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3-stage training of LLMs

With pre-training and instruction fine-tuning, the language model 𝜋𝜃 is able to generate 

language and follow instructions.

RLHF further aligns LLM with human values and expectations.
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Why RLHF?

Pre-training and supervised instruction fine-tuning use the next-token-prediction loss. The 

dataset presents a correct answer and forces the model to imitate it, like imitation learning.

• Large language models can generate outputs that are untruthful, toxic, or simply not 

helpful to the user. Next token prediction does not provide an effective way to steer a 

model away from bad outputs.

• The pre-training dataset contains some data that is unkind, so a model trained with 

next-token-prediction may sometimes be unkind to the user. How do we explicitly 

tell the model to be kind to the user?

• Next-token-prediction is not appropriate for specifying abstract goals. 

• E.g. “Follow the user’s instructions helpfully and safely.”

• E.g. “Refuse a user’s command if it is unethical or dangerous.”
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RLHF from RL

Reinforcement learning (RL), aims to control 

an agent to achieve high “reward”, but this 

reward is sometimes difficult to specify as a 

formal function.

Example) We know a backflip when we see it, 

but it is difficult program a function that returns 

positive reward upon a successful backflip.

RL with human feedback (RLHF) uses human 

feedback to determine the desired behavior, 

often by training a reward model.
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Aligning LLMs with RLHF

In the InstructGPT paper, RLHF is carried out with three neural networks.

• 𝜋𝜃 𝑢ℓ+1 𝑢1, … , 𝑢ℓ : Instruction fine-tuned LM, 175B GPT-3.

• 𝑟𝜓: Reward model (RM), initialized from a pre-trained LM, 6B GPT-3 + new head to make 
the output a scalar.

• 𝑉𝜙: Value function model (baseline function for PPO), initialized to be RM.

(Smaller 6B RM was used because with a 175B RM, (1) training was more unstable for 
some reason, and (2) using a 175B RM and value function greatly increase the compute 
requirements of PPO.)

• Question to think about: Is 𝑟𝜓 and 𝑉𝜙 really necessary?
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Reward model: Training data

Let 𝑥 be a prompt specifying a task, and 𝑥 requires an answer.

The instruction fine-tuned model generates 𝐾-independent completions 𝑦1, … , 𝑦𝐾.

• For the completions to be distinct, greedy sampling or beam search should not be used. 

It may even help to large temperature (𝛽 = 1 or higher) to increase the randomness in 

the response.

• 𝐾 = 4 to 9 in InstructGPT paper.

Human annotator is given detailed criterion and (human) training. Then, the 𝑦𝑖 > 𝑦𝑗 or 

𝑦𝑖 < 𝑦𝑗 annotations for all pairs 𝑦𝑖 , 𝑦𝑗 are provided. (𝐾 choose 2 comparison annotations.)
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Reward model: Bradley–Terry

Reward model 𝑟𝜓 is trained as a Bradley–Terry model: Minimizing

where 𝑦win > 𝑦lose according to human preference.

Given human annotation data 𝒟 containing 𝑥, 𝑦1, … , 𝑦𝐾 and the human annotation 

specifying 𝑦𝑖 > 𝑦𝑗 for all 𝐾 choose 2 pairs, train the reward model 𝑟𝜓 by minimizing

7R. A. Bradley and M. E. Terry, Rank analysis of incomplete block designs: I. The method of paired comparisons,  Biometrika, 1952.

− log 𝜎 𝑟 = log 1 + 𝑒−𝑟



Reward model: Bradley–Terry

𝑟𝜓 will be trained such that 𝑟𝜓 𝑥, 𝑦 ≫ average is 𝑦 is a “good” completion and vice versa.

Note, this can be viewed soft-max regression with 𝐾 = 2 (logistic regression) on 

determining probability of the two events: [ 𝑥, 𝑦1 is better] vs. [ 𝑥, 𝑦2 is better].
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Best-of-N sampling

Given a trained reward model 𝑟𝜓, how do we use it to generate high-reward completions?

Best-of-N sampling:

1. Generate 𝑁 text outputs.

2. Select the best one as determined by the reward model 𝑟𝜓.

Advantage: Simple and effective# way to utilize a reward model trained from human feedback. 
Also, no need for RL training, which can be tricky. (Best-of-N should always be used as a 
baseline approach.)

Downside: Sampling requires 𝑁 generations, so inefficient. (If you are willing to pay the cost of 
multiple generations, you can view best-of-N as an instance of test-time-scaling.)
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The RL of RLHF

RL with human feedback (RLHF) on LLMs further fine-tunes the LLM 𝜋𝜃 so that the 
completion achieves high reward as measured by the reward model 𝑟𝜓.

What is the MDP? 

• LLMs are autoregressive models and are decidedly not Markovian. (Next token 
generation depends on the entire past, not just the previous token.) However, any non-
Markovian process can be made “Markovian” by defining the entire history as the 
“previous state.” In standard RL, the policy has the form 𝜋 𝑎𝑡 𝑠𝑡 , but in LLMs, we need 
something like 𝜋 𝑎𝑡 𝑠1, … , 𝑠𝑡 .

• The “state” is the user prompt and the tokens generated so far 𝑢1, … , 𝑢ℓ.

• Each action is the generation of one token. The policy is random, but the transition 
dynamics it deterministic, i.e., (current state, current action) = (next state).

10



The RL of RLHF

The RL setup

• Each timestep is a BPE token.

• The LLM 𝜋𝜃 𝑢ℓ+1 𝑢1, … , 𝑢ℓ is our policy mapping current state 𝑢1, … , 𝑢ℓ to a 

distribution on the action (next token) 𝑢ℓ+1.

• Response generation is an episode, and an episode terminates when LM generates 

<EOS>.

• No discount used, i.e., discount factor 𝛾 = 1 is used.

• Reward (by reward model 𝑟𝜓) is only provided at the end of the episode. There are no 

intermediate reward. Called “contextual bandit” setting.

• Sampling temperature 𝛽 = 1.
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Proximal policy optimization (PPO)

• Let 𝜋𝜃 𝑢ℓ+1 𝑢1, … , 𝑢ℓ be our LLM and the RL policy.

• Let 𝑥 be a text prompt and 𝑦 = 𝑦1:𝑇+1 be its completion by 𝜋𝜃. (So 𝑦𝑇+1=<EOS>.)

• Let 𝑦1:𝑡 the partial completion up to token 𝑡.

• The PPO-clip ratio is set to 𝜀 = 0.2.

PPO maintains a value function model 𝑉𝜙 𝑥, 𝑦1:𝑡 : Given 𝑥, 𝑦1:𝑡 , what is the expected 

reward if we continue generation with 𝜋𝜃.

Advantage መ𝐴 = 𝑟𝜓 𝑥, 𝑦1:𝑇+1 − 𝑉𝜙 𝑥, 𝑦1:𝑡 : How good is the total completion 𝑦𝑡+1:𝑇+1
compared to what 𝑉𝜙 was expecting based on 𝑦1:𝑡?

12J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy optimization algorithms, arXiv, 2017.



Proximal policy optimization (PPO)

If መ𝐴 = 𝑟𝜓 𝑥, 𝑦1:𝑇+1 − 𝑉𝜙 𝑥, 𝑦1:𝑡 > 0, then 𝑦𝑡+1:𝑇+1 was a good completion. We should adjust 

𝜋𝜃 to make those actions more likely.

If መ𝐴 = 𝑟𝜓 𝑥, 𝑦1:𝑇+1 − 𝑉𝜙 𝑥, 𝑦1:𝑡 < 0, then 𝑦𝑡+1:𝑇+1 was a bad completion. We should adjust 

𝜋𝜃 to make make those actions less likely.

(Actually GAE was used for መ𝐴, but let’s consider the simpler advantage estimate for 

simplicity.)
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PPO v.0 (susceptible to over-optimization)
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Over-optimization

Goodhart's law: When a measure becomes a target, it ceases to be a good measure.

Problem with PPO v.0: Over-optimization.

• Reward model is imperfect, so we should not overfit to it.

• Maximizing reward model too much will result in adversarial generation that seems 

good to the reward model by exploiting the imperfections of the model.

• Reward model 𝑟𝜓 was trained on 𝜋SFT, the supervised-fine-tuned (pre-trained and 

instruction fine-tuned) LLM. So 𝑟𝜓 is informative about responses generated by 

𝜋𝜃
RL only when 𝜋𝜃

RL is “close” to 𝜋SFT. (𝜋𝜃
RL is initialized to 𝜋SFT.)

• Moving away from the pre-trained and instruction-fine tuned model too much will cause 

the language model to lose its main capabilities.

• Fine-tuning too much can break the model, causing it to output nonsense tokens.
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Over-optimization

Overfitting concerns fitting data, while over-optimization concerns fitting the reward model. 

Both lead to poor generalization, but there are some substantive differences.

Over-optimization leads to the model learning adversarial examples, also referred to as 

reward hacking.

PPO’s clipped objective prevents over-optimization in the sense of keeping 𝜃next close to 

𝜃curr. This is different.

Resolution) Impose a KL-divergence penalty term, ensuring that 𝜋𝜃
RL is “close” to 𝜋SFT.
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KL-penalty and pre-training loss

RLHF with KL-penalty maximizes the objective:

where 𝛽 > 0. The KL-penalty                                             encourages 𝜋𝜃
RL is to stay close to 

𝜋SFT.

18



KL-penalty and pre-training loss

Maximizing 𝒥 𝜃 can be thought of as equivalent to performing RL without an explicit 

penalty on an MDP with the same transition dynamics but with the modified rewards 

𝑟0, 𝑟1, … , 𝑟𝑇 given by

In other words, we can absorb the KL penalty into the rewards.

• Now the modified MDP has intermediate rewards.

• To clarify, our LLM notation has the episode terminating on the 𝑇 + 1 -th step, while our 

previous RL notation had episodes terminating on the 𝑇-th step.

• The reward itself now depend on the parameter 𝜃, but if you redo the derivation, 

everything turns out okay. 19



KL-penalty and pre-training loss

However, even with the KL-penalty, the base language modeling capability is damaged. 

Therefore, continue with the language model training during RLHF training by maximizing

The 𝜂-term is the next-token prediction loss used in pre-training, where 𝜂 > 0.

PPO and pre-training update performed simultaneously or in alternating fashion.
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PPO with KL penalty

21
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Closed-form solution of KL-regularized RL
Interestingly, there is a closed-form solution for the optimal KL-regularized policy given the 
reward model 𝑟 = 𝑟𝜓. Ignoring the pre-training loss, the KL-regularized RL solves

We can transform the loss as

where
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Closed-form solution of KL-regularized RL

Therefore,

is equivalent to

which in turn is equivalent to 

Since 𝑍 𝑥 not depend on 𝜋𝜃. Note that the normalization constant 𝑍 𝑥 is not tractable, but 

we will soon see that its value it not needed.

If we ignore the neural network parameterization, we see that the optimum policy is attained 

at 𝜋𝜃 = 𝜋𝑟. 23



Closed-form solution of KL-regularized RL

We have found the closed form solution mapping 𝑟 to the (KL-regularized) optimal policy 𝜋𝑟

Inversely, if given arbitrary policy 𝜋, the reward function 𝑟𝜋 that makes the policy 𝜋 optimal is

(Generally, this is called inverse RL; Given a behavior of a rational agent, what is the 

reward that is being maximized?)

We have a one-to-one mapping between 𝑟 and 𝜋.
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Direct preference optimization (DPO)

PPO-based RLHF:

1. Collect human preference data.

2. Learn 𝑟 to fit the preference data.

3. Learn 𝜋 maximizing 𝑟 subject to KL penalty.

Direct preference optimization (DPO):

1. Collect human preference data.

2. Learn 𝜋 such that 𝑟𝜋 fits the preference data.

In other words, DPO uses the one-to-one parameterization between 𝜋 and 𝑟 to eliminate 𝑟 and 
directly learn 𝜋.

25
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Direct preference optimization (DPO)

Recall that the reward model was trained via

DPO substitutes

and solves

Note, 𝑍 𝑥 cancels out.
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Direct preference optimization (DPO)

The need to train a reward model 𝑟𝜓 has now been removed. Also, the need for the value 
network 𝑉𝜙 is also removed, since we are no longer doing the PPO optimization.

DPO effectively converts the RL problem into a supervised learning problem, and therefore 
DPO is so much easier to execute.

However, there is some disagreement on whether the DPO performs as well as PPO.#

27#S. Xu, W. Fu, J. Gao, W. Ye, W. Liu, Z. Mei, G. Wang, C. Yu, and Y. Wu, Is DPO Superior to PPO for LLM Alignment? A Comprehensive Study, ICML, 2024.



DPO loss interpretation

The DPO loss itself is somewhat difficult to interpret, but its gradient provides some 
intuition.

So, DPO is also doing ascent on the good completion 𝑦𝑖 while doing descent on the bad 
completion 𝑦𝑗. The gradient is accentuated if the implicitly defined reward model 𝑟𝜋𝜃
disagrees with the human annotation 𝑦𝑖 > 𝑦𝑗.

28
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Chain-of-thought

Chain-of-thought (CoT) is a technique for LLMs to talk (think) to itself before producing an 

answer. Compared to immediately producing an answer, CoT greatly improves 

performance.

One way to induce CoT is through the prompt: "Let's think step by step.”

29T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, Large language models are zero-shot reasoners, NeurIPS, 2022.



Chain-of-thought prompting

The CoT behavior can also 

be induced through ICL 

prompting.

Modern LLMs are 

instruction-fine-tuned to 

exhibit the CoT behavior.

30
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Co-training language models with code

Automatic program synthesis was a longstanding challenge.

One day, LLMs emerged as a solution.

“ … early investigation of GPT-3 revealed that it could generate simple programs from 

Python docstrings. While rudimentary, this capability was exciting because GPT-3 was not 

explicitly trained for code generation.”#

Code data with comments written in natural language is plentiful on the internet. Now, LLMs 

are explicitly trained on code together with language. 

Despite the differences between code and natural language, this works surprisingly well.

31
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Coding is the 
main use of LLMs

Anthropic’s report shows that 

37.2% of the tokens they 

generate are for coding.

32
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Code training benefits logical reasoning

Interesting, coding improves natural-language (non-coding) reasoning teasks.

“Code training prior to math training improves models’ ability to solve mathematical 

problems … code training improve[s] … mathematical reasoning.”#

“we empirically show that [formal logic problems] enhances the reasoning capabilities of 

state-of-the-art LLMs”&

“we find a consistent results that code is a critical building block for generalization far 

beyond coding tasks … outsized impact across all tasks.”%

33
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Math problem solving with LLMs

There is a lot of research on using LLMs to solve math problems. There are 2 types:

1. Solving math problems (often at high-school or lower level) in natural language and 

reporting the numerical answer at the end.

2. Producing mathematical proofs (often no numerical answer) in natural language or in a 

formal proof assistant such as Lean.

To avoid the discussion of what a formal proof is, I will only talk about the first type.
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Math datasets

GSM-8k: Elementary and middle school level problems.

Math500: High school to early undergraduate level problems 

35
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Math datasets

American Invitational Mathematics Examination 2024 (AIME 2024).

AIME problems are designed to have integer solutions between 0 and 999. Unlike, say the 

AMO or IMO, only the answer is graded.

Grading the intermediate derivations or proofs is difficult, so these benchmarks are 

evaluated only on the final numerical answer. 

36



Why solve math with AI?

• Training AI on math may improve logical reasoning in other areas.

• This is why most humans are taught math.

• Math is useful, and AI may be able to assist us making novel mathematical discoveries.

• E.g. Terence Tao, Javier Gomez-Serrano, and Google DeepMind are in active 

collaboration towards this goal.#

• Discovering novel mathematics with AI has already been done. The next goal is to 

make discoveries that are significant such that they would be of interest regardless 

of the involvement of AI and would be publishable in a top mathematics journal.

• Mathematics does not require external real-world data (unlike other scientific disciplines).

• Among domains with objective verification mechanisms, mathematics arguably 

represents the pinnacle of intellectual endeavor. (Board games are just games .)

37
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DeepSeekMath

DeepSeekMath paper’s contribution:

1. Math problem data is already plentiful in commonly used pre-training dataset. Proposed 

a method to extract them.

2. Proposed GRPO and RL-trained LLM to solve these math problems with CoT 

reasoning.

This is an instance RL with Verifiable Rewards (RLVR). The reward is exact, so one cannot 

overfit.

Only outcome rewards are provided. Intermediate rewards on partial completions, called 

process rewards are not used.

38
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DeepSeek GRPO

39
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soning in open language models, arXiv, Feb. 2024.

Note) length normalization



DeepSeek-R1

Scaled up the RLVR on coding, mathematics, science, logic reasoning etc.

The model learns to utilize CoT more extensively and performance improves significantly.

40DeepSeek-AI, DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning, arXiv, Jan. 2025.



DeepSeek-R1 detailed 
training pipeline

DeepSeek-V3 Base model is a pre- and post-trained 

LLM with several interesting low-level architectural 

innovations. RLHF is used, but no RLVR yet.

RLVR applied to DeepSeek-V3 Base yields 

DeepSeek-R1-Zero. This model learns to use longer 

CoT and performance improves, but the CoT suffers 

from poor readability.

DeepSeek-R1 has many additional steps.

We highlight a few.

41
DeepSeek-AI, DeepSeek-V3 technical report, arXiv, Dec. 2024.

Image Source: https://x.com/SirrahChan/status/1881540279783887036
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Collect some good CoT examples and use 

them to train the base model with 

supervised fune-tuning (SFT, next-token 

prediction). Use SFT’d model to warm start 

the RLVR process. (The authors call this a 

“cold start”.)

To prevent CoT language from alternating 

between English and Chinese, impose a 

language consistency loss in RL.

42

DeepSeek-R1 detailed 
training pipeline



We want the model to be general-purpose, 

not just good for code and math.

Build a dataset with good CoT traces for 

verifiable and non-verifiable (e.g., creative 

writing) tasks.

SFT-train the DeepSeek-V3 Base model 

on this dataset.

43

DeepSeek-R1 detailed 
training pipeline



DeepSeek-R1 and DeepSeek-V3 Base are 

671B parameter models. (They are MoE so the 

number of activated parameters is smaller.)

Distillation takes the final SFT dataset and 

trains smaller pre-trained Qwen and Llama 

models.

The distilled models perform much better than 

directly training these models with RLVR.

44
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Meta AI, The Llama 3 Herd of Models, arXiv, Jul. 2024.

DeepSeek-R1 detailed 
training pipeline



Final model DeepSeek-R1 is produced by 

further RL training after SFT.

The final RL training combines RLVR with 

RLHF, which uses GRPO with a reward 

model trained on human feedback. (No 

PPO or DPO.)

45

DeepSeek-R1 detailed 
training pipeline



System prompt and special token for 
DeepSeek-R1

The special tokens <think> and </think> are introduced to enclosed the CoT reasoning 

traces that the outcome reward function should ignore.

“We intentionally limit our constraints to this structural format, avoiding any content-specific 

biases—such as mandating reflective reasoning or promoting particular problem-solving 

strategies—to ensure that we can accurately observe the model’s natural progression 

during the RL process.”

46DeepSeek-AI, DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning, arXiv, Jan. 2025.



Emergent abilities of LLMs

Emergence refers to the phenomenon where complex and often unexpected behaviors or 
capabilities arise from a system as it scales, particularly when these behaviors were not 
explicitly programmed or evident in smaller versions of the system.

The term is frequently misused in unscientific contexts, often due to its association with a 
sense of mysticism.

Many of the capabilities exhibited by LLMs are emergent.

• Nice because we acquire a capability without explicitly curated data or specialized 
architectural design.

• Bad because the scale at which a capability emerges (if it emerges at all) is 
unpredictable.

47
J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou, D. Metzler, E. H. Chi, T. Hashimoto, O. Vinyals, P. Lian

g, J. Dean, and W. Fedus, Emergent abilities of large language models, TMLR, 2022.



Emergence of non-linear reasoning 
through RLVR
“One of the most remarkable aspects of this self-evolution is the emergence of 

sophisticated behaviors as the test-time computation increases. Behaviors such as 

reflection—where the model revisits and reevaluates its previous steps—and the 

exploration of alternative approaches to problem-solving arise spontaneously. These 

behaviors are not explicitly programmed but instead emerge as a result of the model’s 

interaction with the reinforcement learning environment.”

48DeepSeek-AI, DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning, arXiv, Jan. 2025.



Why did RLVR 
suddenly work?

In hindsight, RLVR is a fairly obvious 

approach, and other researchers have 

tried it earlier.#

Earlier attempts failed because non-

linear reasoning capabilities did not 

emerge and improvements from RL 

saturated.

Why didn’t these capabilities emerge in 

ealier models? A post-mortem analysis?

#L. Trung, X. Zhang, Z. Jie, P. Sun, X. Jin, and H. Li, ReFT: Reasoni

ng with reinforced fine-tuning, ACL, 2024. (arXiv, Jan. 2024.)

https://x.com/rosstaylor90/status/1886625126222852208
49



RLVR works with key cognitive behaviors

Qwen and DeepSeek base models exhibit certain key cognitive behaviors for reasoning: 

verification (systematic error-checking), backtracking (abandoning failing approaches), 

subgoal setting (decomposing problems into manageable steps), backward chaining 

(reasoning from desired outcomes to initial inputs).

50
K. Gandhi, A. Chakravarthy, A. Singh, N. Lile, and N. D. Goodman, Cognitive behaviors that enable self-improving reasoners, or, four habits of highly effe

ctive STaRs, arXiv, Mar. 2025.

Qwen Llama



RLVR works with key cognitive behaviors

RLVR only works for models with these cognitive behaviors. The Llama base model does 

not naturally exhibit these capabilities.

51
K. Gandhi, A. Chakravarthy, A. Singh, N. Lile, and N. D. Goodman, Cognitive behaviors that enable self-improving reasoners, or, four habits of highly effe

ctive STaRs, arXiv, Mar. 2025.



RLVR works with key cognitive behaviors

If we teach (prime) Llama these cognitive behaviors with SFT, then RLVR starts to work.

52
K. Gandhi, A. Chakravarthy, A. Singh, N. Lile, and N. D. Goodman, Cognitive behaviors that enable self-improving reasoners, or, four habits of highly effe

ctive STaRs, arXiv, Mar. 2025.



Datasets with key cognitive behaviors

OpenWebMath# and FineMath% are 

math problem-solving datasets with 

these key cognitive behaviors.

Perhaps Llama was not on these 

datasets. (No public evidence on the 

training data.)

When Llama is further trained on 

OpenWebMath, RLVR starts work.

53

#K. Paster, M. Dos Santos, Z. Azerbayev, and J. Ba, OpenWebMath: An open dataset of high-quality mathematical web, ICLR, 2024.
%L. Ben Allal, A. Lozhkov, … T. Wolf, SmolLM2: When Smol goes big — Data-centric training of a small language model, arXiv, Feb. 2025.

K. Gandhi, A. Chakravarthy, A. Singh, N. Lile, and N. D. Goodman, Cognitive behaviors that enable self-improving reasoners, or, four habits of highly effe

ctive STaRs, arXiv, Mar. 2025.



Majority vote

Majority vote, self-

consistency#, or consensus 

is a simple technique for 

improving the accuracy of 

reasoning models. Simply 

generate 𝑁 reasoning 

paths and report the most 

frequent answer.

54
#X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, and D. Zhou, Self-consistency improves chain of thought reasoning in langua

ge models, ICLR, 2023.

DeepSeek-AI, DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning, arXiv, Jan. 2025.

DeepSeek-R1 reasoning also improves with majority vote.

(cons@64 means consensus with 64 generations.)



DeepSeek-R1 and test-time scaling

Test-time scaling refers to using more compute at test-time (during inference) to improve the 

quality or accuracy of the output.

For LLMs, DeekSeek-R1 shows:

• Majority vote remains a valid approach to test-time scaling.

• Multiple generations incurs compute cost.

• RLVR allows the model to use the CoT for test-time scaling.

• Generating the longer CoT incurs compute cost.

• Can we control the CoT length?

55



Test-time scaling with budget forcing

Given a CoT reasoning model (not 

necessarily RLVR trained), we can 

control the CoT length using a budget 

forcing technique.

• To terminate the CoT early, append 

“Final Answer:” at the end. The 

model will produce an answer based 

on the current CoT.

• To continue the CoT that has 

concluded, delete the answer and 
append “Wait” at the end. The 

model will continue the reasoning.

56
N. Muennighoff, Z. Yang, W. Shi, X. L. Li, L. Fei-Fei, H. Hajishirzi, L. Zettlemoyer, P. Liang, E. Candès, and T. Hashimoto, s1: Simple test-time scaling, ar

Xiv, Jan. 2025.



Unsuccessful test-time scaling results

Interestingly, the DeepSeek-R1 authors report some negative results for test-time scaling.

Process reward models (PRM) do not work well. PRMs are trained models evaluating 
correctness or usefulness of intermediate steps. PRMs are hard to train (requires significant 
human annotation), and their use leads to over-optimization and reward hacking.

MCTS also does not work well. Compared to AlphaGo, there are too many possible actions 
(tokens) per step, so the tree search quickly blows up in size.

MCTS has been successfully used by the DeepSeek team for when interacting with formal 
mathematical proof assistants,% but successfully using MCTS-like search for pure language 
reasoning remains an open problem.

57
DeepSeek-AI, DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning, arXiv, Jan. 2025.
%H. Xin, Z. Z. Ren, … C. Ruan, DeepSeek-Prover-V1.5: Harnessing proof assistant feedback for reinforcement learning and Monte-Carlo tree search, IC

LR, 2025.



GRPO has some problems

Recall the GRPO algorithm, restated for comparison.

Note the length normalization.

58



DAPO

DAPO changes the length normalization mechanism.

(DAPO also proposed some other changes, but we won’t cover them.)

59Q. Yu, Z. Zhang, ..., and M. Wang, DAPO: An open-source LLM reinforcement learning system at scale, arXiv, v1 Mar. 2025.



Dr. GRPO

Dr. GRPO (GRPO Done Right) removes the length normalization altogether, and also 

removes the advantage normalization.

60Z. Liu, C. Chen, W. Li, P. Qi, T. Pang, C. Du, W. S. Lee, and M. Lin, Understanding R1-Zero-like training: A critical perspective, arXiv, Mar. 2025.



Length normalization bias

With length normalization, 

for shorter responses, 

correct answers are 

strongly preferred.

61

However, longer responses, correct or incorrect, do not receive much reward or penalty.

So, if you think you’ll get things wrong, you might as well make the response long to receive 

less penalty. This is what caused DeepSeek-R1’s CoT to grow longer and longer.

Z. Liu, C. Chen, W. Li, P. Qi, T. Pang, C. Du, W. S. Lee, and M. Lin, Understanding R1-Zero-like training: A critical perspective, arXiv, Mar. 2025.



Question-level difficulty bias

For the GRPO advantage estimate, questions with lower standard deviations (problems that 

are too easy or too hard) are given higher weights during policy updates. 

It’s not clear if this bias causes significant problems, but Dr. GRPO removes the standard-

deviation normalization to remove this bias.

One can show that Dr. GRPO’s advantage estimates corresponds to unbiased policy 

gradient estimates:

62



SFT memorizes and RLVR generalizes

The authors define simple toy 

tasks and train on them with 

SFT and RLVR.

Results show that RLVR 

leads to better generalization.

63

T. Chu, Y. Zhai, J. Yang, S. Tong, S. Xie, D. Schuurm

ans, Q. V. Le, S. Levine, and Y. Ma, SFT memorizes, 

RL generalizes: A comparative study of foundation m

odel post-training, ICML, 2025.
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Why does RL generalize well?

My hypothesis:

SFT lacks explicit negative signals. When a behavior is absent from the training data, the 

model gradually infers its undesirability through omission. This indirect signal is weak and 

inefficient.

By comparison, RL provides explicit negative feedback. Actions that lead to lower rewards 

are penalized. Although there is no credit assignment and all actions leading to a poor 

outcome are downweighted without fine-grained attribution, the model nonetheless receives 

direct signals about which behaviors to avoid.

64



Does RLVR learn new reasoning? No?

There is some evidence that RL does not teach new 

reasoning behaviors; it reinforces (makes more likely) the 

correct reasoning pattern that the model already knows 

from pre-training.

Evidence: If we evaluate the model with pass@k (answer 

only needs to be correct one out of k times), RLVR 

actually worsens the performance.
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Does RLVR learn new reasoning? Yes?

However, a follow-up paper argues that with their Prolonged RL (ProRL) technique, they 

can prevent “entropy collapse” and have RL learn novel reasoning strategies that are 

inaccessible to base models.

66
M. Liu, S. Diao, X. Lu, J. Hu, X. Dong, Y. Choi, J. Kautz, and Y. Dong, ProRL: Prolonged reinforcement learning expands reasoning boundaries in large la

nguage models, arXiv, May 2025.



Entropy collapse

A key challenge in prolonged policy optimization is entropy collapse, a phenomenon where 

the model’s output distribution loses diversity early in training, resulting in sharply reduced 

entropy. When this happens, the policy prematurely commits to a narrow set of outputs, 

severely limiting exploration. Without sufficient exploration, RL stagnates.

The authors propose ProRL to remedy entropy collapse. ProRL incorporates components 

from the DAPO training loss and periodically resets the KL penalty. (Details in the paper.)

Takeaways: (i) naïve RL with GRPO stagnates and may not be able to learn new reasoning 

behavior, (ii) there are ways to effectively perform prolonged RL training without stagnation, 

and (iii) LLMs can learn new reasoning behaviors in prolonged RL training.

67
M. Liu, S. Diao, X. Lu, J. Hu, X. Dong, Y. Choi, J. Kautz, and Y. Dong, ProRL: Prolonged reinforcement learning expands reasoning boundaries in large la

nguage models, arXiv, May 2025.



Does RLVR learn 
new reasoning? 
No?

68
Y. Wang, Q. Yang, Z. Zeng, L. Ren, L. Liu, B. Peng, H. Cheng, X. He, K. Wang, J. Gao, W. Chen, S. Wang, S. S. Du, and Y. Shen, Reinforcement learnin

g for reasoning in large language models with one training example, arXiv, Apr. 2025.

It turns out, RLVR provides a benefit with 

one training example. RLVR works with 

any single problem, but some problems 

work better.

Hypothesis: RLVR reinforces the 

correct reasoning pattern that the 

model already knows from

pre-training. A single problem

generates multiple reasoning

(solution) paths, and RLVR

reinforces the correct

reasoning steps.



Fog of war

In a newly emerging and rapidly evolving field, research findings often noisy. This is 

because researchers are still navigating through various pitfalls, and the best practices and 

know-hows have yet to be established.

Therefore, it is important to approach these papers with a healthy dose of skepticism.

69
The following blogpost reports that some recent RL-LLM findings may be spurious.

N. Chandak, S. Goel, and A. Prabhu, Incorrect baseline evaluations call into question recent LLM-RL claims, May 2025.

https://safe-lip-9a8.notion.site/Incorrect-Baseline-Evaluations-Call-into-Question-Recent-LLM-RL-Claims-2012f1fbf0ee8094ab8ded1953c15a37
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Reasoning without RL, with expert iter.

RLVR and reasoning is an exciting new development (and is the focus of this course), but 

RL using policy-gradient-type methods is not the only way to induce reasoning capabilities 

in LLMs. 

One non-RL# appraoch is expert iteration:

for 𝑛 = 0,1,…

• Given a model 𝑀𝑛, get an enhanced model 𝑀𝑛
+.

• Enhancement technique 1:  Use test-time scaling approaches like majority voting 

or MCTS based on the model 𝑀𝑛.

• Enhancement technique 2:  Use outcome verification on behavior of 𝑀𝑛.

• Train next model 𝑀𝑛+1 by fitting 𝑀𝑛
+.

70#Some may argue that expert iteration is also an RL method, although I personally think it feel more closer to supervised learning (SL).



Self-Taught Reasoner (STaR)

We can use few-shot ICL prompts to make a model CoT reasoning without RL. We can 

enhance the CoT reasoning with expert iteration.

Idea #1) Rationale generation: Generate CoT traces and keep ones with a correct answer. 

(Outcome verification.)

Q: What can be used to carry a small dog?
(a) swimming pool
(b) basket
(c) dog show
(d) backyard
(e) own home
A: The answer must be something that can be used to carry a small dog. 
Baskets are designed to hold things. Therefore, the answer is basket (b).

71E. Zelikman, Y. Wu, J. Mu, and N. D. Goodman, STaR: Bootstrapping reasoning with reasoning, NeurIPS, 2022.



Self-Taught Reasoner (STaR)

Idea #2) Rationalization: For problems that the model got wrong, tell the answer to the 

model and have it generate an explanation justifying the answer.

Q: Where do you put your grapes just before checking out?
Answer Choices:
(a) mouth
(b) grocery cart (CORRECT)
(c) super market
(d) fruit basket
(e) fruit market

A: The answer should be the place where grocery items are placed before 
checking out. Of the above choices, grocery cart makes the most sense for 
holding grocery items. Therefore, the answer is grocery cart (b).

If the model returns the correct answer at the end, remove the hint, and use the data as if 

the model generated the CoT on its own.
72



Self-Taught Reasoner (STaR)
Idea #3) Iterate this process.

In our expert iteration notation, 𝒟𝑛 ∪𝒟𝑛
rat is generated by 𝑀𝑛

+, and the dataset gradually 

improves since (i) more problems get solved and (ii) more problems get solved without 

rationalization.

73E. Zelikman, Y. Wu, J. Mu, and N. D. Goodman, STaR: Bootstrapping reasoning with reasoning, NeurIPS, 2022.



Self-Taught Reasoner (STaR)

Without using policy-gradient-type updates, CoT reasoning is learned.

74E. Zelikman, Y. Wu, J. Mu, and N. D. Goodman, STaR: Bootstrapping reasoning with reasoning, NeurIPS, 2022.



Recursive self-improvement

Consider tasks with an unambiguous notion of difficulty such as adding two integers each 

with 𝑛 or fewer digits. So, for each problem 𝑥𝑖, write difficulty 𝑥𝑖 to denote the difficulty.

Key observation) If 𝑀𝑛 is trained on 𝑥𝑖 with difficulty 𝑥𝑖 ≤ 𝑛, then 𝑀𝑛 can solve 𝑥𝑖 with 

difficulty 𝑥𝑖 = 𝑛 + 1 with a reasonable accuracy and this accuracy can be boosted with 

majority voting.

75
N. Lee, Jack Cai, A. Schwarzschild, K. Lee, and D.Papailiopoulos, Self-improving transformers overcome easy-to-hard and length generalization challenges, 

ICML, 2025.



Recursive self-improvement

Train 𝑀𝑛 on data 𝒟 = 𝑥𝑖 , 𝑦𝑖 such that difficulty 𝑥𝑖 ≤ 𝑛.

for 𝑛 = 0,1,…

• majority voting, generate data 𝒟𝑛+1 = 𝑥𝑖 , 𝑦𝑖 with difficulty 𝑥𝑖 = 𝑛 + 1.

• Set 𝒟 ← 𝒟 ∪𝒟𝑛+1 and train 𝑀𝑛+1 on 𝒟.

Notably, only data on easy (difficulty 𝑥𝑖 ≤ 𝑛) instances are used. Model learns to solve 

harder instances without labels on hard instances. (Easy-to-hard generalization.)

In our expert iteration notation, 𝑀𝑛
+ is 𝑀𝑛 with majority voting. The test-time-scaling-

enhanced 𝑀𝑛
+ is good at solving problems of difficulty 𝑛 + 1, even though 𝑀𝑛 is not very 

accurate on such instances.

76
N. Lee, Jack Cai, A. Schwarzschild, K. Lee, and D.Papailiopoulos, Self-improving transformers overcome easy-to-hard and length generalization challenges, 

ICML, 2025.



Recursive self-improvement

77
N. Lee, Jack Cai, A. Schwarzschild, K. Lee, and D.Papailiopoulos, Self-improving transformers overcome easy-to-hard and length generalization challenges, 

ICML, 2025.



Conclusion

We are in the summer of RL and AI.

These are exciting times.
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