

Homework exercises

Problem 1: Monotonicity of Bellman operators. Let $\gamma \in (0,1)$, $|\mathcal{S}| < \infty$, $|\mathcal{A}| < \infty$, and $|r| \leq R < \infty$ almost surely. Let π be a policy, not necessarily optimal. Let \mathcal{B}^{π} be the Bellman operator for π and \mathcal{B}^{\star} the Bellman optimality operator. Show that for any $V: \mathcal{S} \to \mathbb{R}$,

$$\mathcal{B}^{\pi}[V] \leq \mathcal{B}^{\star}[V].$$

Also show that for any $U: \mathcal{S} \to \mathbb{R}$ and $V: \mathcal{S} \to \mathbb{R}$ such that $U \leq V$,

$$\mathcal{B}^{\star}[U] \leq \mathcal{B}^{\star}[V].$$

Problem 2: Bellman operators for Q are contractions. Let $\gamma \in (0,1)$, $|\mathcal{S}| < \infty$, $|\mathcal{A}| < \infty$, and $|r| \leq R < \infty$ almost surely. Show that the \mathcal{B}^{π} and \mathcal{B}^{\star} for Q are γ -contractions.

Problem 3: Optimal Q-function dominates all Q-functions. Let $\gamma \in (0,1)$, $|\mathcal{S}| < \infty$, $|\mathcal{A}| < \infty$, and $|r| \leq R < \infty$ almost surely. Let π^* be an optimal policy, i.e., assume

$$V^{\pi^*}(s) \ge V^{\pi}(s), \quad \forall s \in \mathcal{S}, \text{ policy } \pi.$$

Show that

$$Q^{\pi^*}(s, a) \ge Q^{\pi}(s, a), \quad \forall s \in \mathcal{S}, a \in \mathcal{A}, \text{ policy } \pi.$$

Problem 4: Optimal policies form a convex set. Let $\gamma \in (0,1)$, $|\mathcal{S}| < \infty$, $|\mathcal{A}| < \infty$, and $|r| \leq R < \infty$ almost surely. Show the following:

(a) Show that a policy π (not necessarily deterministic) is optimal if and only if

$$V^{\pi}(s) = V^{\star}(s), \quad \forall s \in \mathcal{S}.$$

(b) Show that

$$\mathbb{E}_{(r,s')\sim p(\cdot,\cdot\mid s,a)}[r+\gamma V^{\star}(s')\mid s,a] = Q^{\star}(s,a), \qquad \forall s \in \mathcal{S}, \ a \in \mathcal{A}.$$

(c) Show that

$$V^{\star}(s) = \max_{a \in \mathcal{A}} Q^{\star}(s, a), \quad \forall s \in \mathcal{S}.$$

(d) Show that a policy π (not necessarily deterministic) is optimal if and only if

$$\operatorname{supp}(\pi(\cdot \mid s)) \subseteq \operatorname{argmax} Q^{\star}(s, \cdot), \quad \forall s \in \mathcal{S}.$$

i.e., show that π is optimal if and only if it selects actions that maximize $Q^{\star}(s,\cdot)$.

(e) Let π^* and ν^* be two optimal policies. For any $\theta \in [0,1]$, show that

$$\mu^{\star} = \theta \pi^{\star} + (1 - \theta) \nu^{\star}$$

is also an optimal policy. Conclude that the set of optimal policies is a convex set.

$$\mathit{Hint.} \ \, \text{For (d), show that} \,\, \mathcal{B}^{\pi}[V^{\star}](s) = \underset{a \sim \pi(\cdot \, | \, s)}{\mathbb{E}}[Q^{\star}(s,a) \, | \, s].$$

Problem 5: Exercise with advantage. For any policy π , let $A^{\pi}(s, a) = Q^{\pi}(s, a) - V^{\pi}(s)$ be the advantage of a at s.

(a) Show that

$$\underset{a \sim \pi(\cdot \mid s)}{\mathbb{E}} [A^{\pi}(s, a) \mid s] = 0$$

(b) Show that π is optimal if and only if $[A^{\pi}(s, a) \leq 0 \text{ for all } s \in \mathcal{S} \text{ and } a \in \mathcal{A}].$

Problem 6: Removing past rewards from policy gradients Consider an MDP with no terminal state, i.e. $T = \infty$ with probability 1. Let k be a fixed positive integer. Consider the dynamics where we take actions based on policy π_{θ} for $t \neq k$, and we take the action based on the policy $\pi_{\theta+\delta}$ at t=k.

(a) Show that

$$\nabla_{\delta} \underset{\substack{s_0 \sim p_0 \\ a_t \sim \pi_{\theta}(\cdot \mid s_t) \text{ for } t \neq k \\ a_k \sim \pi_{\theta + \delta}(\cdot \mid s_k) \\ (r_t, s_{t+1}) \sim p(\cdot, \cdot \mid s_t, a_t)}}{\mathbb{E}} [r_0 + r_1 + r_2 + \dots + r_{k-1}] = 0.$$

(b) Let $\tau = (s_0, a_0, r_0, s_1, a_1, r_1, ...)$ be the (continual) trajectory, and let $H(\tau)$ be some function of the trajectory. Show that

$$\left. \nabla_{\delta} \left(\underbrace{\mathbb{E}_{\substack{s_0 \sim p_0 \\ a_t \sim \pi_{\theta}(\cdot \mid s_t) \text{ for } t \neq k \\ a_k \sim \pi_{\theta + \delta}(\cdot \mid s_k) \\ (r_t, s_{t+1}) \sim p(\cdot, \cdot \mid s_t, a_t)}}_{[H(\tau)]} [H(\tau)] \right) \right|_{\delta = 0} = \underbrace{\mathbb{E}_{\substack{s_0 \sim p_0 \\ a_t \sim \pi_{\theta}(\cdot \mid s_t) \text{ for all } t \\ (r_t, s_{t+1}) \sim p(\cdot, \cdot \mid s_t, a_t)}}_{[H(\tau)\nabla_{\theta} \log \pi_{\theta}(a_k \mid s_k)].}$$

(c) Show that

$$\mathbb{E}_{\substack{s_0 \sim p_0 \\ a_t \sim \pi_{\theta}(\cdot \mid s_t) \text{ for all } t \\ (r_t, s_{t+1}) \sim p(\cdot, \cdot \mid s_t, a_t)}} [(r_0 + r_1 + r_2 + \dots + r_{k-1}) \nabla_{\theta} \log \pi_{\theta}(a_k \mid s_k)] = 0.$$

Remark. The goal of this problem is to ascribe meaning to the terms in the "enhancement #1" of the policy gradient derivation.

Problem 7: MMSE estimator. Let $(X,Y) \sim P$ be a pair of random variables. Assume you have full knowledge of P and you observe Y. However, you did not observe X, and your goal is to estimate the unknown value of X. Your estimator is a function of your observed data, and you wish to find the function that minimizes the mean-squared error with respect to X, i.e., we wish to solve

$$\label{eq:minimize} \underset{f}{\operatorname{minimize}} \quad \underset{(X,Y) \sim P}{\mathbb{E}} \big[(X - f(Y))^2 \big].$$

A solution f^* to this optimization problem is the minimum mean square error (MMSE) estimator. Show that

$$f^{\star}(Y) = \underset{X \sim P_{X+Y}}{\mathbb{E}} [X \mid Y].$$

Problem 8: Pushing up and down probabilities in PG. Consider an MDP with state space $S = \{1, ..., \ell\}$ and action space $A = \{1, 2, ..., k\}$. Let $\mu : \mathbb{R}^k \to \mathbb{R}^k$ be the softmax function defined as

$$\mu_i(z) = (\mu(z))_i = \frac{e^{z_i}}{\sum_{j=1}^k e^{z_j}}$$

for i = 1, ..., k. Let $f_{\Theta} \colon \mathcal{S} \to \mathbb{R}^k$ be a defined as

$$f_{\Theta}(s) = \theta_s, \quad \text{for } s = 1, \dots, \ell,$$

where $\theta_1, \dots, \theta_\ell \in \mathbb{R}^k$ are the trainable parameters. We use the notation

$$\Theta = \begin{bmatrix} \theta_1 & \theta_2 & \cdots & \theta_\ell \end{bmatrix} \in \mathbb{R}^{k \times \ell}.$$

With some abuse of notation, we denote our policy π_{Θ} as

$$\pi_{\Theta}(s) = \mu(f_{\Theta}(s)) = \begin{bmatrix} \mathbb{P}(a = 1 \mid s) \\ \mathbb{P}(a = 2 \mid s) \\ \vdots \\ \mathbb{P}(a = k \mid s) \end{bmatrix}.$$

Let $a_0 \in \mathcal{A}$ and $s_0 \in \mathcal{S}$.

(a) Show that

$$\log \pi_{\Theta}(a_0 \mid s_0) = \Theta_{a_0, s_0} - \log \left(\mathbf{1}^{\mathsf{T}} e^{\theta_{s_0}} \right),$$

where $\mathbf{1} \in \mathbb{R}^k$ is the vector with all entries 1 and $e^{\theta_{s_0}} \in \mathbb{R}^k$ is the element-wise exponentiation of $\theta_{s_0} \in \mathbb{R}^k$.

(b) Show that

$$\nabla_{\theta_{s'}} \log \pi_{\Theta}(a_0 \mid s_0) = 0, \quad \text{for } s' \neq s_0.$$

(c) Show that

$$\nabla_{\theta_{s_0}} \log \pi_{\Theta}(a_0 \,|\, s_0) = u_{a_0} - \frac{e^{\theta_{s_0}}}{\mathbf{1}^{\mathsf{T}} e^{\theta_{s_0}}} = u_{a_0} - \pi_{\Theta}(\cdot \,|\, s_0).$$

where $u_{a_0} \in \mathbb{R}^k$ is the (a_0) -th unit vector with all 0 entries except a 1 in the (a_0) -th coordinate.

(d) Let $g \in \mathbb{R}^k$ such that $g_1 > g_j$ for j = 2, ..., k. Show that

$$\mu_1(z + \alpha g) > \mu_1(z)$$

for sufficiently small $\alpha > 0$.

(e) Let $s_0 \in \mathcal{S}$ and $a_0 \in \mathcal{A}$. Let

$$g = \nabla_{\Theta} \log \pi_{\Theta}(a_0 \mid s_0).$$

Show that

$$\pi_{\Theta + \alpha q}(a_0 \mid s_0) > \pi_{\Theta}(a_0 \mid s_0)$$

for sufficiently small $\alpha > 0$.

(f) Let $s_0 \in \mathcal{S}$. Let

$$g = \mathbb{E}_{a \sim \pi_{\Theta}(\cdot \mid s_0)} \left[C_a \nabla_{\Theta} \log \pi_{\Theta}(a \mid s_0) \mid s_0 \right].$$

Assume $C_1 - \mathbb{E}_{a \sim \pi(\cdot \mid s_0)}[C_a \mid s_0] > 0$ and $C_j - \mathbb{E}_{a \sim \pi(\cdot \mid s_0)}[C_a \mid s_0] < 0$ for $j = 2, \dots, k$. Show that

$$\pi_{\Theta + \alpha q}(a = 1 \mid s_0) > \pi_{\Theta}(a = 1 \mid s_0)$$

for sufficiently small $\alpha > 0$.

(g) Let $s_0 \in \mathcal{S}$. Let

$$g = \underset{a \sim \pi_{\Theta}(\cdot \mid s_0)}{\mathbb{E}} \left[C_a \nabla_{\Theta} \log \pi_{\Theta}(a \mid s_0) \mid s_0 \right].$$

Assume $C_1, \ldots, C_k > 0$. Show that it is possible that

$$\pi_{\Theta + \alpha a}(a = 1 \mid s_0) < \pi_{\Theta}(a = 1 \mid s_0).$$

for sufficiently small $\alpha > 0$. (Construct a specific example with k = 2.)

(h) Let $s_0 \in \mathcal{S}$. Let

$$g = \underset{a \sim \pi_{\Theta}(\cdot \mid s_0)}{\mathbb{E}} \left[C_a \nabla_{\Theta} \log \pi_{\Theta}(a \mid s_0) \mid s_0 \right].$$

Assume $C_1 > 0$ and $C_2, \ldots, C_k < 0$. Show that it is possible that

$$\pi_{\Theta + \alpha q}(a = 2 \mid s_0) > \pi_{\Theta}(a = 2 \mid s_0)$$

for sufficiently small $\alpha > 0$. (Construct a specific example with k = 3.)

Problem 9: Rao-Blackwell theorem with PG. Consider an MDP with no terminal state, i.e. $T = \infty$ with probability 1. Let π be a policy, not necessarily optimal. Let t be a fixed positive integer. Let

$$(\tau^{(t)}, a_t) = (s_0, a_0, r_0, \cdots, s_{t-1}, a_{t-1}, r_{t-1}, s_t, a_t)$$

be the partial trajectory up to a_t generated by following some policy. Assume the remaining trajectory

$$(r_t, s_{t+1}, a_{t+1}, r_{t+1}, s_{t+2}, a_{t+2}, r_{t+2}, s_{t+3}, \dots)$$

is generated by following by policy π starting from (s_t, a_t) . We require \hat{Q}_t to be a random variable such that

$$\mathbb{E}^{\pi} \left[\hat{Q}_t \, \middle| \, \tau^{(t)}, a_t \right] = Q^{\pi}(s_t, a_t).$$

(a) Show that

$$\hat{Q}_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$$

satisfies the requirement.

(b) Show that

$$\hat{Q}_t = r_t + \gamma Q^{\pi}(s_{t+1}, a_{t+1})$$

satisfies the requirement.

(c) Show that

$$\hat{Q}_t = r_t + \gamma V^{\pi}(s_{t+1})$$

satisfies the requirement.

(d) Show that

$$\hat{Q}_t = r_t + \gamma r_{t+1} + \gamma^2 V^{\pi}(s_{t+2})$$

satisfies the requirement.

(e) Show that

$$\mathbb{E}^{\pi} \Big[\nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \gamma^t (\hat{Q}_t - b(s_t)) \mid \tau^{(t)}, a_t \Big] = \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \gamma^t (Q^{\pi}(s_t, a_t) - b(s_t))$$

for any \hat{Q}_t satisfying the requirement.

Remark. The Rao–Blackwell theorem stated and proved in class is for scalar random variables, but the Rao–Blackwellized estimator in part (d) is a vector random variable. A vector version of the Rao–Blackwell theorem can be shown with essentially the same steps.

Problem 10: Rao-Blackwell again. Consider an MDP with no terminal state, i.e. $T = \infty$ with probability 1. Let π be a policy, not necessarily optimal. Let t be a fixed positive integer. Let the trajectory $(s_0, a_0, r_0, s_1, a_1, r_1, s_2, \ldots)$ be generated by policy π .

(a) Let

$$\hat{Q}_{t}^{\text{TD}(1)} = r_{t} + \gamma V^{\pi}(s_{t+1}), \quad \hat{Q}_{t}^{\text{TD}(2)} = r_{t} + \gamma r_{t+1} + \gamma^{2} V^{\pi}(s_{t+2}), \quad \hat{Q}_{t}^{\text{TD}(\infty)} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \cdots$$

Show that

$$\mathbb{E}[\hat{Q}_t^{\mathrm{TD}(1)}] = \mathbb{E}[\hat{Q}_t^{\mathrm{TD}(2)}] = \mathbb{E}[\hat{Q}_t^{\mathrm{TD}(\infty)}]$$

and

$$\operatorname{Var}(\hat{Q}_t^{\operatorname{TD}(1)}) \leq \operatorname{Var}(\hat{Q}_t^{\operatorname{TD}(2)}) \leq \operatorname{Var}(\hat{Q}_t^{\operatorname{TD}(\infty)}).$$

(b) Let

$$\hat{Q}_t^{\text{TD}(1)} = r_t + \gamma V^{\pi}(s_{t+1}), \qquad \hat{Q}_t^{\text{TD}(1.5)} = r_t + \gamma Q^{\pi}(s_{t+1}, a_{t+1})$$

Show that

$$\mathbb{E}[\hat{Q}_t^{\mathrm{TD}(1)}] = \mathbb{E}[\hat{Q}_t^{\mathrm{TD}(1.5)}]$$

and

$$\operatorname{Var}(\hat{Q}_t^{\operatorname{TD}(1)}) \le \operatorname{Var}(\hat{Q}_t^{\operatorname{TD}(1.5)}).$$

Problem 11: GAE derivations. Consider an MDP with no terminal state, i.e. $T = \infty$ with probability 1. Let $\gamma \in (0, 1]$. Let π be a policy, not necessarily optimal. Let

$$\delta_t^{V^{\pi}} = r_t + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t), \quad \text{for } t = 0, 1, \dots$$

(a) Show that

$$\mathbb{E}[\delta_t^{V^{\pi}} | s_t, a_t] = A^{\pi}(s_t, a_t), \quad \text{for } t = 0, 1, \dots$$

(b) Show that

$$\mathbb{E}[\delta_t^{V^{\pi}} \mid s_t] = 0, \quad \text{for } t = 0, 1, \dots.$$

(c) Show that

$$\mathbb{E}[\delta_{t+\ell}^{V^{\pi}} | s_t, a_t] = 0,$$
 for $\ell \ge 1, t = 0, 1, \dots$

(d) Show that

$$\hat{A}_{t}^{\text{TD}(k)} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \dots + \gamma^{k-1} r_{t+k-1} + \gamma^{k} V^{\pi}(s_{t+k}) - V^{\pi}(s_{t})$$

$$= \delta_{t}^{V^{\pi}} + \gamma \delta_{t+1}^{V^{\pi}} + \gamma^{2} \delta_{t+2}^{V^{\pi}} + \dots + \gamma^{k-1} \delta_{t+k-1}^{V^{\pi}}, \quad \text{for } k \geq 1, \ t = 0, 1, \dots.$$

(e) Let $\lambda \in (0,1)$. Show that

$$(1 - \lambda) \left(\hat{A}_t^{\text{TD}(1)} + \lambda \hat{A}_t^{\text{TD}(2)} + \lambda^2 \hat{A}_t^{\text{TD}(3)} + \cdots \right) = \sum_{l=0}^{\infty} (\gamma \lambda)^l \delta_{t+l}^V, \quad \text{for } t = 0, 1, \dots.$$

Problem 12: Policy evaluation for Q and V. Consider an MDP with discount factor $\gamma \in (0, 1]$. Let π be a policy, not necessarily optimal. Let $s_0 \sim p_0$, $a_0 \in \pi(\cdot | s_0)$, $(r_0, s_1) \sim p(\cdot, \cdot | s_0, a_0)$. Assume p_0 assigns positive probability on all states in S. Let

$$\hat{Q} = r_0 + \gamma V^{\pi}(s_1).$$

Assume V_{ϕ} is a neural network that can represent arbitrary functions (infinite expressive power).

(a) Show that

$$\mathbb{E}\big[(\hat{Q} - V_{\phi}(s_0))^2\big]$$

is minimized at $V_{\phi} = V^{\pi}$.

(b) Show that

$$\mathbb{E}\big[(\hat{Q} - Q_{\phi}(s_0, a_0))^2\big]$$

is minimized at $Q_{\phi} = Q^{\pi}$.

(c) Show that

$$\mathbb{E}[(\hat{Q} - V^{\pi}(s_0))^2] \ge \mathbb{E}[(\hat{Q} - Q_{\pi}(s_0, a_0))^2].$$

Remark. Although policy evaluations for the Q- and V-value functions both fit the same quantity \hat{Q} , they are different in that the fitting function V_{ϕ} may only depend on s while Q_{ϕ} may also depend on a.

Problem 13: Backpropagating continuous tanh-Gaussian actions. Let $\mu_{\theta}(s) \in \mathbb{R}^n$ and $\Sigma_{\theta}(s) \in \mathbb{R}^{n \times n}$ be neural networks parameterized by $\theta \in \mathbb{R}^P$. Assume $\Sigma_{\theta}(s)$ is symmetric and strictly positive definite for any $s \in \mathcal{S}$ and $\theta \in \mathbb{R}^P$. Given $s \in \mathcal{S}$, let

$$a = \tanh(z), \qquad z \sim \mathcal{N}(\mu_{\theta}(s), \Sigma_{\theta}(s)).$$

Let $\pi_{\theta}(a \mid s)$ be the implicitly defined probability density function of the random variable $a \in \mathbb{R}^n$. Show that

$$z = \tanh^{-1}(a)$$

$$\log \pi_{\theta}(a \mid s) = -\frac{1}{2} \log \det \Sigma_{\theta}(s) - \frac{1}{2} (z - \mu_{\theta}(s))^{\mathsf{T}} \Sigma_{\theta}^{-1}(s) (z - \mu_{\theta}(s))$$

$$-\frac{n}{2} \log(2\pi) - \sum_{i=1}^{n} \log(1 - a_i^2).$$

Problem 14: PPO clipped surrogate objective. Let $\ell \geq 0$ and $\varepsilon \in (0,1)$. Define

$$C_{\varepsilon}(\ell, A) = \min \left(\ell A, \operatorname{clip}_{1-\varepsilon}^{1+\varepsilon}(\ell) A \right).$$

Show that if $A \geq 0$, then

$$C_{\varepsilon}(\ell, A) = \min(\ell, 1 + \varepsilon) A$$

and that if A < 0, then

$$C_{\varepsilon}(\ell, A) = \max(\ell, 1 - \varepsilon) A.$$

Problem 15: Policy iteration. Implement the policy iteration in the Cliff Walk MDP environment. Perform the policy evaluation step exactly using the linear algebra approach.

Problem 16: Fitted Monte Carlo policy evaluation for Q. Implement fitted Monte Carlo policy evaluation in the Cliff Walk MDP environment for the Q-value function. Use the neural network provided in the starter code CliffWalkQ.py.

Problem 17: Fitted k-step TD policy evaluation for Q. Implement fitted k-step TD policy evaluation in the Cliff Walk MDP environment for the Q-value function. Use the neural network provided in the starter code CliffWalkQ.py.

Problem 18: Implementing policy gradient without k-step TD. In the undiscounted Cliff Walk MDP, implement the deep policy gradient method without k-step TD. Specifically, implement the following pseudo-code:

while (not converged)
$$g_{\theta} = 0, g_{\phi} = 0$$
 sample trajectory $\tau \sim (p_0, \pi_{\theta}, p)$ for $t = 0, 1, \dots, T - 1$
$$\widehat{Q} = r_t + r_{t+1} + r_{t+2} + \dots + r_{T-1}$$

$$g_{\theta} += -\left(\nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t)\right) (\widehat{Q} - V_{\phi}(s_t))$$

$$g_{\phi} += \nabla_{\phi} \frac{1}{2} (\widehat{\|Q\|} - V_{\phi}(s_t))^2$$
 end update θ and ϕ using g_{θ} and g_{ϕ} with an optimizer end

Problem 19: GRPO for cliffwalk. For the Cliff Walk MDP, modify the rewards to keep only the terminal rewards ± 100 and remove the intermediate -1 rewards. Implement GRPO. Do not implement KL penalties.

Problem 20: Why output projection on MHA? Consider the standard multi-head self-attention (MHA) layer defined by

$$\underbrace{\text{output}}_{L\times d_{\text{out}}} = \underbrace{\text{concat}(\text{head}_1, \dots, \text{head}_H)}_{L\times Hd_{\text{head}}} W^O$$

$$\underbrace{\text{head}_h}_{L\times d_{\text{head}}} = \text{Attention}(XW_h^Q, XW_h^K, XW_h^V) \quad \text{for } h = 1, \dots, H,$$

where

$$\begin{split} \text{Attention}(\tilde{Q}, \tilde{K}, \tilde{V}) &= \text{softmax}\big(\frac{\tilde{Q}\tilde{K}^\intercal}{\sqrt{d_{\text{attn}}}}\big)\tilde{V} \\ W^O \in \mathbb{R}^{Hd_{\text{head}} \times d_{\text{out}}}, \quad W^Q_h, \, W^K_h \in \mathbb{R}^{d_{\text{in}} \times d_{\text{attn}}}, \quad W^V_h \in \mathbb{R}^{d_{\text{in}} \times d_{\text{head}}}, \quad X \in \mathbb{R}^{L \times d_{\text{in}}}. \end{split}$$

Let us call this model MHA1.

Next, consider a variant that we call MHA2.

$$\underbrace{\text{output}}_{L \times d_{\text{out}}} = \text{head}_1 + \dots + \text{head}_H$$

$$\underbrace{\text{head}_h}_{L \times d_{\text{head}}} = \text{Attention}(XW_h^Q, XW_h^K, XW_h^V) \quad \text{for } h = 1, \dots, H,$$

where

$$\begin{split} \text{Attention}(\tilde{Q}, \tilde{K}, \tilde{V}) &= \text{softmax}\big(\frac{\tilde{Q}\tilde{K}^\intercal}{\sqrt{d_{\text{attn}}}}\big)\tilde{V} \\ W_h^Q, \, W_h^K &\in \mathbb{R}^{d_{\text{in}} \times d_{\text{attn}}}, \quad W_h^V \in \mathbb{R}^{d_{\text{in}} \times d_{\text{out}}}, \quad X \in \mathbb{R}^{L \times d_{\text{in}}}. \end{split}$$

(a) Given an MHA1 model, decompose the rows of W^O as

$$W^{O} = \begin{bmatrix} W_{1}^{O} \\ W_{2}^{O} \\ \vdots \\ W_{H}^{O} \end{bmatrix} \in \mathbb{R}^{Hd_{\text{head}} \times d_{\text{out}}}$$

such that $W_1^O, W_2^O, \dots, W_H^O \in \mathbb{R}^{d_{\text{head}} \times d_{\text{out}}}$. Show that if we set the parameters of an MHA2 model as $W_h^V \leftarrow W_h^V W_h^O$ for $h = 1, \dots, H$ and keep all other parameters the same, then the MHA1 and MHA2 models are equivalent, i.e., (MHA1(X) = MHA2(X)) for all X).

- (b) How many trainable parameters do MHA1 and MHA2 have?
- (c) If $d_{\text{in}} = d_{\text{out}} = 512$ and $d_{\text{head}} = 64$, what is the difference in the number of trainable parameters?

Problem 21: Scaling QK inner products. Assume that $X \in \mathbb{R}^{L \times d_X}$ is randomly initialized as IID unit Guassians, i.e.,

$$X_{\ell,j} \sim \mathcal{N}(0,1), \qquad \ell \in \{1,\ldots,L\}, j \in \{1,\ldots,d_X\}$$

independently. Let

$$Q = XW^Q, \qquad K = XW^K,$$

where $W^Q, W^K \in \mathbb{R}^{d_X \times d_K}$.

(a) Assume W^Q and W^K are randomly initialized as IID Gaussians with mean 0 and variance $1/d_X$, i.e., use the LeCun initialization. (So, we are assuming X, W^K , and W^Q are mutually independent.) Show that

$$Q_{\ell,j}, K_{\ell,j}, \qquad \ell \in \{1, \dots, L\}, j \in \{1, \dots, d_K\},$$

have zero mean, have unit variance, and are uncorrelated.

(b) Let

$$A_{\ell,\ell'} = \frac{q_\ell^\intercal k_{\ell'}}{\sqrt{d_K}}, \qquad \ell,\ell' \in \{1,\dots,L\},$$

where

$$Q = \begin{bmatrix} -q_1^\intercal - \\ -q_2^\intercal - \\ \vdots \\ -q_L^\intercal - \end{bmatrix} \in \mathbb{R}^{L \times d_K}, \qquad K = \begin{bmatrix} -k_1^\intercal - \\ -k_2^\intercal - \\ \vdots \\ -k_L^\intercal - \end{bmatrix} \in \mathbb{R}^{L \times d_K}.$$

Show that

$$\mathbb{E}[A_{\ell,\ell'}] = 0, \quad \text{for all } \ell, \, \ell'$$

$$\mathbb{E}[(A_{\ell,\ell'})^2] = \begin{cases} 1 & \text{if } \ell \neq \ell' \\ \frac{d_X + 2}{d_X} & \text{if } \ell = \ell'. \end{cases}$$

Problem 22: Bradley-Terry as softmax. Assume we have data of the form

$$(x, y_A, y_B, z) \in \mathcal{D},$$

where z = 0 if $y_A > y_B$ as judged by some reward function and z = 1 if $y_A < y_B$. Assume there are no ties between y_A and y_B . Let

$$f_{\psi}(x, y_A, y_B) = \begin{bmatrix} f_{\psi}^{(1)}(x, y_A, y_B) \\ f_{\psi}^{(2)}(x, y_A, y_B) \end{bmatrix} \in \mathbb{R}^2$$

be a neural network parameterized by ψ . Consider fitting f_{ψ} to solve the 2-class classification task of predicting the value of z given (x, y_A, y_B) .

(a) Show that the standard cross-entropy loss is

$$\mathcal{L}(\psi) = \sum_{(x, y_A, y_B, z) \in \mathcal{D}} -(1-z) \log \frac{e^{f_{\psi}^{(1)}(x, y_A, y_B)}}{e^{f_{\psi}^{(1)}(x, y_A, y_B)} + e^{f_{\psi}^{(2)}(x, y_A, y_B)}} - z \log \frac{e^{f_{\psi}^{(2)}(x, y_A, y_B)}}{e^{f_{\psi}^{(1)}(x, y_A, y_B)} + e^{f_{\psi}^{(2)}(x, y_A, y_B)}}$$

(b) Further assume

$$f_{\psi}(x, y_A, y_B) = \begin{bmatrix} f_{\psi}^{(1)}(x, y_A, y_B) \\ f_{\psi}^{(2)}(x, y_A, y_B) \end{bmatrix} = \begin{bmatrix} r_{\psi}(x, y_A) \\ r_{\psi}(x, y_B) \end{bmatrix}.$$

Show that $\mathcal{L}(\psi)$ recovers the loss used to train the Bradley-Terry model.

Remark. The conclusion is that Bradley–Terry is the 2-class soft-max regression with a specific parameterization for the neural network.

Problem 23: Better estimator for KL-divergence. Let p(x) and q(x) be probability mass functions for $x \in \mathcal{X}$. Then,

$$D_{\mathrm{KL}}(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = \underset{X \sim p}{\mathbb{E}} \left[\log \frac{p(X)}{q(X)} \right]$$

It is well known that $D_{\mathrm{KL}}(p||q) \geq 0$, and the proof follows from an application of Jensen's inequality. Assume we have data $X_1, \ldots, X_N \sim p$.

(a) Show that

$$\hat{D}^{(1)} = \frac{1}{N} \sum_{i=1}^{N} \log \frac{p(X_i)}{q(X_i)}$$

is an unbiased estimator of $D_{KL}(p||q)$.

- (b) Show that $\hat{D}^{(1)} < 0$ is possible.
- (c) Show that

$$\hat{D}^{(2)} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{q(X_i)}{p(X_i)} - \log \frac{q(X_i)}{p(X_i)} - 1 \right)$$

is an also unbiased estimator of $D_{KL}(p||q)$.

(d) Show that $\hat{D}^{(2)} \geq 0$ always holds.

Remark. The original InstructGPT uses $\hat{D}^{(1)}$ to estimate the KL-penalty, but many subsequent works, such as the GRPO paper, use $\hat{D}^{(2)}$.

Problem 24: Encoder-only transformers without positional embeddings are permutation equivariant. Let σ be a permutation of length L, i.e., $\sigma(1), \sigma(2), \ldots, \sigma(L)$ take values $1, \ldots, L$ exactly once. If

$$x_1, x_2, \ldots, x_L$$

is a sequence of tokens,

$$x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(L)}$$

is the permuted (shuffled) sequence of tokens. Let f be an encoder-only transformer. Specifically, f is a composition of the token embedding layer with multiple Pre-LN transformer layers without the causal mask. For simplicity, let us ignore the tokenizer and view f as a function of the one-hot tokens $u_1, \ldots, u_L \in \mathbb{R}^N$ and

$$f(u_1,\ldots,u_L)=(y_1,\ldots,y_L),$$

where $y_1, \ldots, y_L \in \mathbb{R}^d$. For simplicity, do not consider an output embedding layer or a classification head. Crucially, assume positional embeddings are not used. Show that

$$f(u_{\sigma(1)},\ldots,u_{\sigma(L)})=(y_{\sigma(1)},\ldots,y_{\sigma(L)}),$$

i.e., if the input is shuffled, the output is exactly the same but shuffled in the same way.

Remark. This property is referred to as permutation equivariance.

Problem 25: Inferring absolute position with NoPE. Consider a token embedding layer and a <u>masked</u> single-head self-attention layer mapping $\{u_\ell\}_{\ell=1}^L \mapsto \{x_\ell\}_{\ell=1}^L \mapsto \{y_\ell\}_{\ell=1}^L$ as

$$x_{\ell} = Mu_{\ell} \quad \text{for } \ell = 1, \dots, L$$

$$q_{\ell} = (W^{Q})^{\mathsf{T}} x_{\ell}, \quad k_{\ell} = (W^{K})^{\mathsf{T}} x_{\ell}, \quad v_{\ell} = (W^{V})^{\mathsf{T}} x_{\ell} \quad \text{for } \ell = 1, \dots, L$$

$$\tilde{A}_{ij} = \begin{cases} q_{i}^{\mathsf{T}} k_{j} / \sqrt{d_{K}} & \text{if } i \geq j \\ -\infty & \text{if } i < j \end{cases} \quad \text{for } i, j \in \{1, \dots, L\}$$

$$A_{ij} = \frac{e^{\tilde{A}_{ij}}}{\sum_{j'=1}^{L} e^{\tilde{A}_{ij'}}}, \quad \text{for } i, j \in \{1, \dots, L\}$$

$$y_{\ell} = \sum_{r=1}^{\ell} A_{\ell r} v_{r}, \quad \text{for } \ell = 1, \dots, L,$$

where $u_1, \ldots, u_L \in \mathbb{R}^N$ are the tokenized one-hot vectors, $M \in \mathbb{R}^{d \times N}$ represents the token embedding layer, $\{u_\ell\}_{\ell=1}^L \subset \mathbb{R}^N$, $\{x_\ell\}_{\ell=1}^L \subset \mathbb{R}^d$, $\{y_\ell\}_{\ell=1}^L \subset \mathbb{R}^d$, $A \in \mathbb{R}^{L \times L}$ contain the attention weights, $(W^Q)^{\mathsf{T}}$, $(W^K)^{\mathsf{T}} \in \mathbb{R}^{d_K \times d}$, and $(W^V)^{\mathsf{T}} \in \mathbb{R}^{d \times d}$. In particular, no explicit positional embeddings are used. Assume the message starts with the special token

$$u_1 = < |im_start| >$$
,

and, without loss of generality, assume $\langle |im_start| \rangle$ is first token, i.e., $u_1 = e_1$, where $e_1 \in \mathbb{R}^N$ is the unit vector with a 1 in the first coordinate and 0's everywhere else. Let

$$M = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \\ * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ * & * & * & \cdots & * \end{bmatrix}, \qquad (W^K)^\mathsf{T} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & 0 \end{bmatrix}, \qquad (W^V)^\mathsf{T} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ * & * & * & \cdots & * \end{bmatrix},$$

where * denotes an arbitrary value. Let $(W^Q)^\intercal \in \mathbb{R}^{d_K \times d}$ be arbitrary. Show that

$$y_{\ell} = \begin{bmatrix} 1/\ell \\ * \\ \vdots \\ * \end{bmatrix}$$
 for $\ell = 1, \dots, L$.

Remark. This problem shows that there is a configuration of the transformer such that the inverse of the absolute position is revealed in the first coordinates of y_1, \ldots, y_L , even though no explicit positional embedding mechanism was used. This result also shows that a masked single-head self-attention layer (and therefore a decoder-only transformer) is not permutation equivariant.

Problem 26: Softmax bottleneck. Consider a decoder-only transformer with an output projection layer that maps

$$v_1, \ldots, v_L \in \mathbb{R}^h$$

to

$$w_1, \ldots, w_L \in \mathbb{R}^N$$

with

$$w_{\ell} = Bv_{\ell}$$
 for $\ell = 1, \dots, L$,

where h is the hidden dimension and N is the number of tokens. After this, the output probabilities will be computed via $\mu(w_{\ell})$, where μ is the softmax function defined by

$$(\mu(z))_i = \frac{e^{z_i}}{\sum_{j=1}^N e^{z_j}}$$
 for $i = 1, ..., N$.

Throughout this problem, use the notation

$$B = \begin{bmatrix} -b_1^\mathsf{T} - \\ \vdots \\ -b_N^\mathsf{T} - \end{bmatrix} \in \mathbb{R}^{N \times h},$$

so $b_1, \ldots, b_N \in \mathbb{R}^h$. Assume h < N - 1, as is the case in practice.

This standard setup is potentially problematic because $\mu(w_{\ell}) = \mu(Bv_{\ell})$ cannot possibly represent an arbitrary probability distribution on N tokens (which has N-1 degrees of freedom), because $v_{\ell} \in \mathbb{R}^h$ only has h degrees of freedom. This limitation is called the *softmax bottleneck*.

(a) Assume that the rows of B are normalized and distinct, i.e.,

$$||b_k|| = 1$$
 for $k = 1, ..., N$

and

$$b_k \neq b_{k'}$$
 for $k \neq k'$.

Show that for any unit vector $e_k \in \mathbb{R}^N$ (which is the one-hot vector with non-zero component at position k), there is a v_ℓ such that

$$\mu(Bv_{\ell}) \approx e_k$$

where \approx can be made as accurate as we want it to be.

(b) As a toy example, let h = 2, N = 8, and

$$b_k = \begin{bmatrix} \cos(\pi k/4) \\ \sin(\pi k/4) \end{bmatrix}$$
 for $k = 1, \dots, 8$.

Show that there is a v_{ℓ} such that

$$\mu(Bv_{\ell}) \approx (1/2, 1/2, 0, 0, 0, 0, 0, 0).$$

(c) Consider the setup of part (b). Show that

$$\mu(Bv_{\ell}) \approx (1/2, 0, 1/2, 0, 0, 0, 0, 0)$$

is not possible.

Remark. The takeaway is that despite the softmax bottleneck, one-hot vectors can be represented as the output distribution. However, some distributions where multiple tokens share the probabilities may not be representable.

Problem 27: Parameter and FLOP count of transformers. Consider a multi-head self-attention (MHA) layer without the causal mask, followed by a positionwise FFN with expansion factor 4. Specifically, the operation maps $\{x_\ell\}_{\ell=1}^L \mapsto \{w_\ell\}_{\ell=1}^L$ as

$$x_1, \dots, x_L \in \mathbb{R}^d, \qquad \{x_\ell\}_{\ell=1}^L = X \in \mathbb{R}^{L \times d}$$
 for $h = 1, \dots, H$
$$Y_h = \operatorname{Attention}(XW_h^Q, XW_h^K, XW_h^V) \in \mathbb{R}^{L \times d_K}$$

$$Z = \operatorname{MHA}(X) = \operatorname{concat}(Y_1, \dots, Y_H)W^O$$

$$z_1, \dots, z_L \in \mathbb{R}^d, \qquad \{z_\ell\}_{\ell=1}^L = Z \in \mathbb{R}^{L \times d}$$

$$w_\ell = W_2\sigma(W_1z_\ell), \qquad \text{for } \ell = 1, \dots, L$$

where $W_1 \in \mathbb{R}^{4d \times d}$ and $W_2 \in \mathbb{R}^{d \times 4d}$, σ is some activation function and the single-head attention layer is defined as

$$Q = XW^{Q} \in \mathbb{R}^{L \times d_{K}}, \qquad K = XW^{K} \in \mathbb{R}^{L \times d_{K}}, \qquad V = XW^{V} \in \mathbb{R}^{L \times d_{K}}$$

$$Y = \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^{\mathsf{T}}}{\sqrt{d_{K}}}\right)V \in \mathbb{R}^{L \times d_{K}}$$

$$A_{ij} = \frac{e^{q_{i}^{\mathsf{T}}k_{j}/\sqrt{d_{K}}}}{\sum_{j'=1}^{L} e^{q_{i}^{\mathsf{T}}k_{j'}/\sqrt{d_{K}}}}, \qquad \text{for } i, j \in \{1, \dots, L\}$$

$$y_{\ell} = \sum_{r=1}^{L} A_{\ell r} v_{r}, \qquad \text{for } \ell = 1, \dots, L$$

$$y_{1}, \dots, y_{L} \in \mathbb{R}^{d_{K}}, \qquad \{y_{\ell}\}_{\ell=1}^{L} = Y \in \mathbb{R}^{L \times d_{K}}.$$

Note that q-, k-, and v-vectors share the same dimension d_K . Finally, set $d_K = d/H$, as is commonly done in modern transformers.

- (a) Show that the trainable parameters in the MHA and the position-wise FFN layers are roughly comparable.
- (b) Show that the number of necessary arithmetic operations required to do a forward pass (computing $\{x_\ell\}_{\ell=1}^L \mapsto \{w_\ell\}_{\ell=1}^L$) is on the order of

$$\Theta(L^2d + Ld^2)$$

(c) In the FLOP estimate of (b), at what value of L does the first term (dependent on L^2) become more dominant?

Remark. For references, the Llama 3 405B model has dimensions d = 16384 and H = 128.

Remark. The key takeaway is that the inference cost of LLMs does not scale quadratically with the sequence length L for moderate values of L, despite some incorrect claims to the contrary in the literature. Moreover, as L increases, compute efficiency improves, making the L^2 term less visible in practical timing measurements.

Problem 28: Unbiasedness of Dr. GRPO. In this problem, we derive the unbiasedness property of Dr. GRPO. To clarify, the statement [the "advantage" estimate of Dr. GRPO is an unbiased estimate of the advantage function] is not true. Rather, the claim of correctness and "unbiasedness" of the Dr. GRPO is made through the following analysis.

(a) Let

$$\tau = (s_0, a_0, r_0, s_1, a_1, r_1, s_2, \dots)$$

be a trajectory of an MDP. Let Y be a random variable independent of τ . Show that

$$\mathbb{E}_{\substack{\tau \sim (p_0, \pi_\theta, p) \\ V}} \left[\nabla_\theta \log \pi_\theta(a_t \mid s_t) b(Y) \right] = 0.$$

(b) Consider an undiscounted MDP $(\gamma = 1)$ with terminal rewards as in the GRPO setup. Let $\tau^{(1)}, \ldots, \tau^{(N)}$ be IID trajectories with terminal times $T^{(1)}, \ldots, T^{(N)}$ and terminal rewards $r^{(1)}, \ldots, r^{(N)}$. To clarify, for $i = 1, \ldots, N$,

$$\tau^{(i)} = (s_0^{(i)}, a_0^{(i)}, s_1^{(i)}, a_1^{(i)}, \dots, s_{T^{(i)}-1}^{(i)}, a_{T^{(i)}-1}^{(i)}, r^{(i)}, s_{T^{(i)}}^{(i)}),$$

where $s_{T^{(i)}}^{(i)} = \text{<term>}$ and the rewards at all times except the terminal one are all 0. Let

$$\operatorname{mean}(\mathbf{r}) = \frac{1}{N} \sum_{i=1}^{N} r^{(i)}.$$

Show that

$$\mathbb{E}_{\tau^{(1)},\dots,\tau^{(N)}} \left[\frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{T^{(i)}-1} \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)} | s_t^{(i)}) \left(r^{(i)} - \operatorname{mean}(\mathbf{r}) \right) \right] = \frac{N-1}{N} \nabla \mathcal{J}(\theta).$$

To clarify, in this undiscounted terminal reward MDP setup,

$$\mathcal{J}(\theta) = \mathbb{E}_{\tau \sim (p_0, \pi_\theta, p)}[r],$$

where r is the terminal reward of the trajectory $\tau \sim (p_0, \pi_\theta, p)$.

Remark. Replacing the advantage estimate in policy-gradient-type methods with $r^{(i)}$ – mean(\mathbf{r}) was previously explored under the name REINFORCE Leave-One-Out (RLOO), although it did not receive much mainstream attention before GRPO and Dr. GRPO. Also, the now-common practice of referring to $r^{(i)}$ – mean(\mathbf{r}) as an "advantage estimate" is somewhat misleading, as it is not an unbiased estimate of the true advantage function.