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Natural language processing (NLP)

Natural language processing (NLP) is concerned with computationally processing natural 

(human) languages. The goal is to design and/or train a system that can understand, and 

process information written in documents.

A natural language or ordinary language is any language that has evolved naturally in 

humans through use and repetition without conscious planning or premeditation such as 

English or Korean. They are distinguished from formal and constructed languages such as 

C, Python, Lojban, and Esperanto.

NLP was once a field that relied on insight into linguistics, but modern NLP is dominated by 

data-driven deep-learning based approaches. 
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Task: Sentiment analysis

Given a review 𝑋 ∈ 𝒳 on a reviewing website, decide whether its label 𝑌 ∈ 𝒴 = −1,0,+1 is 

negative (−1), neutral (0), or positive (+1).

Eg.

Review: I do not like this movie 

Sentiment: Negative

Review: I love this movie

Sentiment: Positive

Input is variable-length. Output is fixed-size.
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Sentiment analysis with BOW

A bag of words (BOW) model makes the prediction with a linear combination of tokenized 

word. This is a simple baseline.

More generally “bag of words” refers to models that view a sentence as an unordered 

collection (bag) of words. Completely disregarding word order is a significant drawback of 

the method.
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Sequence (seq) notation

Let 𝒰 be any set. Define 𝑘-tuples of 𝒰 as

𝒰𝑘 = 𝑢1, … , 𝑢𝑘 𝑢1, … , 𝑢𝑘 ∈ 𝒰

The Kleene star notation

𝒰∗ =ራ

𝑘≥0

𝒰𝑘 = 𝑢1, … , 𝑢𝑘 𝑢1, … , 𝑢𝑘 ∈ 𝒰, 𝑘 ≥ 0

denotes sequences of 𝒰 of arbitrary finite length.

5Although unimportant in most practical setups, we define the empty sequence is a valid sequence of length 0 and write ∈ 𝒰∗.



Characters

Let 𝒞 be a set of “characters”.

• 𝒞 can be the set of English characters, space, and some punctuation.

• 𝒞 can be the set of all unicode characters.

Let 𝒳 = 𝒞∗ be the set of finite-length sequence of characters, i.e., 𝑋 ∈ 𝒳 is raw text.

(The definition and scope of “characters” is not obvious, and different choices present 

different trade-offs. The modern approach is the view each “byte” of the unicode encoding to 

be the indivisible basic unit. More on this when we cover byte pair encodings.)
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Tokenization

Neural networks perform arithmetic on vectors and numbers, so tokenizers convert text into 

a sequence of vectors.

Given 𝑋 = 𝑐1, … , 𝑐𝑇 ∈ 𝒞∗, a tokenizer is a function 𝜏 ∶ 𝒞∗ → ℝ𝑛 ∗ such that

𝜏 𝑐1, 𝑐2, … , 𝑐𝑇 = 𝑢1, 𝑢2, … , 𝑢𝐿

where 𝑢1, 𝑢2, … , 𝑢𝐿 ∈ ℝ𝑛. 𝑇 and 𝐿 are often not the same. (Usually 𝑇 ≥ 𝐿.)Sometimes 𝜏 is 

fixed, and sometimes it is trainable (e.g. word2vec).

For text generation, we want the tokenizer to be invertible.
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Character-level tokenizer v.0

Example: 𝒞 = 𝑎, 𝑏,… , 𝑧,_,.,?,! and 

𝜏 𝑋 = 𝜏 𝑐1, … , 𝑐𝐿 = 𝜏 𝑐1 , … , 𝜏 𝑐𝐿
𝜏 𝑎 = 1, 𝜏 𝑏 = 2, … 𝜏 𝑧 = 26, …

So 𝑛 = 1 and 𝐿 = 𝑇.

This doesn’t work very well.

We want distinct tokens to be vectors of distinct directions. Neural networks are better at 

distinguishing directions than magnitudes.
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Character-level tokenizer v.1

Example: 𝒞 = 𝑎, 𝑏,… , 𝑧,_,.,?,!

𝜏 𝑋 = 𝜏 𝑐1, … , 𝑐𝐿 = 𝜏 𝑐1 , … , 𝜏 𝑐𝐿

𝜏 𝑎 =

1
0
0
⋮
0

, 𝜏 𝑏 =

0
1
0
⋮
0

, … 𝜏 ! =

0
0
0
⋮
1

So 𝑛 = 30 and 𝑇 = 𝐿. The output vectors are called one-hot-encodings as only one element 

of the encoded vector is nonzero (hot).
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Word-level tokenizer

Examples: 𝒞 = 𝑎, 𝑏,… , 𝑧,_ (so English letters and space) and 𝒲 = English words

𝜏 𝑋 = 𝜏 𝑐1, … , 𝑐𝑇 = 𝜏 𝑤1, … , 𝑤𝐿 = 𝜏 𝑤1 , … , 𝜏 𝑤𝐿

𝜏 ‘aardvark’ =

1
0
0
⋮
0

, 𝜏 ‘ability’ =

0
1
0
⋮
0

, … , 𝜏 ‘Zyzzyva’ =

0
0
0
⋮
1

, …

where 𝑤1, … , 𝑤𝐿 ∈ 𝒲. So 𝑛 = 𝒲 = size of dictionary and 𝐿 ≤ 𝑇.

I.e., this is a one-hot encoding of words.
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End-of-string (EOS) token

Given 𝑋 ∈ 𝒳 and its length 0 ≤ 𝑇 < ∞, we equivalently consider a special “end-of-string” 
token <EOS> to be the final 𝑇 + 1 -th element. In other words,

𝑋 = 𝑐1, 𝑐2, … , 𝑐𝑇 = 𝑐1, 𝑐2, … , 𝑐𝑇 , <EOS>

for any 𝑋 ∈ 𝒳, where 𝑐1, … , 𝑐𝑇 ∈ 𝒞.

We use the same notation for elements in 𝒰∗, i.e.,

𝑢1, 𝑢2, … , 𝑢𝐿 = 𝑢1, 𝑢2, … , 𝑢𝐿 , <EOS> ∈ 𝒰∗
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Discussion on tokenizers

Q) Advantage of word-level tokenizer over character-level tokernizer?

A) Shorter tokenized sequence. Uses dictionary. (Model need not learn words from scratch.)

Q) Advantage of character-level tokenizer over word-level tokernizer?

A) Can learn to handle misspellings (‘learning’ ≈ ‘lerning’) and inflections (‘running’ = ‘run’ + 

‘ing’). Better for multi-language models. (Dictionaries of multiple languages is too large.)

Q) Are there other tokenizers?

A) Word2Vec and subword tokenization (byte-pair encoding) are trained tokenizers.

More on these later.
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Basic BOW implementation

Let 𝜏 be a word-level tokenizer with dictionary 𝒲.

For 𝑋 = 𝑤1, … , 𝑤𝐿 the bag-of-word (BOW) model 𝑓𝜃 is

𝑓𝜃 𝑋 = 𝑏 + 𝑎 ⋅෍

ℓ=1

𝐿

𝜏 𝑤ℓ = 𝑏 + 𝑎 ⋅෍

ℓ=1

𝐿

𝜏 𝑋
ℓ

where 𝜃 = 𝑎, 𝑏 ∈ ℝ𝑛+1 is the trainable parameter.
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Sentiment analysis with DNN

Modern state-of-the-art NLP methods are based on deep neural networks (DNN).
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Task: Language model (LM)

A language model (LM) achieves one or two of the 

following goals.

Goal 1: Assign probabilities/likelihoods to sentences.

Goal 2: Generate likely (coherent) sentences.

Why is an LM useful? Prior to ChatGPT, this

was not at all an obvious question.
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(This definition excludes encoder-only transformer models such as BERT, but we will not be overly 

concerned with these definitions.)
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The best things in life are free <EOS>

probability

I have ever done

1. Traveling to different countries.

2. Volunteering to help those in need.

3. Graduating from college.

4. Starting my own business.

5. Taking a gap year to explore the world.

6. Learning a new language <EOS>

Some Complicated 

Neural Network

The best things

…



Applications of LM: Voice-to-text

In a voice-to-text system, two interpretations can be auditorily ambiguous but semantically 

not ambiguous. An LM can determine which interpretation is more likely.

“The parcel was secured by grey tape.” (✓)

“The parcel was secured by great ape.”

“he was a lighthouse keeper” (✓)

“he was a light housekeeper”

A similar application with spelling correction.
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professor@university.edu

Meeting Arrangement

Meeting Arrangement

Dear professor,

What would be the right time to contact you?

I will be looking forward to hearing from you

Applications of LM: Autocomplete

An autocomplete system can assist writing by suggesting likely completions of a sentence.
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Applications of LM: SSL pre-training and 
universal interface
Training a NN to be a language model is a useful pretext task for transfer learning in the 

sense of self-supervised learning (SSL). Pre-trained language models serve as foundation 

models that can be fine-tuned for other downstream tasks. 

• More on this when we talk about ELMo, BERT, and GPT 1.

A sufficiently powerful LM can serve as a universal language-based interface to the 

capabilities that the language model has learned.

• More on this when we talk about T5 and GPT3.
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Probabilities with sequences

Assume a sequence

𝑢1, 𝑢2, … , 𝑢𝐿 = 𝑢1, 𝑢2, … , 𝑢𝐿 , <EOS> ∈ 𝒰∗

is generated randomly, i.e., we can assign a probability

ℙ 𝑢1, 𝑢2, … , 𝑢𝐿 , <EOS> ∈ 0,1

The sequence length 𝐿 is also a random variable. Imagine 𝑢1, 𝑢2, … being generated 

sequentially. Given 𝑢1, 𝑢2, … , 𝑢ℓ, the next token may be 𝑢ℓ+1=<EOS> and the sequence 

terminates. Otherwise, 𝑢ℓ+1 ≠ <EOS> and the generation continues to 𝑢ℓ+2.
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Probability notation with <EOS>

Clarification) Given 0 ≤ 𝐿 < ∞ and 𝑢1, 𝑢2, … , 𝑢𝐿 ∈ 𝒰,

is the probability that a random sequence in 𝒰∗ has values 𝑢1, 𝑢2, … , 𝑢𝐿 for the first 𝐿
elements and then terminates, i.e., 𝑢𝐿+1=<EOS>.

On the other hand, if 𝑢1, 𝑢2, … , 𝑢𝐿 ∈ 𝒰,

is the probability that a random sequence in 𝒰∗ has values 𝑢1, 𝑢2, … , 𝑢𝐿 for the first 𝐿
elements (and none of them are <EOS>) but 𝑢𝐿+1 but may or may not be <EOS>. In particular, 
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Conditional probabilities with sequences

With the chain rule (conditional probability), we have

where ℙ 𝑢ℓ 𝑢1, … , 𝑢ℓ−1 is the probability of 𝑢ℓ conditioned on the past. (For ℓ = 1, we mean 

ℙ 𝑢1 𝑢1, … , 𝑢0 = ℙ 𝑢1 .) So, the probability of the entire sequence 𝑢1, 𝑢2, … , 𝑢𝐿 =
𝑢1, 𝑢2, … , 𝑢𝐿 , <EOS> is the product of the conditional probabilities.

To clarify, we have made no assumptions on the sequence probabilities. (We have not 

assumed that anything is Markov or that anything is independent.)
21



Cond. prob. with continuous sequences

If sequence elements 𝑢𝑡 are continuous random variables, then we need density functions 

instead of discrete probability mass functions. However, calculations are essentially the 

same, so we do not repeat it.

In NLP, vocabulary is finite, so consider seqs with discrete elements.

Some RL problems have continuous states and rewards.

For image patches (vision transformers), seq elements are (essentially) continuous.
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Autoregressive (AR) modelling

An autoregressive model of a sequence learns to predict 𝑢ℓ given the past ovservations 

𝑢1, … , 𝑢ℓ−1. Goal is to learn a model 𝑓𝜃 that approximates the full conditional distribution 

𝑓𝜃 𝑢ℓ; 𝑢1, … , 𝑢ℓ−1 ≈ ℙ 𝑢ℓ 𝑢1, … , 𝑢ℓ−1

(Etymology is ‘auto’ ≈ ’self’ and ‘regress’ ≈ ’fit’.)
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Sequence likelihood with AR model

Given a trained autoregressive model 𝑓𝜃 𝑢ℓ; 𝑢1, … , 𝑢ℓ−1 ≈ ℙ 𝑢ℓ 𝑢1, … , 𝑢ℓ−1 , we can 

(approximately) compute the likelihood of a sequence 𝑢1, … , 𝑢𝐿  with
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Sequence generation with AR model

Given a trained autoregressive model 𝑓𝜃 𝑢𝑡; 𝑢1, … , 𝑢ℓ−1 ≈ ℙ 𝑢ℓ 𝑢1, … , 𝑢ℓ−1 , and an un-

terminated sequence 𝑢1, … , 𝑢ℓ−1 (if ℓ = 1, then start generation from nothing) we can 

generate 𝑢1, … , 𝑢ℓ−1, 𝑢ℓ, … , 𝑢𝐿 ∼ ℙ 𝑢𝑡 , … , 𝑢𝐿 , 𝑢𝐿+1=<EOS> 𝑢1, … , 𝑢ℓ−1 by sampling

which is justified by
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Modern NLP and sequence processing

Modern NLP solves various tasks, especially language modelling, with deep neural networks.

We need a general approach to process sequences (variable-length data) as inputs and 

outputs. We start with RNNs and then move on to transformers.

Why still learn RNNs? Although transformers have been replacing RNNs and CNNs in recent 

years, RNNs and CNNs are not yet obsolete. Also, much of the architecture design of 

transformers are inspired by practices inherited from the RNN era. One still needs to know 

RNNs to fully understand modern NLP.
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Learning with variable-sized inputs

In image classification, the input 𝑋 ∈ ℝ3×𝑛×𝑚 is of fixed size and processed by a deep CNN.

We now want to process variable-sized input 𝑋 ∈ 𝒞∗ with a neural network.

Simple idea: Zero-pad up to length of longest sequence.

• + This can work as a quick and temporary solution.

• − Does not scale well for long sequences if fully-connected layer is used.

• − Maximum length must be specified.
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Process one input per layer

28

Idea: Process one input per layer

• + Shorter sequences require fewer layers to evaluate.

• + Each layer is much smaller than a giant layer one would need to process the whole 

sequence at once.

• − Total number of weights and biases increase with maximum sequence length.

• − Exploding/vanishing gradients.



Weight sharing

Idea: What if the parameters are the same (use weight sharing) for all layers?

• + Can process an arbitrary number of inputs.

• − Exploding/vanishing gradients.

This is called a recurrent neural network (RNN).
29
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Recurrent neural networks (RNN)

More generally, an RNN has the form

where ෨𝜃, 𝐴, and 𝑏 are the trainable parameters.

The 𝑞෩𝜃 is called the recurrent function.

The exploding/vanishing gradient problem still remains.
RNNs work only if 𝑞෩𝜃 is chosen to mitigate this problem.

30J. L. Elman, Finding structure in time, Cognitive Science, 1990.



RNNs are extremely deep networks

Seq. length of 100s or 1000s is common. 

Multiplying many numbers is unstable:

• If most of the numbers > 1, we get ∞ (“Exploding gradients”. Can fix with gradient clipping.)

• If most of the numbers < 1, we get 0 (“Vanishing gradients”. Bigger problem.)

Reasonably-sized product if numbers are all close to 1.

For matrices, a similar reasoning holds with eigenvalues or singular values.

31Y. Bengio, P. Simard, and P. Frasconi, Learning long-term dependencies with gradient descent is difficult, IEEE Transactions on Neural Networks, 1994.



Exploding gradients and gradient clipping

The exploding gradient problem occurs when the gradient magnitude is very large.

Exploding gradients imply the output is very sensitive to small changes of the parameters in 

a certain direction. Sometimes, such gradients are unworkable and the neural network 

architecture must be changed.

Sometimes, however, the direction of the gradient

is fine. If so, one can use gradient clipping and

use the clipped gradient in the optimization.

Gradient clipping with threshold value 𝑣:
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Vanishing gradients

The vanishing gradient problem occurs when the magnitude of a gradient is very small.

Intuitively, vanishing gradients means the gradient signal does not reach the earlier layers. 

In an RNN, for example,              may not be small but 

can be small.

This means changes in ℎℓ do not affect the output ℒ. Since                      , this further implies 

that (small) changes in 𝑢ℓ do not affect ℒ. We can intuitively understand this as the RNN not 

utilizing information of 𝑢ℓ, i.e., RNN does not remember# 𝑢ℓ at step 𝐿. Moreover, gradient 

signal                is lost by the time backprop reaches time ℓ, and the model can’t learn to 

how to utilize 𝑢ℓ. (The model forgets 𝑢ℓ by step 𝐿, and gradient updates can’t fix this.)

33#This argument is not precisely correct since large changes in 𝑢ℓ may affect ℒ.



Promoting better gradient flow

Consider 

If the Jacobian is close to identity, i.e.,                                                then we say the

gradient flows through the layer ℎℓ+1 well.

If                , then            and we say the gradient does not flow well through the layer

ℎℓ+1 well since the information contained in           is lost.
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Promoting better gradient flow

So then, do we always want good gradient flow? Do we always want               ?

No. We want                 when we want to remember information.

We want                 when we want to forget.

Solution) Design a “neural circuit” that explicitly controls when to remember information and 

when to forget information.

35
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LSTM cells

36

S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Computation, 1997.

F. A. Gers, J. Schmidhuber, and F. Cummins, Learning to forget: continual prediction with LSTM, Neural Computation, 2000.
#J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, Empirical evaluation of gated recurrent neural networks on sequence modeling, NeurIPS Workshop on 

Deep Learning and Representation Learning, 2014.

“hidden state”

𝑐ℓ, ҧ𝑓ℓ, ҧ𝑖ℓ, ҧ𝑔ℓ, ҧ𝑜ℓ have same

dimension as ℎℓ.
Long short-term memory (LSTM) cells 

has an intricate and somewhat 

arbitrary structure. (Cf. GRU cell#

which simplifies the LSTM structure.)

Works much better than a naïve RNN!

Cell state 𝑐ℓ serves as memory.

(In retrospect, the cell state should be 

called the hidden state, as it is more 

similar to the hidden states of RNNs or 

hidden Markov models. However, this 

notation is now standard.)

“cell state”

“forget gate”



LSTM with output projection
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“cell state”

“forget gate”

H. Sak, A. W. Senior, F. Beaufays, Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition, arXiv, 

2014.

“hidden state”

𝑐ℓ, ҧ𝑓ℓ, ҧ𝑖ℓ, ҧ𝑔ℓ, ҧ𝑜ℓ have same dimension

ℎℓ has a different (usually larger) dimensionSometimes, you want the LSTM to output a 

large hidden state while maintaining a 

reasonably-sized internal computation.

(In LMs, the output size can be the vocabulary 

size or the number of possible tokens with 

byte pair encoding, both are large.)

Solution) Output projection.



LSTM name meaning

To clarify, “long short-term memory” does not mean long-term & short-term memory.

Rather, it means that the cell state serves as a longer short-term memory. In contrast, a 

naïve RNN (that uses an MLP rather an LSTM cell as the recurrent function) would have a 

much shorter short-term memory.

A true long-term memory would correspond to some external storage, which an LSTM RNN 

doesn’t have.
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Proprietary LLMs now
have long-term memory
Recently, OpenAI announced its new memory 

features in ChatGPT.

Other chatbot services will likely follow-up with 

similar features.

LLMs now have long-term memory, and this will 

profoundly affect how we interact with LLMs.

39https://x.com/polynoamial/status/1910379351759347860



Aside: Exploding/vanishing gradient 
problem
The exploding/vanishing gradient problem arises in for many deep neural networks, not just 

RNNs.

The ResNet architectue, and more generally the use of residual connections is one 

approach to mitigate the exploding/vanishing gradient problem.

Another technique is the use of normalization layers such as batch norm.

RNNs can use batch norm#, but it is not common.

40#T. Cooijmans, N. Ballas, C. Laurent, C. Gülçehre, and A. Courville, Recurrent batch normalization, ICLR, 2017.



Sentiment analysis with LSTM

The output hidden state can be used 

for the single (non-sequence) output.

41
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Sentiment analysis with LSTM

Pooling all of the hidden states often 

performs better than then using only 

the last one for learning a single (non-

sequence) output.
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Stacked RNN

Stacked RNNs use more depth and can learn more 

complex representations. 

Rule of thumb is to use 2–8 stacked LSTM layers.

• 2 layers is almost always better than 1.

• 3 layers is not always better than 2.

Each layer of an RNN transforms a sequence to a 

sequence:
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Example task: Parts of speech tagging

For some RNN tasks, the output is a sequence, and 

the total loss is the sum of the losses incurred at each 

sequence term.
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Bidirectional RNN

(Unidirectional) RNNs process information forward 

in time. In language, however, it is common for 

later words to provide necessary context for 

understanding a previous word.

A bidirectional RNN combines forward and reverse 

directional RNNs to process a sequence without a 

single sense of direction.

45M. Schuster and K. K. Paliwal , Bidirectional recurrent neural networks, IEEE TSP, 1997.
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ℒ
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Stacked bidirectional RNN

Stacking and bidirectionality can be combined.
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RNN-LM

The RNN language model (RNN-LM) is trained as an autoregressive model with the 

following structure.

47T. Mikolov, S. Kombrink, L. Burget, J. H. Černocký, and S. Khudanpur, Extensions of recurrent neural network language model, ICASSP, 2011.
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LM loss: Next token prediction

Let us interpret the loss

We are given a sequence of tokens 𝑢1, … , 𝑢𝐿 , which are one-hot vectors indicating the 

specific token. RNN predicts the next token

𝑢ℓ+1 ≈ ℎℓ = 𝑓𝜃 𝑢1, … , 𝑢ℓ

for ℓ = 1,… , 𝐿. (ℎℓ are logits, so ≈ means softmax ℎℓ ≈ 𝑢ℓ+1, i.e. assigns high probability to 

the token 𝑢ℓ+1.) The (in)accuracy of the prediction is measured by the cross entropy loss

for ℓ = 1,… , 𝐿. The sequence 𝑢1, … , 𝑢𝐿 creates 𝐿 next-token-prediction problems. Namely,

given 𝑢1, … , 𝑢ℓ, predict 𝑢ℓ+1 for ℓ = 1,… , 𝐿. Our loss ℒ is the sum of the losses on these 𝐿
problems.
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Sentence prob. vs. language generation
The training and inference of language models consider two different tasks, and it is 

instructive to view the distinction from an RL perspective.

Language models are trained on:

• Assigning probabilities/likelihoods to a given sentence via next-token-prediction.

• Next-token-prediction is analogous to imitation learning.

• Training done on real sentences (in distribution).

Language models (LM) are often used to:

• Generate likely (coherent) sentences.

• Generation is analogous to policies acting in an environment.

• Unless the LM is very good, partial generations will be unnatural, and the generation 

conditioned on the unnatural generation (out of distribution) will be worse. This is a 

consistent problem with acting on a policy trained with imitation learning.
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Teacher forcing

Teacher forcing# (TF) is the practice of feeding ground-truth sequence values back into the 

RNN after each step, even though the RNN would not generate such a sequence, exactly 

like imitation learning (IL). This forces the RNN to stay in the training distribution.

However, once the model makes a mistake (generate one bad token) it does not know how 

to recover, since the model was trained only on good text through TF/IL.

Resolution 1: Start training with TF and transition into something else.% What this something 

else should be is not obvious. Can’t use DAgger due to data constraints. (Why?)

Resolution 2: Just make the LM large and train on lots of data, including both good text and 

poorly written messy internet text. This is the solution of modern LLMs.

50
#R. J. Williams and D. Zipser, A learning algorithm for continually running fully recurrent neural networks, Neural Computation, 1989.
%S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, Scheduled sampling for sequence prediction with recurrent neural networks, NeurIPS, 2015.



Trainable tokenizer

The tokenizer is the first contact between language and our algorithm.

Instead of using one-hot encodings with a fixed dictionary, it is better to have some trainable 

component in the tokenizer.

Currently, byte-pair encoding has become the standard choice, but we shall consider the 

historical context. 

51



What does a word mean?

Denotational semantics: A word is the collection of the objects it describes.

This is the intuitive and straightforward view of the meaning of words, but it is not a very 

actionable definition.

Distributional semantics: A word is characterized by the company it keeps.

A word’s meaning is given by the words that frequently appear close-by. This is much more 

actionable in the realm of computational linguistics.
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Word2vec

Train a model such that a word predicts a neighboring word.

“Context word” defined by a window of size 𝑚.

𝑚 is a hyperparameter that is tuned

We use two vectors per word:

• 𝑣𝑤 when 𝑤 is a center word

• 𝑢𝑤 when 𝑤 is a context word

53
T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word representations in vector space, ICLR Workshop, 2013.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, Distributed representations of words and phrases and their compositionality, NeurIPS, 2013.

NeurIPS 2023 Test of Time Award

Then, for a center word 𝑤𝑡 and context word 𝑤𝑡+𝑘:

ℙ 𝑤𝑡+𝑘 𝑤𝑡 =
exp 𝑢𝑤𝑡+𝑘

⋅ 𝑣𝑤𝑡

σ𝑤∈𝑉 exp 𝑢𝑤 ⋅ 𝑣𝑤𝑡

… problems turning into banking crises as …

𝑃 𝑤𝑡−1 𝑤𝑡𝑃 𝑤𝑡−2 𝑤𝑡 𝑃 𝑤𝑡+1 𝑤𝑡 𝑃 𝑤𝑡+2 𝑤𝑡

outside context words
in window of size 2

center word
at position 𝑡

outside context words
in window of size 2



Word2vec

Specifically, we minimize the loss function 

ℒ 𝜃 =෍

ℓ=1

𝐿

෍
−𝑚≤𝑘≤𝑚

𝑘≠0

− log 𝑝𝜃 𝑤ℓ+𝑘 𝑤𝑘

where 𝜃 = 𝑣1, … , 𝑣𝑛 , 𝑢1, … , 𝑢𝑛 is the trainable parameter.

Insight: Words 𝑤 and ෥𝑤 are “similar” if ℙ neighboring words 𝑤 ≈ ℙ neighboring words ෥𝑤
and this happens when 𝑣𝑤 ≈ 𝑣෥𝑤 .

54



Word2vec: Trained word-level tokenizer

Goal of word2vec is a trained word-level tokenizer:

Given input 𝑋 = 𝑤1, … , 𝑤𝐿 chunked into words 𝑤1, … , 𝑤𝐿 ∈ 𝒲, the trained tokenizer 𝜏𝜃
outputs the corresponding 𝑣-vectors. This is a data-driven way to map similar words to 

similar vectors.

Using word2vec as inputs to RNNs significantly improves performance, compared to simple 

one-hot tokenizers.

Downside: The word-level tokenizer 𝜏𝜃 𝑤ℓ  does not consider the context in which the word 

𝑤ℓ is used in (cf. polysemy). 

55
T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word representations in vector space, ICLR Workshop, 2013.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, Distributed representations of words and phrases and their compositionality, NeurIPS, 2013.



Self-supervised learning

In self-supervised learning (SSL), models learn 

useful representations from unlabeled data by 

solving pretext tasks that automatically generate 

supervisory signals. The pretext task is not by 

itself useful, but it is related to the downstream 

task of interest. The pre-trained model is 

subsequently trained on downstream tasks, 

usually with a smaller labeled dataset.

The success of SSL is most dramatic in NLP, and 

Word2Vec was the first notable success case.

56S. Gidaris, P. Singh, and N. Komodakis, Unsupervised representation learning by predicting image rotations, ICLR, 2018.

In computer vision, predicting random rotations of 

an image is one example of a pre-text task.



ELMo
Embeddings from Language Models (ELMo) is an in-context tokenizer. Produces word 

representations in the context of the entire sentence.

Uses bidirectional LSTM structure. The states of RNNs are hidden states, but they can also be 

considered tokernized values of the given words.

57
M. E. Peters, W. Ammar, C. Bhagavatula, and R. Power, Semi-supervised sequence tagging with bidirectional language models, ACL, 2017.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer, Deep contextualized word representations, NAACL, 2018.

ELMo has its own tokenizer layer 

with trainable parameters (like a 

transformer’s embedding layer), but 

we won’t pay attention to it.



Bidirectional LM loss for pre-training

Pre-training uses the loss

where 𝜃LSTM and 𝜃LSTM are the 

parameters of the forward and 

backward LSTM cells and 𝜃other are the 

shared parameters for the input 

(tokenizer) and output (softmax) stages.

Training data is unlabeled text.

(Labels are the ground truth words.)
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Non-causal language model

Causal language models learn

𝑓𝜃 𝑢ℓ; 𝑢1, … , 𝑢ℓ−1 ≈ ℙ 𝑢ℓ 𝑢1, … , 𝑢ℓ−1

i.e., the causal LM learns to predict the next token left-to-right.

ELMo and BERT are non-causal language models. (Half of ELMo is a causal language 

model, but that is not the point.) ELMo and BERT can understand language and solve many 

NLP tasks, but it cannot generate text.

GPT is a causal language model, and it can generate text.
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ELMo fine-tuning

Given a prior NLP method (which can be very specialized and tailored to the specific task) 

that takes in 𝑥ℓ ℓ=1
𝐿 , replace the input 𝑥ℓ ℓ=1

𝐿  with ෤𝑥ℓ ℓ=1
𝐿 , where

where 𝐾 is the depth of the LSTM RNN, 𝑘 = 0 corresponds to the tokenization layer, and 

𝑠𝑘
task are the task-specific trainable parameters. (The sum is over the LSTM depth.)

Then, train the entire pipeline, including the ELMo weights, 𝑠𝑘
task 

𝑘=0

𝐾
, and the weights of 

the NLP method on labeled task-specific data.
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Results

ELMo achieved state-of-the-art performance on a wide range of NLP tasks.

• Question answering

• Textual entailment (determining whether a “hypothesis” is true, given a “premise”)

• Semantic role labeling (Answers “Who did what to whom”)

• Coreference resolution (clustering mentions in text that refer to the same underlying real-

world entities)

• Named entity extraction (finding four types of named entities (PER, LOC, ORG, MISC) in 

news articles)

• Sentiment analysis (whether paragraph is positive or negative)
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Discussion of ELMo

Although the idea of self-supervised learning through large-scale pre-training and fine-

tuning was not new (Word2Vec is a predecessor and [Dai and Le 2015] proposed an idea 

like ELMo) ELMo executed it very well and advanced the state of the art substantially. ELMo

make it clear that self-supervised pre-training is an indispensable paradigm.

However, LSTM RNN is not the best architecture. The left- and right-directional RNNs only 

process information unidirectionally. What if the model needs to examine the entire 

sentence to make inference? Also, RNNs are fundamentally computationally inefficient.

The overall approach is still not universal; each task needs a tailored method and ELMo

only served to provide better tokenization.

62A. M. Dai and Q. V. Le, Semi-supervised sequence learning, NeurIPS, 2015.



BERT

Bidirectional Encoder Representations from Transformers (BERT) (i) replaces the LSTMs of 

ELMo with (encoder-only) transformer layers and (ii) proposed a more universal approach. 

BERT set a new state-of-the-art on almost every benchmark.

63J. Devlin, M. Chang, K. Lee, and K. Toutanova, BERT: Pre-training of deep bidirectional transformers for language understanding, NAACL, 2019.



Transformers

Transformer architectures are sequence-to-sequence models. They “transform” a sequence 

to another sequence in each layer.

There are 3 types of transformers, listed in order of complexity.

• Encoder-only (BERT)

• Decoder-only (GPT) 

• Encoder-decoder (Original transformer of Vaswani et al. 2017)

We first discuss the encoder-only transformer.
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Encoder-only transformer

The transformer architecture relies on the following components

• Token embeddings

• Multi-head self-attention

• Residual connections

• Layer normalization

• Position-wise FFN

• Positional encodings
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Token embeddings

Let 𝜏 be a tokenizer such that

𝜏 𝑋 = 𝑢1, 𝑢2, … , 𝑢𝐿

where we can think of 𝑢𝑖 = 𝑘 ∈ 1,… , 𝑛 or, equivalently, 𝑢𝑖 = 𝑒𝑘 ∈ ℝ𝑛. Here, 𝑒𝑘 denotes the 

𝑘-th unit (one-hot) vector, and 𝑛 denotes the number of distinct tokens. A word-level 

tokenizer is one of the simplest instances of this.

Then, the token embedding layer maps 𝑢1, 𝑢2, … , 𝑢𝐿 ↦ 𝑣1, 𝑣2, … , 𝑣𝐿 , where

𝑣ℓ = 𝑎𝑢ℓ or    𝑣ℓ = 𝐴𝑢ℓ

depending on whether we view 𝑢ℓ = 𝑘 or 𝑢ℓ = 𝑒𝑘. Here, 𝐴 = 𝑎1 𝑎2⋯𝑎𝑛 ∈ ℝ𝑑×𝑛 is a 

trainable parameter (defined as an “embedding layer” in PyTorch).

The token embedding layer is applied at the beginning of the transformer.
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Single-head self attention
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Attention is a pseudo-linear operation

Functions 𝑓 ∶ ℝ𝑛 → ℝ𝑚 of the form

𝑓 𝑥 = 𝐴 𝑥 𝑥

are said to be “pseudo-linear”. (It is not linear because they the matrix 𝐴 𝑥 ∈ ℝ𝑛×𝑚.)

Attention is a pseudo-linear mapping from 𝑉 ∈ ℝ𝐿×𝑑𝑉 to 𝑌 ∈ ℝ𝐿×𝑑V.

Pseudo-linear operations are common in signal processing and kernel methods.

(I quickly point this out as it is a nice and simple observation.)

68



Multi-head self attention (MHA)

Just as one uses multiple CNN channels, we use multiple attention heads.

Seq-to-seq transformation 𝑥ℓ ℓ=1
𝐿 ↦ 𝑧ℓ ℓ=1

𝐿 . Often 𝑑𝑋 = 𝑑𝑍 required by residual connection.
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Encoder-only transformer

One transformer layer consists of:

View one layer of TF as a sequence-to-sequence 

transformation 𝑥ℓ
𝑘

ℓ=1

𝐿
↦ 𝑥ℓ

𝑘+1

ℓ=1

𝐿
. TF stacks 

many such layers.

The “addition” block is a residual connection, 

which helps with optimization.
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Figure due to:

R. Xiong, Y. Yang, D. He, K. Zheng, X. Zheng, C. Xing, H. Zhang, Y. Lan, L. Wang, and T.-Y. Liu, On layer normalization in the transformer architecture, 

ICML, 2020.



Layer normalization

Layer normalization (LN) also stabilizes training by normalizing the features and thereby 

avoiding exploding and vanishing gradients.

Normalization across the features. Does not normalize over sequence lengths or batch 

elements. Assume 𝑋 has dimension (batch × sequence length × channel/feature)

ො𝜇 ∶, ∶ =
1

𝐶
෍

𝑐=1

𝐶

𝑋[∶, ∶, 𝑐]

ො𝜎2 ∶, ∶ =
1

𝐶
෍

𝑐=1

𝐶

𝑋 ∶, ∶, 𝑐 − ො𝜇 ∶, ∶ 2

LN𝛾,𝛽 𝑋 [∶, ∶, 𝑐] = 𝛾 𝑐
𝑋 ∶, ∶, 𝑐 − ො𝜇 ∶, ∶

ො𝜎2 ∶, ∶ + 𝜀
+ 𝛽 𝑐 𝑐 = 1,… , 𝐶

71J. L. Ba, J. R. Kiros, and G. E. Hinton, Layer normalization, arXiv, 2016.



CNN LN ≠ TF LN

How LN is used in CNNs is different from how it's used in Transformers (including ViT). 

For CNNs, LN normalize over channels and spatial dimensions. For transformers, LN 

normalizes over channels and not over spatial dimensions.

72

BN LN in CNNs LN in Transformer

H
, 
W

H
, 
W

s
e

q
. 
le

n
g

th

C N C N C N

BatchNorm takes in a 4d tensor and normalizes across 

3 dimensions: spatial and batch dimensions.

LayerNorm takes in a 3d tensor and normalizes 

across 1 dimension: vector (channel) dimension.



Position-wise FFN

Position-wise FFN is a 2-layer MLP with ReLU, GELU, or SiLU activation functions:

Let 𝑑 be the token size, i.e., 𝑥 ∈ ℝ𝑑.

Often, 𝑊1 ∈ ℝ4𝑑×𝑑, 𝑊2 ∈ ℝ𝑑×4𝑑 (expansion factor of 4).

Applies independently on each sequence element, i.e.,
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GELU, SiLU, Swish activations

Gaussian error linear unit (GELU), Sigmoid-weighted linear unit (SiLU), and Swish are 

smooth non-monotone activation functions. The three are qualitatively similar: they 

decrease near 0 and then increase nearly linearly. 

74
D. Hendrycks and K. Gimpel, Gaussian error linear units (GELUs), arXiv, 2016.

P. Ramachandran, B. Zoph, and Q. V. Le, Searching for activation functions, arXiv, 2017.

S. Elfwing, E. Uchibe, and K. Doya, Sigmoid-weighted linear units for neural network function approximation in reinforcement learning, Neural Networks, 2018.



Positional encoding/embedding

Problem: Encoder-only transformer architecture is permutation equivariant and it does not 

know positional information of tokens. Relative positions of tokens (word order or patch 

location) obviously carries important meaning in language.

Solution: After token embedding layer 𝑋 ↦ 𝑢ℓ ℓ=1
𝐿 ↦ 𝑣ℓ ℓ=1

𝐿 , add positional embedding 

vectors 𝑝ℓ ℓ=1
𝐿 and then pass

𝑣ℓ + 𝑝ℓ ℓ=1
𝐿

as input to the transformer layers.

75
S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, End-to-end memory networks, NeurIPS, 2015.

J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, Convolutional sequence to sequence learning, ICML, 2017.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, Attention is all you need, NeurIPS, 2017.



Positional encoding/embedding

NLP transformers often use the

sinuisoidal positional encoding 𝑝1, … , 𝑝𝐿 ∈ ℝ𝑑

(Feels like a very arbitrary design, but this work well and is hard to beat.) Since NLP 

transformers must accommodate arbitrary sequence length 𝐿, using a positional encoding 

with an analytical formula makes sense.

On the other hand, vision transformers let 𝑝ℓ ℓ=1
𝐿 be trainable. Possible since image 

resolution and hence sequence length 𝐿 is fixed. 
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Positional encoding/embedding

Idea is often attributed to Vaswani et al. 2017, 

However, Sukhbaatar et al. 2015 and Gehring et al. 2017 did publish the positional 

encoding technique earlier. The sinusoidal encoding is due to Vaswani et al. 2017.

77
S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, End-to-end memory networks, NeurIPS, 2015.

J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, Convolutional sequence to sequence learning, ICML, 2017.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, Attention is all you need, NeurIPS, 2017.



Post-LN vs Pre-LN TF architectutres
There are 2 variants of the transformer architecture based on the position of LN. 

The original (Vaswani et al. 2017) paper illustrates postLN in its figure. However, their 

updated official codebase uses pre-LN. It is later reported that Pre-LN is more stable.

78R. Xiong, Y. Yang, D. He, K. Zheng, X. Zheng, C. Xing, H. Zhang, Y. Lan, L. Wang, and T.-Y. Liu, On layer normalization in the transformer architecture, 

ICML, 2020.



Transformer depth

Thanks to the residual connections and layer norm, transformers can often be much deeper 

than stacked RNNs. (ELMo has 2 layers, while BERT has 24 layers.)

To clarify, the layer norm and the residual connection are used to mitigate the 

exploding/vanishing gradient problem across the transformer depth.

The transformer does not have exploding/vanishing gradient problem along the sequence 

length 𝐿 due to its use of attention mechanism.
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Why transformers over RNNs?

Handling long sequence length:

RNNs struggle with long input sequences due to a fixed memory size and vanishing or 

exploding gradients. LSTMs are designed to mitigate this problem, but transformers really 

solve this problem. Transformers allows the full input sequence to be considered without 

having to compress the information into a hidden state vector.

Efficient parallel computation:

RNNs are inherently sequential (inefficient) during training. (RNNs are efficient during 

inference.) In contrast, transformers are completely parallelizable in training, and we can 

better leverage efficient large-scale GPU computation.
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BERT pre-training

81

BERT pre-training uses two losses.

1. Masked LM (MLM)

Randomly mask out 15% of the words and let BERT 

predict it. Output tokens corresponding to masked words 

are fed into softmax and CE loss.

2. Next sentence prediction (NSP)

Provide two sentences A and B separated with [SEP] 

token with 50% probability of B following A and 50% 

probability of B unrelated to A, and make binary 

prediction. Attach classification head to the output 

corresponding to [CLS] token. 



BERT fine-tuning

Many NLP tasks roughly fit the 

MLM and NSP shape.

For fine-tuning, make minimal 

modifications to the BERT 

baseline and fine-tune the whole 

model.

Fine-tuning is computationally 

very cheap (<1 hour on a single 

Google TPU).
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Vision transformer

Vision transformer is an encoder-only 

transformer architecture.

Given an image, each 16 × 16 patch is a 

token, and the patches are placed into a 

linear sequence.

Output corresponding to [CLS] token is 

used for classification.

83
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. 

Houlsby, An image is worth 16x16 words: Transformers for image recognition at scale, ICLR, 2021.

Supervised pre-training on image classification had 

better performance compared to self-supervised 

pre-training with masked patch prediction.



GPT-1

GPT (generative pre-training) uses a causal language model loss

Initially, GPT was trained to be an self-supervised pre-trained model in the vein of BERT, 

and the its text generation ability was not that strong.

(However, the focus of GPT-2 shifted to text generation.)

Compared to BERT’s encoder only transformer, GPT-1’s decoder-only transformer 

additionally utilizes (i) masked attention and (ii) output projection layers.

84A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, Improving language understanding by generative pre-training, 2018.



Masked attention

In RNNs, information is naturally processed sequentially.

However, there is a problem with using an encoder-only (BERT-style) transformer for a 

causal language model: The model can see the entire sequence, the past and the future.

Therefore, GPT uses a masked attention that allows the current sequence element to only 

query earlier sequence elements.
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Masked single-head self attention

Crucially, 𝑞𝑖 is allowed to query only 𝑘1, … , 𝑘𝑖.

𝑦ℓ is a linear combination of 𝑣1, … , 𝑣ℓ.

𝑦ℓ only depends on 𝑥1, … , 𝑥ℓ.
( 𝑥ℓ ℓ=1

𝐿 ↦ 𝑦ℓ ℓ=1
𝐿 has causal dependency)

86

Only lower-triangular 

components of ሚ𝐴 are finite.

Only lower-triangular 

components of 𝐴 are nonzero.



Masked multi-head self attention

Seq-to-seq transformation 𝑥ℓ ℓ=1
𝐿 ↦ 𝑧ℓ ℓ=1

𝐿 with causal dependence: 

𝑧ℓ only depends on 𝑥1, … , 𝑥ℓ.

Since other components of transformer all act positionwise, the transformer with causal 

MHA is a seq-to-seq transformation with causal dependence.
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Output projection
layer
The transformer layers produce 

embedding vectors 𝑣1, … , 𝑣𝐿 ∈
ℝ𝑑. These must be enlarged to 

dimension 𝑛 to produce a 

probability distribution on the 𝑛
possible tokens. (Usually 𝑑 < 𝑛.)

The output projection layer

𝑤ℓ = 𝐵𝑣ℓ

does this.
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𝑣ℓ = 𝐴𝑢ℓ + 𝑝ℓ

token embedding + positional encoding

set of probability mass vectors

output projection  𝑤ℓ = 𝐵𝑣ℓ

trainable

× Depth  TF layers with causal mask

hidden dimension 𝑑
doesn’t change 
due to residual 
connection

𝜏

𝑋

Decoder-only transformer

Llama 3.1 405B

depth (layers) 126

𝑑 (hidden) 16k

𝑛 (tokens) 128k

GPT3 175B

depth (layers) 96

𝑑 (hidden) 12k

𝑛 (tokens) 50k

softmax function 𝜇



Output projection layer

It is customary to do weight tying, and set

𝐵 = 𝐴⊤

where 𝐴 ∈ ℝ𝑑×𝑛 is the matrix for the token embedding layer. Empirically, this works well.#

Why might this be a good idea? In modern signal processing (dictionary learning and 

compressed sensing), the transpose of a matrix is often used as an approximate inverse. 

Indeed, 

𝐴 ∶ token ↦ emb. vector
𝐵 ∶ emb. vector ↦ token

are, loosely speaking, inverse operations. Interestingly, at initialization, 𝐴⊤ does act like an 

inverse of 𝐴. More precisely, if 𝐴 ∼ 𝒩 0, 𝜎2 IID with 𝐴 ∈ ℝ𝑑×𝑛, then 

𝐴⊤𝐴 ∝ 𝐼

89#O. Press and L. Wolf, Using the output embedding to improve language models, EACL, 2017.



Output projection layer

At initialization, if 𝐴 ∼ 𝒩 0, 𝜎2 IID with 𝐴 ∈ ℝ𝑑×𝑛, then 
1

𝑑𝜎2
𝐴⊤𝐴 ≈ 𝐼.

(There is no reason to expect 𝐴⊤𝐴 ∝ 𝐼 to continue to hold once training begins.)

Main point: (i) 𝐵 is conceptually performing the inverse operation of 𝐴 (ii) 𝐴⊤ is an 

approximate inverse of 𝐴 at initialization (iii) it is sensible to weight-tie 𝐵 = 𝐴⊤.
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d, n, sigma = 100, 50, 2.0
A = np.random.normal(scale=sigma, size=(d, n))
print("Sample of A^T A:\n", (A.T @ A /(d*sigma**2))[:5, :5])  # print 5x5 block

Sample of A^T A:
[[ 1. -0.01 -0.06 0. 0. ]
[-0.01 0.9 -0.04 0.09 0.07]
[-0.06 -0.04 0.83 -0.07 -0.08]
[ 0. 0.09 -0.07 0.95 0.04]
[ 0. 0.07 -0.08 0.04 1.19]]



Self-supervised pre-training

Let 𝑋 be the input text tokenzed as 𝜏 𝑋 = 𝑢1, 𝑢2, … , 𝑢𝐿 . 

Let 𝑓𝜃 be the transformer mapping 𝑢ℓ ℓ=1
𝐿 ↦ 𝑤ℓ ℓ=1

𝐿 , where 𝑤ℓ ∈ ℝ𝑛. Then,

and

where ℓCE is the cross-entropy loss with 𝑢ℓ+1 ∈ 1,… , 𝑛  above viewed as an integer.
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Supervised fine-tuning

First, transform the relevant 

text into sequence with 

appropriate delimiter tokens.

At the end of the transformer, 

the token corresponding to 

the “extract” token position is 

extracted fed into a linear 

layer. 

The full GPT-1 model and the 

final linear layer is fine-tuned.
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Supervised fine-tuning

For classification, given an input text 𝑋 and a tokenizer 𝜏, the transformer maps

<Start>, 𝜏 𝑋 , <Extract> = 𝑢ℓ ℓ=1
𝐿 ↦ 𝑤ℓ ℓ=1

𝐿

The final token 𝑤𝐿 corresponding to the <Extract> token, is extracted. The loss is

loss 𝐴𝑤𝐿 + 𝑏, 𝑌

where 𝐴 and 𝑏 are the parameters of the linear layer and 𝑌 is the label corresponding to 𝑋. (Only 
𝑤𝐿 is used for the loss and 𝑤ℓ ℓ=1

𝐿−1 is not used).

BERT had a <Cls> token at the start of the input, and it basically served the same role as the 
<Extract> token for GPT. Different from BERT, GPT is a causal language model, so the <Extract>
token must be at the end if we want 𝑤𝐿 to encode information about the full sentence.

The full GPT-1 model (the pre-trained TF), the final linear layer, and the vector embeddings 
corresponding to <Start>, <Extract>, and <Delim> are trained.

(LLM fine-tuning is no longer done this way.)
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Example task: Machine translation

In machine translation, training data contains translation pairs between different languages.

Classically with an RNN, the encoding stage encodes (summarizes) the entire sentence into 

a latent vector, and the decode generates translation text autoregressively.

(For better performance, a stacked 

bidirectional RNN encoder and a 

stacked unidirectional RNN decoder 

should be used.)

(Interestingly, reversing the input 

sentence often improves performance.)

Encoder Decoder

Embedding

Are

<GO>

Tu

Timestep 1 2 3 4 5 6 7 8

as faim ?

you hungry ?



Bahdanau attention and cross attention

The problem with the previous approach is that the hidden state passed from the encoder 

RNN to the decoder RNN acts as a bottleneck, and the hidden state may not be able to 

retain all the necessary information.

95D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate, ICLR, 2015.

(ICLR 2025 Test of Time award Runner Up.)

Solution: Allow the decoder RNN 

cells to access the hidden states of 

the encoder RNNs.

This attention mechanism is now 

called cross attention, and it is now 

commonly used to attend across 

different modalities. E.g. text 

decoder attends to image patches.

Q
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K
Key

V
Value
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GRU,
RNN
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Transformer and cross attention

Vaswani et al. questioned whether the RNN mechanism 

was necessary. They concluded “Attention is all you need”.

Cross attention layer derives 𝑞ℓ ℓ=1
𝐿 from previous layer’s 

𝑥ℓ
dec

ℓ=1

𝐿
but 𝑘ℓ ℓ=1

𝐿′ and 𝑣ℓ ℓ=1
𝐿′ are derived from the 

encoder layer’s 𝑥ℓ
enc

ℓ=1
𝐿 . (In cross attention, number of 

queries need not match the number of keys and values.)

96A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, Attention is all you need, NeurIPS, 2017.

(Figure incorrectly depicts post-LN.) 



Understanding TF from historical context

The transformer architecture feels somewhat arbitrary, but we can understand the 

designers’ intent through the historical context.

There is no mathematical or first-principles reason that things must be the way they are, 

and the standard architecture will likely change in the future.

The historical context does inform us of the intended purpose of the components, and it 

gives us a rough guideline of what things will certainty not work and what new components 

may work.
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Byte-pair encoding

Byte-pair encoding (BPE)

is a sub-word tokenizer. 

The GPT-1 popularized the use of BPE for LLMs.

Tokenizers are trained separately (before) from the LLM, and the 

training minimizes the sequence length of the training corpus, 

given a fixed vocabulary size.

For text generation, LLMs generate a sequence of tokens 

(integers) and those tokens are reconstructed into text.

98

Tiktokenizer website: https://tiktokenizer.vercel.app/

P. Gage, A new algorithm for data compression, C Users J., 1994.

R. Sennrich, B. Haddow, and A. Birch, Neural machine translation of rare words with subword units, ACL, 2016.

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, Improving language understanding by generative pre-training, 2018.

https://tiktokenizer.vercel.app/


Byte-pair encoding

The BPE tokenizer can gracefully 

deal with misspellings.

Subtleties of the BPE tokenizers:

• Pre-pending space to a word 

changes the tokenization.

• Numbers are chunked up 

somewhat arbitrarily (making 

arithmetic quite difficult for LLMs.)
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Andrej Karpathy’s tutorial Let's build the GPT Tokenizer is an excellent resource for learning 

about further details of the BPE tokenizer:

https://youtu.be/zduSFxRajkE?si=hJ3gTgpfSJ4PWsQd

https://youtu.be/zduSFxRajkE?si=hJ3gTgpfSJ4PWsQd


Modern transformers: RMS Norm

Recall that LayerNorm have the form

where 𝑥 = 𝑋 𝑏, ℓ, ∶ (i.e., LN normalizes across the channel/feature dimension). The 𝛾 and 𝛽
are trainable parameters.

Root mean square layer normalization (RMSNorm) simplifies this to

where 𝛾 is the only trainable parameter.

100B. Zhang and R. Sennrich, Root mean square layer normalization, NeurIPS, 2019.



Modern transformers: RMS Norm

RMSNorm is clearly simpler than LN, but does it matter?

RMSNorm performs (generalizes) similarly to LN.#

RMSNorm is meaningfully faster than LN (due to low-level memory movement issues) 

despite having essentially the same flop count.%

101
#B. Zhang and R. Sennrich, Root mean square layer normalization, NeurIPS, 2019.
%A. Ivanov, N. Dryden, T. Ben-Nun, S. Li, and T. Hoefler, Data movement is all you need: A Case study on optimizing transformers, MLSys, 2021.



Modern transformers: No bias

In fact, most modern transformers mostly avoid bias terms.

• Token embedding and output projection layers have no bias terms.

• Attention layers are designed without bias terms.

The original transformer used bias terms in the FFN layer:

But modern implementations do not. If not gated, the have the form:
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Modern transformers: GLU

Gated Linear Units (GLU) slightly improve the FFN layers:

where ⊙ is elementwise multiplication. The trainable parameters are 𝑊1, 𝑊2, and 𝑉.

• If 𝜎 is ReLU, this FFN is called ReGLU.

• If 𝜎 is GeLU, this FFN is called GeGLU.

• If 𝜎 is swish, this FFN is called SwiGLU.

As the table from# shows, GLU variants work slightly bettter

than non-gated FFNs.

103
Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, Language modeling with gated convolutional networks, ICML, 2017.
#N. Shazeer, GLU variants improve transformer, arXiv, 2020.



Modern transformers: GLU

But doesn’t this increase the compute cost?

For non-gated FFNs,                                    the standard dimension parameters are

𝑊1 ∈ ℝ4𝑑×𝑑 and 𝑊2 ∈ ℝ𝑑×4𝑑 . (Many independent tuning attempts have lead to the 

hyperparameter value of 4 )

For gated FFN,                                                    the standard dimension parameters are 

𝑊1, 𝑉 ∈ ℝ 8/3 𝑑×𝑑 and 𝑊2 ∈ ℝ𝑑× 8/3 𝑑.

With the value 8/3 , the flop count is ∼ 16𝑑2 for both architectures.
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Classical positional embeddings

Recall classical positional embeddings: After token embedding layer 𝑋 ↦ 𝑢ℓ ℓ=1
𝐿 ↦ 𝑣ℓ ℓ=1

𝐿 , 

add positional embedding vectors 𝑝ℓ ℓ=1
𝐿 and then pass

𝑣ℓ + 𝑝ℓ ℓ=1
𝐿

as input to the transformer layers. Then,

𝑞ℓ = 𝑊𝑄
⊤ 𝑣ℓ + 𝑝ℓ

𝑘ℓ = 𝑊𝐾
⊤ 𝑣ℓ + 𝑝ℓ

𝑣ℓ = 𝑊𝑉
⊤ 𝑣ℓ + 𝑝ℓ

105A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, Attention is all you need, NeurIPS, 2017.



Modern transformers: RoPE 

Rotary Position Embedding (RoPE) instead identifies

𝑊𝑄
⊤𝑣ℓ,𝑊𝐾

⊤𝑣ℓ ∈ ℂ𝑑𝐾/2 ≅ ℝ𝑑𝐾

and 

So, 

106J. Su, Y. Lu, S. Pan, A. Murtadha, B. Wen, and Y. Liu, RoFormer: Enhanced transformer with rotary position embedding, Neurocomputing, 2024.



Modern transformers: RoPE 

Then, RoPE feeds the rotated 𝑞 and 𝑘 vectors into the attention function. (𝑣 vectors are not 

rotated.)

107J. Su, Y. Lu, S. Pan, A. Murtadha, B. Wen, and Y. Liu, RoFormer: Enhanced transformer with rotary position embedding, Neurocomputing, 2024.



Modern transformers: RoPE 

Properties of RoPE:

• The rotation operation ensures that only relative positional information influences the 

attention mechanism, i.e.,

for some function 𝑓.

• Long-term decay in the sense of ሚ𝐴𝑖𝑗 → 0 as 𝑖 − 𝑗 → ±∞ given fixed embedding vectors 

𝑥𝑖 and 𝑥𝑗. This is desirable since we expect the tokens’ interactions to weaken as they 

get farther away.

• Can be implemented very efficiently by further simplifying the formulas and using

(rotating forward by ℓ𝜃𝑖 and backward by ℓ′𝜃𝑖 = rotating forward by ℓ − ℓ′ 𝜃𝑖.) 108



RoPE works quite well.

109https://x.com/BlancheMinerva/status/1394089508723900422

https://x.com/BlancheMinerva/status/1394089508723900422


Apply RoPE on all layers

Classical positional embeddings usually applied once, at the input layer.

• Applying positional encoding to all of the layers is arguably unnecessary, since the 

residual connections provide the positional encoding information to all of the layers.

In contrast, RoPE is usually applied many times, at all attention layers.
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NoPE: No positional encodings 

Actually, positional encodings aren’t required for decoder-only attention layers. (The un-

masked encoder only transformers like BERT or ViT do need positional encodings.)

Transformers without position encodings (NoPE) may work just fine.#

Llama 4% uses interleaved attention layers without positional embeddings. (Some layers are 

RoPE and some layers are NoPE.)

Decoder only transformers are not permutation-equivariant because of the causal mask. 

The layers can learn to count the number of tokens they can attend, which reveals the 

absolute position.

111
#A. Haviv, O. Ram, O. Press, P. Izsak, and O. Levy, Transformer language models without positional encodings still learn posit ional information, EMNLP, 2022.
#A. Kazemnejad, I. Padhi, K. Natesan, P. Das, and S. Reddy, The impact of positional encoding on length generalization in transformers, NeurIPS, 2023.
%https://ai.meta.com/blog/llama-4-multimodal-intelligence/

https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/


Modern transformers: KV caching

During inference, the LLM generates tokens 𝑦1, … , 𝑦𝐿
sequentially.

To compute 𝑦ℓ, we need 𝑞ℓ, 𝑘1, … , 𝑘ℓ−1, 𝑘ℓ, 𝑣1, … , 𝑣ℓ−1, 𝑣ℓ.

KV caching is an optimization that stores (caches) the 

previously computed 𝑘1, … , 𝑘ℓ−1, 𝑣1, … , 𝑣ℓ−1. Only 𝑘ℓ and 𝑣ℓ
are newly computed at the ℓ-th step.

KV caching uses trades off memory usage with compute.
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Modern transformers: KV caching

113Image credit: João Lages, https://medium.com/@joaolages/kv-caching-explained-276520203249

https://medium.com/@joaolages/kv-caching-explained-276520203249
https://medium.com/@joaolages/kv-caching-explained-276520203249
https://medium.com/@joaolages/kv-caching-explained-276520203249
https://medium.com/@joaolages/kv-caching-explained-276520203249
https://medium.com/@joaolages/kv-caching-explained-276520203249
https://medium.com/@joaolages/kv-caching-explained-276520203249
https://medium.com/@joaolages/kv-caching-explained-276520203249


Modern transformers: Multi-query 
attention (MQA)
Attention layers have 𝐻 heads, so computing 𝑦ℓ

1
, … , 𝑦ℓ

𝐻
requires:

• Computing 𝑞ℓ
ℎ

, 𝑘ℓ
ℎ

, 𝑣ℓ
ℎ

for ℎ = 1,… , 𝐻. (Fast )

• Loading from GPU memory 𝑘1
ℎ
, … , 𝑘ℓ−1

ℎ
, 𝑣1

ℎ
, … , 𝑣ℓ−1

ℎ
for ℎ = 1,… , 𝐻. (Slow )

GPUs are very efficient with compute but are less efficient with memory IO.

Multi-query attention (MQA) shares the keys and values across the heads. So computing 

𝑦ℓ
1
, … , 𝑦ℓ

𝐻
requires:

• Computing 𝑞ℓ
ℎ

, 𝑘ℓ, 𝑣ℓ for ℎ = 1,… , 𝐻. (Fast )

• Loading from GPU memory 𝑘1, … , 𝑘ℓ−1, 𝑣1, … , 𝑣ℓ−1. (IO is slow but volume is small )

114N. Shazeer, Fast transformer decoding: One write-head is all you need, arXiv, 2019.



Modern transformers: Grouped-query 
attention
MQA significantly reduces inference cost, albeit with a slight degradation in performance. 

Grouped-query attention (GQA) offers a compromise by sharing key and value vectors 

within groups. GQA nearly matches the performance of plain multi-head attention (MHA).

115
J. Ainslie, J. Lee-Thorp, M. de Jong, Y. Zemlyanskiy, F. Lebron, and S. Sanghai, GQA: Training generalized multi-query transformer models from multi-he

ad checkpoints, EMLNP, 2023.



How to decoding with causal LM

Assume a causal language model 𝑝𝜃 𝑢ℓ 𝑢1, … , 𝑢ℓ−1 has been trained. If 𝑝𝜃 were perfect, 

then naïve sampling (as defined soon) should be sufficient for text generation (decoding). 

However, 𝑝𝜃 is imperfect, so effective sampling requires the following techniques:

• Naïve sampling (with temperature)

• Greedy sampling

• Beam search

• Top-k sampling

• Top-p (nucleus) sampling
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Naïve sampling

Let 𝑓𝜃 𝑢1, … , 𝑢ℓ ∈ ℝ𝑛 be the final ℓ-th output token of a decoder-only transformer 
architecture (𝑛 is the number of distinct tokens) such that

𝑝𝜃 𝑢ℓ+1 = 𝑖 𝑢1, … , 𝑢ℓ = softmax 𝑓𝜃 𝑢1, … , 𝑢ℓ
𝑖

for 𝑖 = 1,… , 𝑛. Let 𝑢1, … , 𝑢ℓ be given and 𝑢ℓ ≠ <EOS>. 

Naïve sampling continues the text with

𝑢𝑠 ∼ 𝑝𝜃 ⋅ 𝑢1, … , 𝑢𝑠−1

for 𝑠 = ℓ + 1, ℓ + 2,… until 𝑢𝑠 = <EOS> (and sets 𝐿 = 𝑠 − 1).

Problem: Low-probability words are sampled with low but non-zero probabilities, and they 
tend to be bad. The imperfections of 𝑝𝜃 manifest in these low-probability words.
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Naïve sampling with temperature

Naïve sampling with temperature adjusts the “temperature” parameter of the softmax

𝑝𝜃 𝑢ℓ+1 = 𝑖 𝑢1, … , 𝑢ℓ = softmax
𝑓𝜃 𝑢1, … , 𝑢ℓ

𝛽
𝑖

for 𝑖 = 1,… , 𝑛, where 𝛽 > 0. Note, 𝛽 = 1 is regular naïve sampling. With 𝛽 < 1, we suppress 

the likelihood of the low-probability words. In modern LLMs, 𝛽 = 0.7 or 𝛽 = 1 are common 

default choices.

In the limit of 𝛽 → 0, we recover greedy sampling.

Problem: Even with 𝛽 < 1, low-probability words are still sampled.
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Greedy sampling

If the low probability words are problematic, then why not just sample the most likely word?

Greedy sampling continues the text with
𝑢𝑠 = argmax

𝑢𝑠=1,…,𝑛
𝑝𝜃 𝑢𝑠 𝑢1, … , 𝑢𝑠−1

for 𝑠 = ℓ + 1, ℓ + 2,… until 𝑢𝑠 = <EOS>. (Ties in the argmax are broken arbitrarily.)

Problem 1) Greedy sampling does not generate the most likely sequence tokens.

Problem 2) Likely text is not always good. More on this later.
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Exact MAP decoding

Exact maximum a posteriori (MAP) decoding is the globally optimal (most likely) generation

𝑢ℓ+1, … , 𝑢𝐿 = <EOS> = argmax
𝑢ℓ+1,𝑢ℓ+2,…

෍

𝑠=ℓ+1

𝐿

log 𝑝𝜃 𝑢𝑠 𝑢1, … , 𝑢𝑠−1

Problem 1) Not implementable. Exponentially many candidate sequences. Computing exact 

MAP decoding is intractable (NP-Hard).#

Problem 2) Likely text is not always good. More on this later.

120#K. Knight, Decoding complexity in word-replacement translation models, Computational Linguistics, 1999.



Why greedy ≠ MAP?

MAP maximizes the product of the 
probabilities (= sum of log-
probabilities). Greedy commits to 
the most likely individual word one 
word at a time.

You want to see how the 
completion pans out before 
committing to a word.

Sometimes, by committing to the 
most likely token early on, you 
eliminate better completion paths.
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Transformer

Translate the French “un chiot mignon” to English:

One: 0.51

A: 0.48

cute: 0.45

puppy: 0.53
is: 0.7

puppy: 0.05

<EOS>: 0.24

One puppy is(??)

Transformer

Translate the French “un chiot mignon” to English:

One: 0.51

A: 0.48

cute: 0.53

puppy: 0.47
is: 0.01

puppy: 0.95

<EOS>: 0.02

A cute puppy



Beam search decoding

Beam search is a tractable, heuristic approximation to exact MAP decoding that produces 

sequences with higher likelihood compared to greedy search.

Intuition: While choosing highest probability word on the first step may not be optimal, 

choosing a very low probability word is very unlikely to lead to a good result. (We shouldn’t 

be fully greedy, but we can be somewhat greedy.)

Idea: On each step of the decoder, keep track of the 𝑘 most probable partial generations. 

𝑘 is also called the beam size and 𝑘 = 5 or 𝑘 = 10 are common values.
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Beam search decoding: Example
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Once upon a time,

Beam size k = 3. Blue numbers : score 𝑦1, … , 𝑦𝑡 = σ𝑖 log 𝑃𝐿𝑀(𝑦𝑖|𝑦1, … , 𝑦𝑖−1, 𝑥) .
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Beam search decoding: Pseudocode

For each sequence step ℓ:

1. For each 𝑢𝑖,𝑡 𝑡=1

ℓ
that we are tracking for 𝑖 = 1,… , 𝑘, find the top 𝑘 tokens 𝑢𝑖,ℓ+1

1 , … , 𝑢𝑖,ℓ+1
𝑘

.

2. Sort the resulting 𝑘2 sequences (of length ℓ + 1) by their total log-probability.

3. End loop if a generation encounters <EOS> and return the completed generation.

4. Keep the top 𝑘.

When 𝑘 = 1, beam search reduces to greedy search.

124



Human text is not too predictable

High quality human text does not 
follow a distribution of high 
probability next words.

Beam search avoids generation 
with elements of surprise and 
suffers from repetitive and 
uninteresting content.

Beam search is no longer used in 
mainstream LLMs. As models 
became better, the lower 
probability tokens became better.

125A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, The curious case of neural text degeneration, ICLR, 2020.



Top-K sampling

Top-K sampling samples among the 𝐾 most likely word, with probabilities determined by softmax
applied to the top 𝐾 words with a temperature 𝛽 > 0.

𝐾 ∼ 50 is a is a common default choice. 𝐾 = ∞ means top-K is not used.

Problem) Low-probability words can still be sampled.

126A. Fan, M. Lewis, and Y. Dauphin, Hierarchical neural story generation, ACL, 2018.

(𝐾 = 6 in this example)

child train cat house man boy tree girl guy nice
0.0

1.0

arrives is leaves was departs stopscrashes on rolled with



Top-p (nucleus) sampling

Top-p sampling samples among the fewest most likely words such that their probabilities 

(with a temperature 𝛽 > 0) exceeds probability 𝑝. Once the set top words 𝑉 𝑝 are defined 

෤𝑝𝜃 𝑢ℓ+1 = 𝑖 𝑢1, … , 𝑢ℓ =
𝑝𝜃 𝑢ℓ+1 = 𝑖 𝑢1, … , 𝑢ℓ

σ
𝑖∈𝑉 𝑝 𝑝𝜃 𝑢ℓ+1 = 𝑖 𝑢1, … , 𝑢ℓ

sampling is done from ෤𝑝𝜃. (So σ
𝑖∈𝑉 𝑝 𝑝𝜃 𝑢ℓ+1 = 𝑖 𝑢1, … , 𝑢ℓ ≥ 𝑝.)

𝑝 ∼ 0.9 is a common default choice.

𝑝 = 1 means top-p is not used.

127A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, The curious case of neural text degeneration, ICLR, 2020.

(𝑝 = 0.9 in this example)

child train cat house man boy tree girl guy nice
0.0

1.0

arrives is leaves was departs stops crashes on rolled with



Combining    , top-K, and top-p

Most modern LLMs combine the temperature parameter 𝛽, top-K, and top-p.

Precisely how these are combined slightly differ from model to model.
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LLMs as a universal interface

As LLMs were scaled up, researchers started to notice a crucial capability of LLMs emerge: 

LLMs can just follow textual instructions.

Prior paradigm: Labeled data defines the task. This was the case prior to (sufficiently large) 

language models. Self-supervised pre-training on large unlabeled text would improve the 

efficiency, but labeled data was still needed to define the task.

New paradigm: Define the task with a natural language description. Researchers gradually 

crystalized this paradigm through GPT-2, GPT-3, T5, FLAN, and Flan-PaLM.
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GPT-2 and GPT-3

The GPT-2 and GPT-3 papers had very similar titles and messages. GPT-3 simply scales up 
GPT-2 and achieves stronger results. (Architecture didn’t change much from GPT-1.)

• GPT-(1,2,3) Model size:  117M→1.5B→175B

• GPT-(1,2,3) Data size: 4GB→40GB→600GB

Main message: GPT can solve many tasks with a unified task-agnostic architecture and without 
supervised fine-tuning. Task-specific training data is not used (zero-shot) or only a few is used 
during inference (few-shot in-context learning).

No task-specific training data is used for training or fine-tuning. (However, having diverse task-
specific training data is helpful, as T5 and Flan-T5 shows.)

(ELMo was not at all task agnostic. BERT and GPT-1 was a little more task agnostic but had 
task-specific heads.)

130
A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, Language models are unsupervised multitask learners, Tech. Report, Feb. 2019.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah …, A. Radford, I. Sutskever, and D. Amodei, Language models are few-shot learners, NeurIPS, 2020. (arXiv May 2020)



Zero-shot and few-shot learning

Few-shot learning refers to a model learning a behavior with a few labeled samples or 

demonstrations. Classically, few-shot learning would have a pre-trained model fine-tuned 

(gradient updates) on the few labeled data points.

Zero-shot learning would mean performing a task with no demonstrations. How is this 

possible?

Zero-shot summarization with GPT-2:

“To induce summarization behavior, we add the text TL;DR: after the article and generate 

100 tokens with Top-k random sampling ….”

GPT-2 can perform summarization without any explicitly paired summarization dataset.

131A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, Language models are unsupervised multitask learners, Tech. Report, Feb. 2019.



In-context learning (ICL)

In In-context learning (ICL), first explicitly reported with GPT-3#, the model discerns the task 

implied by the context of demonstrations with or without explicit descriptions.

132
#T. B. Brown, B. Mann, N. Ryder, M. Subbiah …, A. Radford, I. Sutskever, and D. Amodei, Language models are few-shot learners, NeurIPS, 2020. (arXiv

May 2020)



ICL example
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In-context learning (ICL)

GPT-2# had hints of in-context learning capabilities: “Similar to translation, the context of the 

language model is seeded with example question answer pairs which helps the model infer 

the short answer style of the dataset.”

The term in-context learning refers to the LLM’s ability to learn the user’s intent through 

examples within the context of the text and without any parameter updates. You show a 

handful of demonstrations (labeled datapoints) and ask the model to “follow the examples”. 

This is few-shot learning with no gradient updates.

ICL is a crucial capability, since most natural language instructions do not specificy all 

details with complete precision. It is important that models understand what you mean 

through examples.

134#A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, Language models are unsupervised multitask learners, Tech. Report, Feb. 2019.



T5 model

Text-to-text-transfer-transformer (T5) uses an encoder-decoder transformer and formats all 

pre-training and fine-tuning into a text-to-text format.

Unified task-agnostic architecture. The many tasks, which are not semantically related, are 

formatted into a text-to-text format. Same model, objective, training procedure and decoding 

process to every task that we consider.

135
C. Raffel, N. Shazeer, A. Roberts, K .Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, Exploring the limits of transfer learning with a unified text-

to-text transformer, JMLR, 2020. (arXiv Oct. 2019)



T5 pre-training

Pre-training on large unlabeled text with diverse objectives inspired by prior work. 

The “inputs” are fed into the encoder block while the “target” text is generated by the 

decoder one token at a time.
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T5 fine-tuning

Simultaneously fine-tune on a wide range of tasks. Simply prompt the model differently for 

each task to inform T5 of the specific task to solve.

137



T5 contribution

Advanced state-of-the-art with the pre-train-than-fine-tune approach.

Further demonstrated the idea that language models can understand and respond to 

natural language instructions. We can simply tell a language model what we want and it will 

follow our instructions.

Problem: The prompts were unnatural as they did not fully describe the task at hand. (What 

does “stsb sentence 1” mean?) It is a half-way measure between a fully arbitrary label (like 

“task 3A”) and a full natural-language description.

138
C. Raffel, N. Shazeer, A. Roberts, K .Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, Exploring the limits of transfer learning with a unified text-

to-text transformer, JMLR, 2020. (arXiv Oct. 2019)



Instruction fine-tuning

Instruction fine-tuning, 

presented in the FLAN# and T0*

papers, fine-tunes a pre-trained 

model on a collection of 

datasets described via natural-

language instructions.

Unification: All tasks are sub-

tasks of the meta task of 

following the natural language 

instruction.

139

#J. Wei, M. Bosma, V. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, Q. V. Le, Finetuned language models are zero-shot learners, ICLR, 2022.

(arXiv Sept. 2021)
*V. Sanh, A. Webson, C. Raffel, S. H. Bach, …, Alexander M. Rush, Multitask prompted training enables zero-shot task generalization, ICLR, 2022. (arXiv

Oct. 2021)



Instruction fine-tuning

FLAN is a 137B parameter model instruction 

fine-tuned on over 60 NLP datasets with 

instructions verbalized via natural language 

instruction templates.

140
J. Wei, M. Bosma, V. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, Q. V. Le, Finetuned language models are zero-shot learners, ICLR, 2022.

(arXiv Sept. 2021)



Scaling instruction fine-tuning

Flan-PaLM scales instruction 

fine-tuning up to a 540B 

model with 1836 instruction-

finetuning tasks.

141H. W. Chung, L. Hou, S. Longpre, … Jason Wei, Scaling instruction-finetuned language models, JMLR, 2024. (arXiv Oct. 2022)



Scaling instruction fine-tuning

Key finding: Task diversity is essential not just in having the model be multi-task, but also in 

benefiting the individual task performances. Training on tasks A, B, C, … improved 

performance on task A.

142H. W. Chung, L. Hou, S. Longpre, … Jason Wei, Scaling instruction-finetuned language models, JMLR, 2024. (arXiv Oct. 2022)



Adding special tokens

During pre-training, LLMs are trained with some special tokens such as <|endoftext|>.

During instruction fine-tuning, it is important to add additional special tokens such as 

<|im_start|> and <|im_end|>, which stand for “instruction message start/end”.

This is done by increasing the vocabulary size and adding new columns to the token 

embedding matrix 𝐴, which also used in the output projection step when weight tying is 

used. The new columns are randomly initialized.

Although the data size and the number of updates during fine-tuning is much smaller than 

that of pre-training, LLMs can learn to use special tokens relatively quickly.
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Chat template with special tokens

The special tokens <|im_start|> and <|im_end|> are used to format the conversation in a 

chat format. This trick significantly improve the LLMs ability to follow instructions and 

engage in turn-based conversations. (This is not optional.)

144

<|im_start|>system

You are a friendly chatbot who always responds in the style of a pirate<|im_end|>

<|im_start|>user

How many helicopters can a human eat in one sitting?<|im_end|>

<|im_start|>assistant

Oh just 6.<|im_end|>

<|im_start|>user

Are you sure about that?<|im_end|>

<|im_start|>assistant …



Before and after instruction fine-tuning

Response without instruction fine-tuning:

Q: What is the currency of France?

Q: What is the population of France?

Q: What is the official language of France?

145

Response after instruction fine-tuning:

A: The capital of France is Paris.

User Prompt:

Q: What is the capital of France?



Bitter Lesson II

“A counterintuitive implication of scale: trying to solve a 

more general version of the problem is an easier way to

solve the original problem than directly tackling it.

Attempting a more general problem encourages you to come up with a more general and 

simpler approach. This often leads to a more scalable method. By leveraging increasingly 

cheaper compute, you solve the specific problem as a by-product of tackling a more general 

one.

Some examples:

- Directly solving NLU tasks (e.g. question answering) vs. learning a general language 

model and solving the task as a next token prediction.

- Instead of directly working on machine translation, work on a general problem of learning 

all languages (mT5 vs. translation-specific models).”

— Hyung Won Chung —

October 11, 2023
146https://twitter.com/hwchung27/status/1712209280529727705



3-stage training of LLMs

Gradually, researchers have adopted a three-stage training process for LLMs.
(Although this paradigm is now evolving with the advent of mid-training.)

1. Pre-traigning produces model with base capabilties, but the model just tries to complete text 
and babble on. Model does not have the propensity to follow instructions or be helpful. (Pre-
training is the most compute-heavy.)

2. (Part of post-training) Instruction fine-tuning induces the model to follow instructions and be 
“helpful.” Model can engage in chat-bot-style dialogue after instruction fine-tuning.

3. (Part of post-training) RLHF further aligns LLM with human values and expectations.
147

Pre-training Instruction fine-tuning RLHF alignment
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