Kavukcuoglu, Asynchronous methods for deep reinforcement learning, ICML, 

2016.



Atari 2600 game

Atari 2600 is a video game console

released in 1977.

Bellemare et al. created an emulator

environment to train and evaluate RL

models on 55 different Atari games.

(Technically, using these Atari games for RL research is against copyright law as US Code 

Title 17, Chapter 3, Sec. 302, stipulates that the copyright of these games apply 70 years 

after the author's death.)

113
M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An evaluation platform for general agents. Journal of Artificial 

Intelligence Research, 2013.



Atari 2600 action space

18 possible actions

↑

← · →    × {no press, button press}

↓

(Not all games use all 18 actions.)

60 frames per second, so up to 60 actions per second.

Standard trick: Agent repeats the same action for 4 frames, i.e., 15 actions per second.
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Atari 2600 preprocessing

Remove flickering (artifact caused by the limited number of sprites Atari 2600 can display at 

once), make black and white, and down-scale the image resolution.

Stack 4 most recent frames. This allows the information to contain current velocity.

Note that Atari games are actually partially observable Markov decision processes (POMDP) 

and the game screen does not fully capture the game state. Moreover, the screen 

preprocessing means the agent (policy) receives only partial information.

These issues are not addressed (ignored) in the initial A3C or DQN papers.
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Architecture
Architecture of Mnih et al.:

• Frames preprocessed into: 4x84x84

• 16 channel, 8x8 conv, stride 4, ReLU:16x20x20 

• 23 channel, 4x4 conv, stride 2, ReLU: 23x9x9

• FC 256, ReLU

• FC 𝒜 , softmax

• 𝒜 is the set of valid actions. Between 4 and 18 for the games.

• Softmax makes the output probabilities over actions.

In finite-action-space deep RL, deep NN usually has an output for each 𝑎 ∈ 𝒜 (as opposed to 

action 𝑎 ∈ 𝒜 being an input to the NN).

116
V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, K. Kavukcuoglu, Asynchronous methods for deep reinforcement learning, ICML, 

2016.



A2C for discrete action

Form a neural network 𝑓𝜃 ∶ 𝒮 → Δ 𝒜 , where 

Δ𝑑 = 𝑝 ∈ ℝ𝑑 𝑝1, … , 𝑝𝑑 ≥ 0, 𝑝1 +⋯+ 𝑝𝑑 = 1

is the probability simplex of dimension 𝑑. For notational simplicify, assume actions 

𝑎1, … , 𝑎 𝒜 ∈ 𝒜 are all integers. There are 2 steps in A2C to clarify.

Step                      : Evaluate 𝑓𝜃 𝑠𝑡 and sample 𝑎𝑗 with probability 𝑓𝜃 𝑠𝑡 𝑗
for 𝑗 = 1,… , 𝒜 .

Step                           : Backprop on log 𝑓𝜃 𝑠𝑡 𝑎𝑡
.
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MuJoCo

MuJoCo (Multi-Joint dynamics with Contact) is a general purpose physics engine that 

simulates articulated structures.

• State is the generalized coordinates and velocity of the joints.

• Action represents forces exerted on the joints and is continuous.

• In robotics applications, it is common for an action to correspond to a controller, 

and the controller has maximum and minimum inputs bounds.

118E. Todorov, T. Erez, and Y. Tassa, MuJoCo: A physics engine for model-based control, IROS, 2012.



A2C for continuous action

A2C applies to the setup with continuous actions. There are 2 steps in A2C to clarify.

As a concrete instance, let 𝒜 ⊆ −1,+1 be a continuous action space. Form a neural 

network 𝑓𝜃 ∶ 𝒮 → ℝ2 and write

𝑓𝜃 𝑠 = 𝜇𝜃 𝑠 , 𝜏𝜃 𝑠

Step                      : Sample 𝑎𝑡 = tanh 𝑧𝑡 with 𝑧𝑡 ∼ 𝒩 𝜇𝜃 𝑠𝑡 , variance = 𝑒2𝜏𝜃 𝑠𝑡 ,

Step                          : Backpropagate on 

log 𝜋𝜃 𝑎𝑡 𝑠𝑡 = −𝜏𝜃 𝑠 −
tanh−1 𝑎𝑡 − 𝜇𝜃 𝑠𝑡

2

2𝑒2𝜏𝜃 𝑠
+ 𝐶

(Derivation in Hw. Follows from change of variable formula for probability density functions.)

119



Architecture

For a MuJoCo environment, 𝒮 ⊆ ℝ𝑚 with 𝑚 ranging from 4 to 100 and 𝒜 ⊆ ℝ𝑛 with 𝑛 being 

in a similar range.

The neural network

𝑓𝜃 ∶ 𝒮 → ℝ2𝑛

can be a simple ReLU MLP with ∼ 4 layers.
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Sample efficiency

In ML, sample efficiency refers to the method’s ability to learn with fewer data points.

For RL in simulated environments (e.g. Atari 2600) sample efficiency is not a concern and 

only compute efficiency matters.

In many RL setups, however, samples (full trajectories or 𝑠𝑡 , 𝑎𝑡 pairs) are obtained by 

interacting with the environment, and this can be expensive. In such cases, we prefer 

methods with good sample efficiency.

E.g. having a physical robot take certain actions.

E.g. an LLM writing a completion and having a human provide feedback on whether the 

completion is good. 
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Can we learn more from an episode   ?

A2C uses an episode 𝜏 to perform 𝑇 SGD 

updates. Can we learn more from 𝜏?
Can we be more sample efficient?

We do so via the surrogate objective.

Let 𝜃 and 𝜃0 be the policy parameters. 

Consider 𝒥 𝜃 relative to 𝒥 𝜃0 :
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Surrogate objective derivation

Then,
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Surrogate objective derivation

So, 

The expectation 𝔼 depends on 𝜃 and this is inconvenient. Let

Then,                           for 𝜃 ≈ 𝜃0.# Here, 𝐶 represents constants independent of 𝜃.

In fact,                                              , although .

124
#The ≈ does not take 𝐶 into account since constants are irrelevant when optimizing with respect to 𝜃. The argument for 𝒥 ≈ 𝒦 is that 𝒥 and 𝒦 are equal 

up to 1st order in a neighborhood of 𝜃0.



Surrogate objective derivation

For 𝜃 ≈ 𝜃0,  if we sample IID trajectories 𝜏ሺ1), … , 𝜏 𝑁 ∼ 𝑝0, 𝜋𝜃0 , 𝑝 , then 

where መ𝐴𝑡 ≈ 𝐴𝜋𝜃0ሺ𝑠𝑡 , 𝑎𝑡) is an advantage estimate. The approximation ሺ∗) is accurate when 
𝑁 is large and when 𝜋𝜃 ≈ 𝜋𝜃0. (In general, importance sampling estimators become 

inaccurate when the sampling distribution 𝜋𝜃0 is too far from the nominal distribution 𝜋𝜃.)

We therefore maximize the surrogate objective subject to a certain trust-region constraint:

(The trust-region constraint is needed for 2 reasons: 𝒦 𝜃; 𝜃0 ≈ 𝐽 𝜃 and ∗ .)
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TRPO
Trust-region policy optimization (TRPO)
solves a sequence of trust-region 
optimization problems to improve the policy.

The trust region is defined by the KL-
divergence of the policies.

Note that መ𝐴𝑡 = ෠𝑄𝑡 − 𝑉𝜙ሺ𝑠𝑡) depends on 𝜃curr
through ෠𝑄𝑡 and 𝜙 through 𝑉𝜙. (We discuss 

the choice of መ𝐴𝑡 soon.)

The “solve” involves performing an 
approximate Newton method (which 
resembles a natural gradient method) with 
𝐻−1𝑔 solved via a conjugate gradient (CG) 
solver. (We skip the details.)

126J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, Trust region policy optimization, ICML, 2015.



Proximal policy optimization (PPO)

Implementing TRPO hard work due to the trust-region formulation. Also, it is unclear 
whether the 2nd-order optimization of TRPO is efficient, since most deep learning 
formulations are optimized via 1st-order optimization algorithms (SGD).

Proximal policy optimization (PPO) returns to a 1st-order formulation while keeping the 
trust-region idea.

The PPO paper# presents “PPO-Penalty” and “PPO-Clip”. We will talk about the simpler 
PPO-Clip.

(PPO-Penalty uses a penalty, rather than a constrained, version of TRPO with the KL-
divergence added to the objective as a regularizer.)

127#J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy optimization algorithms, arXiv, 2017.



Clipped surrogate objective

128

The clipped surrogate objective in PPO is

Interpretation: We increase/maximize                   only by a small factor. 

This removes the incentive to move 𝜃 far away from 𝜃𝑘.

The loss is equivalent to 



Use the clipped loss

The optimization subproblem is 

solved with first-order methods like 

SGD or Adam with early stopping.

The trust-region constraint is 

implicitly enforced by the clipping 

(no motivation to improve too much) 

and by performing few SGD 

iterations.

(We discuss the choice of መ𝐴𝑡 soon.)
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PPO: Discussion

In Schulman et al., 𝜀 = 0.2 is used.

In the maximization objective,                 is viewed as loss formed with 𝑁𝑇 data points,

where 𝑇 is the average of 𝑇 𝑖 . The maximization performs ≈ 10 epochs over the 𝑁𝑇 data 

points.

Strictly speaking, TRPO and PPO are not policy gradient methods, but they can be viewed 

as variants/enhancements of deep policy gradient methods.

130J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy optimization algorithms, arXiv, 2017.



Bias-variance tradeoff of

Assume, for the sake of argument, we have access to 𝑉𝜋curr. You will show in hw that

all have the as the same mean, but the variance reduces (Rao–Blackwell) with smaller 𝑘.
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In practice, we replace 𝑉𝜋curr with 𝑉𝜙

The estimators with 𝑘 < ∞ are no longer unbiased.
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Although there is no precise analysis, we still expect the variance to reduce with smaller 𝑘.

We now have a bias-variance tradeoff with 𝑘:

• Small 𝑘: Large bias but small variance.

• Large 𝑘: Small bias but large variance.
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What about the dependency on 𝛾? Consider using an artificial discount factor 𝛾 for an 

undiscounted MDP:

In terms of expectations, 𝛾 = 1 is the correct choice (if 𝑘 = ∞ and 𝛾 = 1, then unbiased) and 

using 𝛾 < 1 introduces bias. With 𝛾 < 1, however, the later rewards contribute less and they 

contribute less towards the variance. 

We now have a bias-variance tradeoff with 𝛾:

• Small 𝛾: Large bias but small variance.

• Large 𝛾: Small bias but large variance.
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Generalized Advantage Estimation (GAE)

One challenge with tuning 𝑘 is that it cannot be continuously tuned. (What if you want to use 

𝑘 larger than 4 and smaller than 5?)

Generalized Advantage Estimation (GAE) uses an exponentially weighted average of all 

መ𝐴𝑡
TD 𝑘

estimators based on an approach analogous to a classical technique called TD 𝜆 .

135J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel, High-dimensional continuous control using generalized advantage estimation, ICLR, 2016.



Generalized Advantage Estimation (GAE)

Given a 𝑉 𝑠 (meant to approximate 𝑉𝜋 𝑠 ), let

Then, by a telescoping-sum argument, we have 

Next, define the GAE estimator with 𝜆 ∈ 0,1 as

where ሺ∗) is due to a geometric-sum argument. (Exercise) 

136J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel, High-dimensional continuous control using generalized advantage estimation, ICLR, 2016.



Generalized Advantage Estimation (GAE)

Note, if 𝜆 = 0, we recover the TDሺ1) estimator. If 𝜆 = 1, we recover the TDሺ∞) estimator

If 𝑉 = 𝑉𝜋, then GAE is an unbiased estimator. I will leave it as an exercise to show that

So

137J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel, High-dimensional continuous control using generalized advantage estimation, ICLR, 2016.



The 𝜆 of GAE is a continuous parameter serving a similar role to the 𝑘 of TD.

When 𝑉𝜙 = 𝑉𝜋, any value of 𝜆 incurs no bias. (Unlike 𝛾, which always causes a bias when 

𝛾 < 1.) But when 𝑉𝜙 ≠ 𝑉𝜋, then large 𝜆 allows the telescoping structure to reduce bias 

(when 𝜆 = 𝛾 = 1 there is no bias) while for small 𝜆 the bias is larger. 

We now have a bias-variance tradeoff with 𝛾 and 𝜆:

• Small 𝛾: Large bias but small variance.

• Large 𝛾: Small bias but large variance.

• Small 𝜆: Large bias but small variance.

• Large 𝜆: Small bias but large variance.
138

Bias-variance tradeoff of

TRPO and PPO uses GAE for 

the advantage estimator መ𝐴𝑡.

A common choice of values:

𝛾 = 0.995 and 𝜆 = 0.96.



Policy advantage

Define the policy advantage of 𝜋 over 𝜋𝑘 as

Note that

Interpretation: Follow a trajectory 𝜏 generated 𝜋𝑘, and we ask what actions 𝜋 would have 

chosen. quantifies how better, as measured by 𝐴𝜋𝑘, these actions are compared to 

the actions chosen by 𝜋𝑘.

Theorem) A policy 𝜋𝑘 is optimal if and only if                            .
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PI as policy advantage maximization

We can equivalently express PI as policy advantage maximization.

Policy iteration (PI):

(Strictly speaking, the equivalence requires that 𝜏 ∼ 𝑝0, 𝜋𝑘 , 𝑝 has positive probability to 

visit every state 𝑠 ∈ 𝒮.)

Proof)                is maximized when 𝜋 𝑠 = argmax
𝑎∈𝒜

𝐴𝜋𝑘 𝑠, 𝑎 . This is exactly PI.

140

∎



Implementing PI with IS estimates

In practice, the expectation of               has no closed form formula, so we approximate it 

with importance sampling (IS) estimates. We sample 𝜏ሺ1), … , 𝜏 𝑁 ∼ 𝑝0, 𝜋𝑘 , 𝑝 IID 

trajectories and form the estimator              :

using advantage estimators መ𝐴𝑡
𝑖

satisfying

When 𝑁 is large, we expect                                ?
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TRPO and PPO as approximate PI

We can interpret TRPO and PPO as an approximate policy iteration (PI). Consider the 

following approximate PI:

where the argmax is compted approximately.

This fails because                                               requires 𝜋𝜃𝑘+1 ≈ 𝜋𝜃𝑘. In general, importance 

sampling estimators become inaccurate when the sampling distribution 𝜋𝜃𝑘 is not too far 

from the nominal distribution 𝜋𝜃𝑘+1. Therefore, a trust-region or proximal mechanism is 

needed, and this leads to TRPO as PPO.

(The first derivation covered earlier is the derivation from the TRPO and PPO papers. This 

is an alternate interpretation of the methods.)
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Avoiding the baseline function?

In TRPO and PPO, we must learn two neural networks: 𝜋𝜃 and 𝑉𝜙.

Learning the baseline function (also called the critic function) 𝑉𝜙 is an additional layer of 

complexity, and it would be better if we can avoid it.

But let us recall why 𝑉𝜙 is needed: We want to assign appropriate sign of the gradient 

signals based on whether the action is better than what the current policy prescribes.

143



PPO without baseline

Consider the undiscounted MDP with no 𝛾-trick. Assume a non-zero reward is collected only 

at the end of the episode. In this case, ෠𝑄𝑡
TD ∞ = 𝑟 for 𝑡 = 0,1, … , 𝑇 − 1, where 𝑟 = 𝑟𝑇−1 is the 

reward obtained at the end, as the episode terminates.

Then, PPO without a baseline function would be:

144

Without the baseline, this will not work!

Variance of the obejctive will be too large.



Group Relative Policy Optimization

Again consider the undiscounted MDP with no 𝛾-trick. Assume a non-zero reward is 

collected only at the end of the episode.

Group Relative Policy Optimization (GRPO) replaces the baseline function with a 

BatchNorm-style normalization of the rewards.

145
Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang, M. Zhang, Y. K. Li, Y. Wu, and D. Guo, DeepSeekMath: Pushing the limits of mathematical rea

soning in open language models, arXiv, Feb. 2024.



Advantage estimate interpretation

The advantage 𝐴𝜋 𝑠𝑡 , 𝑎𝑡 measures how good is action 𝑎𝑡 compared to the average action 

selected by 𝜋.

The GRPO advantage estimate is not an unbiased estimate of 𝐴𝜋 𝑠𝑡 , 𝑎𝑡 .

Qualitatively, however, መ𝐴 𝑖
GRPO measures similar information: The trajectory with action 𝑎𝑡

ሺ𝑖)

yielded reward 𝑟 𝑖 , and how good is this compared to the other actions selected by 𝜋, 

which yielded rewards 𝐫?

DeepSeek’s GitHub uses 𝜀 = 10−4. If std 𝐫 = 0, then መ𝐴 𝑖
GRPO = 0 and no update happens. 

146



GRPO: Caveats

GRPO should not yet be considered a general deep RL method. Its effectiveness has not 

been tested outside of the LLM applications

GRPO is not the first modern deep RL method that forgoes a baseline or critic function.#

It is not obvious that GRPO is the best (or a good enough) algorithm to do RL without a 

baseline or critic model, even restricted to LLMs. GRPO got a lot of attention due to its use 

in training DeepSeek-R1, but better approaches may replace GRPO in future work. 

Improving upon GRPO will likely be an active area of research.
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#Z. Li, T. Xu, Y. Zhang, Z. Lin, Y. Yu, R. Sun, Z.-Q. Luo, ReMax: A simple, effective, and efficient reinforcement learning method for aligning large languag

e models, ICML, 2024.



Why not other deep RL algorithms?

Most RL-LLM methods use PPO or variants of PPO like GRPO. Why not other choices?

Key properties of the RL-LLM setup:

• LLMs have finite action space (# of possible tokens). Action space is not continuous.

• A strong pre-trained large language model 𝜋𝜃, which serves as a suboptimal but 

reasonably good initial policy for the RL, is absolutely crucial. Tabula rasa RL methods 

(randomly initialized 𝜋𝜃) do not work.

• We expect an RL method for RL-LLM to work only if it can effectively utilize the pre-

trained LLM 𝜋𝜃.
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Why not other deep RL algorithms?

DQN and Rainbow DQN are deep RL methods parameterizing 𝑄𝜙 as a neural network and 

learning 𝑄𝜙 ≈ 𝑄⋆ through the Bellman optimality equation.

The policy 𝜋𝜙 is implicitly derived from the greedy rule 𝜋𝜙 𝑠 = argmax
𝑎∈𝒜

𝑄𝜙 𝑠, 𝑎 . There is no 

explicitly parameterized policy. The strength of 𝜋𝜙 hinges on the accuracy of 𝑄𝜙 ≈ 𝑄⋆.

There does not seem to be a good way for DQN to utilize a pre-trained policy.
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V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, Playing Atari with deep reinforcement learning, arXiv, 2013.

M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, H. Ostrovski, W. Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver, Rainbow: Combining improvements 

in deep reinforcement learning, AAAI, 2018.



Why not other deep RL algorithms?

DDPG, TD3, and SAC are methods with dual interpretations as deterministic policy gradient

methods (qualitatively quite different from the stochastic policy gradient methods) and Q-

learning methods. These methods are designed for continuous action spaces, although the

variant ‘SAC discrete’ applies to discrete action spaces.

These methods train both 𝜋𝜃 and 𝑄𝜙. Different from PPO, 𝜋𝜃 is not trained directly to 

maximize reward. Rather 𝜋𝜃 is trained to satisfy the relation 𝜋𝜃 𝑠 ≈ argmax
𝑎∈𝒜

𝑄𝜙 𝑠, 𝑎 .

In PPO, rewards directly influence the updates of 𝜋𝜃. In DDPG, TD3, and SAC, rewards 
influence 𝑄𝜙 which in turns influences 𝜋𝜃. So, the updates on 𝜋𝜃 depend on the rewards 

only through 𝑄𝜙.

Without a good initialization for 𝑄𝜙 ≈ 𝑄⋆, a pre-trained 𝜋𝜃 alone seems difficult to utilize.

S. Fujimoto, H. van Hoof, and D. Meger, Addressing function approximation error in actor-critic methods, ICML, 2018.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, Continuous control with deep reinforcement learning, ICLR, 2016.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor, ICML (and arXiv v2), 2018.

P. Christodoulou, Soft actor-critic for discrete action settings, arXiv, 2019.



AlphaGo, Test-Time Compute, and 
Expert Iteration
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2-player zero-sum games

In a 2-player zero-sum game, two players compete against each other and one player’s 

reward is precisely the loss of the other player. 

In a simultaneous move game, the 2 players make their moves simultaneously.

E.g., rock paper scissors.

In a sequential (turn-based) move game, the 2 players make their moves in turns.

E.g., chess and go. However, we will think of sequential move games as simultaneous 

move games where the two players each offer policies 𝜋 1 and 𝜋 2 at the start of the 

game. (In real life game competitions, a human offers their brain  at the start of the game.) 

These policies 𝜋 1 and 𝜋 2 can strategize and adapt to the opponents’ moves. They can 

also make randomized decisions. 
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Minimax optimization

In a minimax optimization problem, we minimize with respect to one variable and maximize 
with respect to another:

We say 𝜃⋆
1 , 𝜃⋆

2
is a solution* to the minimax problem if it is a Nash equilibrium:

In other words, unilaterally deviating from 𝜃⋆
1

decreases the value of 𝑅 while unilaterally 

deviating from 𝜃⋆
2

increases the value of 𝑅.

Standard RL is posed as a maximization problem. However, adversarial training and two-
player zero-sum games are posed as minimax optimization problems.

153*There are other broader definitions of a “solution” in minimax optimization problems. Our definition is, in a sense, the strictest definition.



Example: Rock paper scissors

Consider the game of rock paper scissors with randomized strategies 𝑝𝜃 1 and 𝑝𝜃 2 and 

expected payoff 𝑅 𝜃 1 , 𝜃 2 :

where 𝜇 is the softmax function. Of course, the Nash equilibrium occurs at
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Minimax optimization with gradients

In deep learning, we solve minimax optimization algorithms with first-order methods using 

stochastic gradients.

However, convergence of minimax optimization should not be taken for granted, and much 

more delicate care is needed than min optimization. The training of GANs is famously tricky. 

We will also see that the minimax training of the rock paper scissors examples is a highly 

unstable process.

RL training is already more unstable than supervised learning. Multi-agent RL (2-agent in 

our case) is even more delicate than non-RL minimax training.
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Simultaneous gradient ascent-descent
Simultaneous gradient ascent-descent (SimGAD) is one 

of the simplest minimax optimization algorithms, but it 

fails to converge on rock paper scissors. In fact, SimGAD

is expected to diverge on any zero-sum game.
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Cycling dynamics where payers countering the counter: Player 1 plays rock → Player 2 

plays paper → Player 1 plays scissors → Player 2 plays rock → Player 1 plays paper → ⋯

Using the notation                  :   



Extragradient method
For the extragradient (EG) method, imagine you and 

the opponent make regular 1-step updates, evaluate 

the gradient from there, and use that gradient to 

commit to the update. Closely related to learning with 

opponent-level awareness (LOLA).

EG does converge for 2-player zero-sum games.

157
G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Ekonomika i Matematicheskie Metody, 1976.

J. N. Foerster, R. Y. Chen, M. Al-Shedivat, S. Whiteson, P. Abbeel, and I. Mordatch, Learning with opponent-learning awareness, AAMAS, 2018.



Anchoring and weight decay
Anchored simultaneous gradient ascent-

descent adds the “anchor” mechanism that 

can also be understood as weight decay. 

(Anchor doesn’t have to be at 0, but weight 

decay shrinks toward 0.) This does converge 

on 2-player zero-sum games.

158
E. K. Ryu, K. Yuan, and W. Yin, Ode analysis of stochastic gradient methods with optimism and anchoring for minimax problems, arXiv, 2019.

T. Yoon and E. K. Ryu, Accelerated algorithms for smooth convex-concave minimax problems with O(1/k2) rate on squared gradient norm, ICML, 2021.



Antisymmetric payoff games

We say a 2-player zero-sum game has antisymmetric payoff if 

In this case, the Nash equilibrium at 𝜃⋆, 𝜃⋆ for some 𝜃⋆ and 

Also,

Therefore, SimGAD simplifies to
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Antisymmetric payoff games

SimGAD with weight decay simplifies to

So a gradient ascent is done on player 1 with player 1 is playing against itself.

(Player 2 is a copy of player 1.)
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Chess and go

Chess and go are 2-player zero-sum perfect information games with antisymmetric payoff.

Technically, the games are not perfectly (anti)symmetric, since one player moves first. (We 

can make game symmetric if first move is given to the players randomly.)

However, because the game is mostly symmetric, we will train one agent to play both 

players. So, there is only one policy 𝜋𝜃.

(In a highly asymmetric 2-player game, you would train 2 policies for each player.)
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Chess, shogi, and go

2-player perfect-information zero-sum turn-based games.

The top human chess player was defeated in 1997 by Deep Blue.

The top human shogi player was defeated in 2017 by Elmo.

The top human go player was defeated in 2016 by AlphaGo.
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AlphaGo and AlphaGo Zero

AlphaGo# and AlphaGo Zero% combine search and learning to achieve super-human play.

These methods represent landmark scientific accomplishments in AI, and contain insights 

generalizable beyond the domains of games.

However, the exact techniques of MCTS has not yet been successfully adapted to the setup 

of LLM reasoning.
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AlphaGo training step 1: 𝜋𝜃
IL

Train policy 𝜋𝜃
IL with imitation learning. From expert play record, 

construct dataset

𝒟 = 𝑠, 𝑎 board position 𝑠 and next move 𝑎 from expert games

Then, train the policy to predict the expert players’ next move with loss

ℒ 𝜃 = ෍

𝑠,𝑎 ∈𝒟

ℓCE 𝜋𝜃
IL ⋅ 𝑠 , 𝑎

Neural network architrecture is a 13-layer conv net. (Architecture is 

later improved in AlphaGo Zero.)

𝜋𝜃
IL cannot yet beat expert humans.
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AlphaGo training step 2: 𝜋𝜃
RL

Train policy 𝜋𝜃
RL through self-play. (i) Initialize 𝜋𝜃

IL = 𝜋𝜃
RL. (ii) Play 

𝜋𝜃
RL vs. 𝜋𝜃−

RL

where 𝜃− is an earlier version of the parameter 𝜃. Choosing 𝜃− from a collection of past 

values stabilize training. Let 𝑧 = ±1 indicate whether 𝜋𝜃
RL won (𝑧 = +1 means 𝜋𝜃

RL won).

(iii) Perform undiscounted (𝛾 = 1) policy gradient update on

where first move (black or white stone) is randomized. Obtain an unbiased estimate of 

with the deep policy gradient method gradient (without a baseline function)

Here, the 𝑠𝑡 , 𝑎𝑡 𝑡=0
𝑇−1 is the board states provided to and actions taken by 𝜋𝜃

RL.

(Of course, 𝜋𝜃
RL should not be penalized or rewarded by actions taken by 𝜋𝜃−

RL.)
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AlphaGo training step 2: 𝜋𝜃
RL

Same neural network architecture as 𝜋𝜃
IL.

𝜋𝜃
RL vs 𝜋𝜃

IL wins 80%, but still cannot defeat human experts.

In principle, if NN is very large and self-play is done for very long, 

then 𝜋𝜃
RL should converge to perfection (and beat all humans).

Under practical compute constraints, we need something more.
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AlphaGo training step 3: 𝑉𝜙

Train value network

𝑉𝜙 ≈ 𝑉𝜋𝜃
RL
≈ 𝑉⋆

use standard Monte Carlo policy evaluation method.

Self-play with the strongest policy 𝜋𝜃
RL to collect 𝑠, 𝑧 pairs, where 𝑠 is 

a board state and 𝑧 = ±1 is whether player 1 goes on to eventually 

win or lose. Then, stochastic gradient descent with
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AlphaGo training step 3: 𝑉𝜙

What about 𝑄? Should we also learn 𝑄𝜙 ≈ 𝑄𝜋𝜃
RL
≈ 𝑄⋆?

Note, the dynamics is deterministic, with the transitioned state 𝑠′ given 

by a function 𝑓 ∶ 𝒮 ×𝒜 → 𝒮. So with 𝑠′ = 𝑓 𝑠, 𝑎 , we have

𝑄⋆ 𝑠, 𝑎 = −𝑉⋆ 𝑓 𝑠, 𝑎

where the negative sign reflects the fact that the turn passes to the 

opponent, and both the Q- and V-value functions are defined with 

respect to the player whose turn it is to move.
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AlphaGo training step 4: 𝜋𝜓
fast

Train a faster rollout policy 𝜋𝜓
fast with imitation learning.

Because 𝜋𝜓
fast uses a lightweight architecture, it has significantly faster inference time:

~2 microseconds for 𝜋𝜓
fast for compared to ~3 milliseconds for 𝜋𝜃

RL.

So more than 1000x faster.

Not a strong policy, but it does understand the most basic principles.
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Neural-net-only play

We have two reasonable options for neural-net-only play.

Option 1. Play with 𝜋𝜃
RL.

Option 2. Play with the greedy policy argmax
𝑎∈𝒜

𝑄𝜙 𝑠, 𝑎 .

In principle, raw neural nets could beat humans with an exorbitant amount of compute, and 

we can estimate how much this would be. (More on this later.) However, under practical 

compute constraints, pure neural-net-based play is not enough.
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Pure tree search

Consider all possible future board states that can be played. This
approach is called minimax tree search, since I try to maximize
my reward and my opponent tries to minimize my reward.

At every board state, the optimal action is

argmax
𝑎∈𝒜

𝑄⋆ 𝑠, 𝑎 = argmin
𝑎∈𝒜

𝑉⋆ 𝑓 𝑠, 𝑎

Without learning, we don’t know 𝑉⋆ 𝑠 for most states. However, if 𝑠 is terminal, then we know 
𝑉⋆ 𝑠 based on who won the game. So, expand the tree until the game ends, and recursively 
backtrack (dynamic programming) to find moves that take you to a winning board state.

This pure search-based method does not require any learning. However, this strategy is 
infeasible for moderately sized games because the computation size exponentially blows up.
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Humans combine systems 1 and 2

It is instructive to reflect on how we humans play.

Human players have intuition on a set of reasonable moves and how advantageous a board 

state is. This intuition is corresponds to system 1 thinking and is analogous to what neural 

networks learn.

Humans do not immediately act on these instincts, and instead deliberate through the future 

ramifications of moves. This deliberation corresponds to system 2 thinking and it analogous 

to search.

Human deliberation is not exhaustive. We do not consider all possible actions (limited 

width), and we do not mentally simulate until the end of the game (limited depth).

AlphaGo performs neural guided search through MCTS; Use neural networks to guide and 

focus the search on the relevant region of the game space.

172



Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS) performs a neural guided search, selectively exploring 

parts of the tree based on the guidance of neural networks.

Principle #1: Gradually build up the tree, making it wider and deeper until we exhaust the 

given computational budget.

173



Monte Carlo Tree Search (MCTS)

Principle #2: Control the width of the tree by only considering “good” actions, defined as 

actions 𝑎 ∈ 𝒜 such that

(a) 𝜋𝜃
IL 𝑎 𝑠 or 𝜋𝜃

RL 𝑎 𝑠 is high (actions that 𝜋𝜃 would play)

(b) 𝑄𝜙 𝑠, 𝑎 is high (actions that 𝑄𝜙 thinks is good) 

(c) we have not yet deliberated on (consider a set of actions instead of focusing on the 

presumed top choice).

Solution: At every node 𝑠𝑡, choose the action 𝑎𝑡 based on

where 𝜌 > 0 is a hyperparameter, 𝜋 = 𝜋𝜃
IL or 𝜋 = 𝜋𝜃

SL, and 𝑁 𝑠𝑡 , 𝑎 is the number of times 

the action has already been considered in the tree search.
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Monte Carlo Tree Search (MCTS)

Principle #3: Starting at 𝑠𝑡 consider a sequence of states based on the actions selected as 

previously described:

𝑠𝑡 ↦ ǁ𝑠𝑡+1 ↦ ǁ𝑠𝑡+2 ↦ ⋯ ↦ ǁ𝑠𝐿

We will have multiple leaf nodes ǁ𝑠𝐿, and ǁ𝑠𝐿 will likely not reach the end of the game. 

(Lookahead is ~30 moves, i.e., ~60 plies, deep.) So, truncate the depth of the search by 

approximating 𝑉⋆ ǁ𝑠𝐿 in the following two ways:

(a) Evaluate value network 𝑉⋆ ǁ𝑠𝐿 ≈ 𝑉𝜙 ǁ𝑠𝐿

(b) Play 𝑁 rollouts (until the end of the game) starting from ǁ𝑠𝐿 using the fast policy 𝜋𝜓
fast and 

form the Monte Carlo estimate :

(c) Form a weighted average (50-50 weight) of the estimates of (a) and (b).
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Summary of MCTS

• Consider moves based on intuition encoded by 𝜋𝜃
IL or 𝜋𝜃

RL and 𝑄𝜙 and construct a 

lookahead tree.

• Assess the strength of the leaf node position ǁ𝑠𝐿 by evaluating 𝑉𝜙 and by quickly playing 

until the end of the game using 𝜋𝜓
fast.

• Based on the estimate of ෨𝑉 on the leaf node positions, backtrack and assign strength to 
each action at root node 𝑠𝑡. 

• Commit to the best action 𝑎𝑡 after this deliberation.

(Common principle of planning and control: Planning takes into account for many future 

steps, but only commit to one step. Once you reach the next step, do the planning again.)

176



Bibliography

The Monte Carlo Tree Search (MCTS) of AlphaGo is really the classical MCTS + additional enhancements

The ideas of MCTS was first described in 

• B. Abramson. The Expected-Outcome Model of Two-Player Games, Columbia University  Ph.D. Thesis, 
1987.

and was first applied to the game of go in

• B. Brügmann, Monte Carlo Go, 1993.

The name “MCTS” was first coined in

• R. Coulom, Efficient selectivity and backup operators in Monte-Carlo tree search, Computers and 
Games, 2006.

The action selection rule                                                      is called Upper Confidence bounds applied to 
Trees (UCT) in analogy to the UCB selection rule for the multi-armed bandit setting. UCT was proposed by

• K. Levente and C. Szepesvári, Bandit based Monte-Carlo planning, European Conference on Machine 
Learning, 2006. 177



Why MCTS?

The MCTS algorithm is complicated. Why not do pure RL 

and just use 𝜋𝜃
RL?

• Without, 𝜋𝜃
IL, the RL training of 𝜋𝜃

RL makes no progress.

• Ablation studies show that rollouts (using 𝜋𝜓
fast), value 

network (𝑉𝜙), and policy network (𝜋𝜃
IL or 𝜋𝜃

RL) are all 

necessary.
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neural networks and tree search, Nature, 2016.
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Improving AlphaGo to AlphaGo Zero

Problem: Can we eliminate the reliance on imitation learning and human expert play data?

Technical improvements:

• The neural network (NN) architecture of AlphaGo relied on design principles that were 

outdated by the time the AlphaGo paper was published. Use better architecture?

• AlphaGo training does not use search. MCTS is employed at inference time to produce a 

stronger agent. Can we use this stronger agent during training?

These improvements led to AlphaGo Zero.
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Improved architecture of AlphaGo Zero

AlphaGo used 13-layer convnets for 𝜋 and 𝑉.

AlphaGo Zero used a 40-layer convnet with BatchNorm and residual connections. Also, the 

policy 𝜋𝜃
EI and value function 𝑉𝜃 are two heads with a shared base:

𝜋𝜃
EI 𝑠 , 𝑉𝜃 𝑠 = 𝑓𝜃 𝑠

Sharing the base makes sense because the two networks 𝜋𝜃
EI and 𝑉𝜃 would use similar 

features.

Takeaway: Neural network architecture matters.
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Training of AlphaGo Zero

Perform MCTS with 𝜋𝜃
EI and 𝑉𝜃. Perform self-play and improve 𝜋𝜃

EI, 𝑉𝜃 = 𝑓𝜃.

(No rollouts are used, so 𝜋𝜓
fast is not needed.)

Expert iteration:

1.  Self-play with MCTS 𝜋𝜃
EI, 𝑉𝜃 for many games.

• Form action dataset 𝒟𝑎 = 𝑠𝑡 , 𝑎𝑡 (actions from MCTS are stronger than 𝜋𝜃
EI)

• Form win/loss dataset 𝒟𝑤 = 𝑠𝑡 , 𝑧

2. Train 𝜋𝜃
EI to mimic 𝒟𝑎 and 𝑉𝜃 to fit 𝒟𝑤.

Key insight of expert iteration: Given a NN, improve the policy with NN+search, and train the NN 
to mimic the improved policy. Can be thought of as extensions of imitation learning and policy 
iteration. Much faster learning compared to pure RL.
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AlphaGo Zero results

The expert iteration of AlphaGo Zero significantly simplifies the approach of AlphaGo.

Results: Much stronger policy trained with no human expert data or any handcrafted human 

knowledge.
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The tale of computer poker

Cepheus.

• M. Bowling, N. Burch, M. Johanson, O. and Tammelin, Heads-up limit hold'em poker is 
solved, Science, 2015.

Libratus. Spectacular victory in public match against professional players in 2017. 

• N. Brown and T. Sandholm, Superhuman AI for heads-up no-limit poker: Libratus beats 
top professionals, Science, 2018.

Pluribus. Spectacular victory in public match against professional players in 2019.

• N. Brown and T. Sandholm, Superhuman AI for multiplayer poker, Science, 2019.

• Jason Les: "very hopeless. You don't feel like there’s anything you can do to win.”

• Chris Ferguson: "Pluribus is a very hard opponent to play against. It's really hard to pin 
him down on any kind of hand.”

• Jimmy Chou: "Whenever playing the bot, I feel like I pick up something new to 
incorporate into my game."
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Test-time scaling with computer poker

While the poker bots utilize learning, the 

capability is primarily due to search.

The search methodology is quite 

different from MCTS. How to carry out 

search is often domain specific.

By leveraging search (test-time 

compute), one can achieve capabilities 

that would otherwise require an 

exorbitant amount of train-time compute.
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Train- vs. test-time compute

In fact, no raw neural 

network has yet to 

defeat top human 

players in go.

About 1000x train-time 

compute would be 

needed based on a 

back-of-the-envelope 

computation.

185N. Brown, Learning to Reason with LLMs, Talk at Simons Institute, Sept. 26, 2024.



Mathematically, why does test-time 
compute work?
A pre-trained policy must handle all possible game states. Finding a perfect policy, 

therefore, amounts to solving the entire game upfront.

Tree search considers only the game states that can occur given the current state. I.e., 

time-time compute solves for a much smaller subset of the overall game.
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Takeaways from games

By leveraging test-time compute, one can spend extra compute on the given problem 

instance and deliberate to find good actions that would be otherwise impossible to find.

In domains with verifiable answers (win or lose in the case of games), expert iteration can 

significantly accelerate training compared to pure RL.
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