Reinforcement Learning of Large Language Models
£ i UCLA

Spring 2025
Homework exercises

Problem 1: Monotonicity of Bellman operators. Let v € (0,1), |S| < oo, |A] < oo, and
|r| < R < oo almost surely. Let 7 be a policy, not necessarily optimal. Let B™ be the Bellman
operator for m and B* the Bellman optimality operator. Show that for any V: S — R,

BT[V] < B*[V].
Also show that for any U: § = R and V: § — R such that U <V,
B*[U] < B*[V].

Problem 2: Bellman operators for Q are contractions. Let v € (0,1), |S] < oo, |A| < oo, and
|r| < R < oo almost surely. Show that the B™ and B* for @) are y-contractions.

Problem 3: Optimal Q-function dominates all Q-functions. Let v € (0,1), |S| < oo, |A] < o0,
and |r| < R < oo almost surely. Let 7* be an optimal policy, i.e., assume

V™ (s) > V™ (s), Vs e S, policy .

Show that
Q”*(s,a) > Q" (s,a), VseS, ac€ A, policy 7.

Problem 4: Optimal policies form a convexr set. Let v € (0,1), |S| < oo, |A| < oo, and
|r] < R < oo almost surely. Show the following:

(a) Show that a policy 7 (not necessarily deterministic) is optimal if and only if

V7T (s) = V*(s), VseS.
(b) Show that
E [T—F’YV*(S/)’S,a]:Q*(Saa)v VSES,GGA.

(T,S/)Np(-,~ I 570')
(c) Show that
V*(s) = max Q*(s, a), VseS.

acA

(d) Show that a policy 7 (not necessarily deterministic) is optimal if and only if
supp(7(-|s)) C argmax Q*(s, ), VseS.
i.e., show that 7 is optimal if and only if it selects actions that maximize Q*(s, ).
(e) Let 7* and v* be two optimal policies. For any 0 € [0, 1], show that
pe=0r* 4+ (1-0)v*
is also an optimal policy. Conclude that the set of optimal policies is a convex set.

Hint. For (d), show that B™[V*](s) = E [Q*(s,a)]s].

a~r(-|s)



Problem 5: Ezercise with advantage. For any policy m, let A™(s,a) = Q™ (s,a) — V™ (s) be the
advantage of a at s.

(a) Show that
E [A"(s,a)|s] =0

a~r(-|s)

(b) Show that 7 is optimal if and only if [A™(s,a) <0 for all s € S and a € A].

Problem 6: Removing past rewards from policy gradients Consider an MDP with no terminal
state, i.e. T = oo with probability 1. Let k be a fixed positive integer. Consider the dynamics
where we take actions based on policy my for ¢t # k, and we take the action based on the policy
moys at t = k.

(a) Show that
Vs E [ro+7r1+72+ - +75-1] = 0.

S0~Po
ai~mg(-| s¢) for t#k
ap~To45(-| k)
(re,5t41)~p(-s | st,at)

(b) Let 7 = (so,a0,70,51,a1,71,-..) be the (continual) trajectory, and let H(7) be some
function of the trajectory. Show that

Vs ( SO]EPO [H(T)]) = soINEpo [H(T)V@ log W@(ak ‘ Sk)].
ai~tg (- | s¢) for t#k 6=0 ai~mg (-] s¢) for all ¢
ap~mo1s(-| sk) (re,864+1)~p(-» | 5¢,a¢)
(re,st41)~p(- | st,at)
(c) Show that
E [(ro+ 714+ re+ -+ 1K_1)Valogmg(ak | sx)] = 0.

S0~Po
at~mg(-|s¢) for all t
(’I"t,StJ,_l)Np(',- | Siaat)

Remark. The goal of this problem is to ascribe meaning to the terms in the “enhancement #1”
of the policy gradient derivation.

Problem 7: MMSE estimator. Let (X,Y) ~ P be a pair of random variables. Assume you
have full knowledge of P and you observe Y. However, you did not observe X, and your goal is
to estimate the unknown value of X. Your estimator is a function of your observed data, and
you wish to find the function that minimizes the mean-squared error with respect to X, i.e., we
wish to solve )

minimize E X — f(Y .

mize B [(X~ f(¥))]

A solution f* to this optimization problem is the minimum mean square error (MMSE) esti-
mator. Show that

FO)= B XY



Problem 8: Pushing up and down probabilities in PG. Consider an MDP with state space
S = {1,...,¢} and action space A = {1,2,...,k}. Let u: R¥ — RF be the softmax function
defined as

e

pi(z) = (M(Z))i = w

fori=1,...,k Let fo: S — R¥ be a defined as
fo(s) =0, fors=1,... ¢,
where 61, ...,60, € R are the trainable parameters. We use the notation

=0 0 - 6] R

With some abuse of notation, we denote our policy mg as

Pla=1]s)

Pla =2]s)
mo(s) = ulfo(s)) =

Pla=k|s)

Let ap € A and sg € S.

(a) Show that
log Te(ao | $0) = Oug,s, — log (1Te’=0),
where 1 € R” is the vector with all entries 1 and e’ € R* is the element-wise exponen-

tiation of ,, € R¥.

(b) Show that
Vo, log me(ag | s0) = 0, for s’ # sg.

(c) Show that

es0

11_67980 = uCL() — 71'@( ‘ SO).

V., log me(ao | s0) = ta, —

where u,, € RF is the (ag)-th unit vector with all 0 entries except a 1 in the (ag)-th
coordinate.

(d) Let g € R* such that g, > g; for j = 2,...,k. Show that

iz +ag) > p(z)
for sufficiently small o > 0.
(e) Let sp € S and ag € A. Let
g = Velogme(ag|so).

Show that
7r@+ag(a0 | 30) > 7'['9((10 | 30)

for sufficiently small o > 0.



(f) Let sop € S. Let
g= E  [CiVelogme(also)|so.

a~7o(+]so)

Assume C1 — E  [Cylso) >0and Cj— E  [Cq|so] <0for j=2,...,k Show that

arm (-] s0) a~m(-|s0)
To+ag(a =1]s0) > me(a=1]s0)
for sufficiently small o > 0.
(g) Let sg € S. Let
g= E )[C’GV@ log me(a| so) ‘ 80].

a~me(- | so

Assume C1,...,C, > 0. Show that it is possible that
Tot+ag(a =1]s0) < me(a =1]s0).
for sufficiently small o > 0. (Construct a specific example with k& = 2.)
(h) Let so € S. Let
g= E [CGV@ logme(a| so) ‘ 50].

a~mol(-| 50

Assume C7 > 0 and Cj,...,Cr < 0. Show that it is possible that

To+ag(@ =2]|s0) > me(a =2]|so)

for sufficiently small & > 0. (Construct a specific example with k = 3.)



Problem 9: Rao—Blackwell theorem with PG. Consider an MDP with no terminal state, i.e.
T = oo with probability 1. Let m be a policy, not necessarily optimal. Let ¢ be a fixed positive
integer. Let

(T, ar) = (50,@0,70, "+ » St—1, At—1,Tt—1, St, Q)

be the partial trajectory up to a; generated by following some policy. Assume the remaining
trajectory
(Tts St415 Qe 1, Te1, St4+2, U425 Te42, St43, - - - )

is generated by following by policy m starting from (s, a;). We require Qt to be a random
variable such that

E” [Qt | T(t),at} = Q" (s¢,a)-
(a) Show that
Qr =1t + YT + V2 + Vs + -

satisfies the requirement.

(b) Show that )
Qi =1t + Q" (5141, Gr41)

satisfies the requirement.

(c) Show that R
Qi =1t + YV (5¢41)

satisfies the requirement.

(d) Show that X
Qi =7+ 741 + YV (s142)

satisfies the requirement.

(e) Show that
E™ | Vg log mg(as | s¢)v" (Qt — b(st)) ‘ 7, at] = Vg log mg(as | st)vt(Q”(st, a) — b(st))
for any Qy satisfying the requirement.
Remark. The Rao—Blackwell theorem stated and proved in class is for scalar random variables,

but the Rao—Blackwellized estimator in part (d) is a vector random variable. A vector version
of the Rao—Blackwell theorem can be shown with essentially the same steps.



Problem 10: Rao-Blackwell again. Consider an MDP with no terminal state, i.e. T'= oo with
probability 1. Let m be a policy, not necessarily optimal. Let ¢ be a fixed positive integer. Let
the trajectory (so, ag,ro, S1,a1,71,S2,...) be generated by policy .

(a) Let

QtTD(I) =1+ V7 (st41), QtTD(Q) = 1ty V (se42), AtTD(OO) = P Y Tt

Show that R X A

EQ "] =EQ, ") = ElQ, "]
and
Var(Qt ) < Var(Qt ) < Va r(Qt )
(b) Let
Q"W =y 4 AV (s5111), QPN = vy 4 Q7 (5141, ar41)
Show that DL D5
E[Q; ") = E[Q; P
and

Var(Q; ") < Var(Q 7).

Problem 11: GAFE derivations. Consider an MDP with no terminal state, i.e. T = oo with
probability 1. Let v € (0,1]. Let 7 be a policy, not necessarily optimal. Let

87" =i+ AV (s041) — V™(s1), for t =0,1,....
(a) Show that
E[6)" | st ai) = A™(sp,a),  fort=0,1,....
(b) Show that
E[6; " | s¢] = 0, fort=0,1,....
(c) Show that
E[6)y | st,ai] =0, for¢>1,t=0,1,....

(d) Show that

~TD(k _
Ay *) — T+ YTl + ’727“t+2 4+ 7’“ 1rt+k 1+ ka”(sHk) —V™(st)
=8 0l A AT, for k>1,t=0,1,....

(e) Let A € (0,1). Show that

(1-N\) (AED“) AP 4 a2 4 ) S (N6, fort=0,1,....
=0



Problem 12: Policy evaluation for @ and V. Consider an MDP with discount factor v € (0, 1].
Let 7 be a policy, not necessarily optimal. Let sg ~ pg, ag € (-] s0), (r0,s1) ~ p(-, - | S0, a0)-
Assume pg assigns positive probability on all states in S. Let

~

Q=10 +V"(s1).
Assume V, is a neural network that can represent arbitrary functions (infinite expressive power).

(a) Show that

E[(Q — Vi(50))?]
is minimized at V; = V7.

(b) Show that

E[(Q — Qy(s0,a0))?]
is minimized at Q4 = Q™.
(c) Show that R A
E[(Q - V™(50))?] > E[(Q — Qr(s0,00))].

Remark. Although policy evaluations for the Q- and V-value functions both fit the same quantity
Q, they are different in that the fitting function V4 may only depend on s while Q4 may also
depend on a.

Problem 13: Backpropagating continuous tanh-Gaussian actions. Let pg(s) € R™ and Xg(s) €
R™ "™ be neural networks parameterized by 6 € RP. Assume Yy(s) is symmetric and strictly
positive definite for any s € S and 6 € RF. Given s € S, let

a = tanh(z), z ~ N(ug(s), Xo(s)).

Let mg(a | s) be the implicitly defined probability density function of the random variable a € R™.
Show that

z = tanh™*(a)

logmp(als) = —% log det Xg(s) — %(z — 110(8)) 7251 (s) (2 — po(s))

n = 9
—3 log(2m) — ZZ; log(1 — aj).

Problem 14: PPO clipped surrogate objective. Let £ > 0 and € € (0,1). Define
C.(¢, A) = min (LA, clip; 2 (0) A) .

Show that if A > 0, then
Cc:(l,A) =min ((,1+¢) A

and that if A < 0, then
Cc(f,A) =max (¢{,1 —¢) A.



Problem 15: Policy iteration. Implement the policy iteration in the Cliff Walk MDP environ-
ment. Perform the policy evaluation step exactly using the linear algebra approach.

Problem 16: Fitted Monte Carlo policy evaluation for @). Implement fitted Monte Carlo policy
evaluation in the Cliff Walk MDP environment for the Q-value function. Use the neural network
provided in the starter code CliffWalkQ.py.

Problem 17: Fitted k-step TD policy evaluation for . Implement fitted k-step TD policy
evaluation in the Cliff Walk MDP environment for the Q-value function. Use the neural network
provided in the starter code CliffWalkQ.py.

Problem 18: Implementing policy gradient without k-step TD. In the undiscounted Cliff Walk
MDP, implement the deep policy gradient method without k-step TD. Specifically, implement
the following pseudo-code:

while (not converged)
90 =0,94=0
sample trajectory 7 ~ (po, 7, D)
fort=0,1,...,T—1

~

Q=ri+r1+rg2+-+rra
go += — (Vologmo(ar|s:))(Q — Vis(st))
1, ~ 2
gy += V¢§([[Q]] - V¢(St))
end

update 6 and ¢ using gy and g4 with an optimizer

end

Problem 19: GRPO for cliffwalk. For the Cliff Walk MDP, modify the rewards to keep only
the terminal rewards +100 and remove the intermediate —1 rewards. Implement GRPO. Do
not implement KL penalties.



Problem 20: Why output projection on MHA? Consider the standard multi-head self-attention
(MHA) layer defined by

output = concat(heady, ..., heads) we

~——

Lxdout LXx Hdyead
head;, = Attention(XW, XWX XW}Y) forh=1,...,H,
——
Lthead

e Attention(0, &, 7) = softmax(- 251y 7
ention(Q, K, V) = softmax
V dattn

WO e RHdneaa Xdout, W}?, W’{( c RdinXdattn, W}Y c Rdinthcad’ X € REXdin,

Let us call this model MHAL.
Next, consider a variant that we call MHA2.

output = head; + - - - + head

——

LXdout
head;, = Attention(XW,?,XW}f(,XW}Y) forh=1,...,H,
——

Lx dhead

where

L. VKT
Attention(Q, K,V) = softmax(\?dL) Vv
attn

W}?) W}{( c IRdinXdattn7 WIY e R9n Xdout, X e RLXdin'
(a) Given an MHA1 model, decompose the rows of WO as

O
o
WO — W2 c RHdhead Xdout

Wit
such that Wlo ) WQO Y Wg € Rneaaxdout - Show that if we set the parameters of an MHA?2

model as W}Y — W,Y W}? for h =1,..., H and keep all other parameters the same, then
the MHA1 and MHA2 models are equivalent, i.e., (MHA1(X) = MHA2(X) for all X).

(b) How many trainable parameters do MHA1 and MHA?2 have?

(¢) If din = dout = 512 and dpeaq = 64, what is the difference in the number of trainable
parameters?



Problem 21: Scaling QK inner products. Assume that X € RE¥4x is randomly initialized as

IID unit Guassians, i.e.,

independently. Let

where W& WK ¢ Rixxdx |

XZJ ~ N(07 1)7

Q=XWe,

K =XWkK,

te{l,...,L}, je{l,...,dx}

(a) Assume W% and WX are randomly initialized as ITD Gaussians with mean 0 and variance
1/dy, i.e., use the LeCun initialization. (So, we are assuming X, W and W are
mutually independent.) Show that

Qf,jv Kf,jv

have zero mean, have unit variance, and are uncorrelated.

(b) Let

where

Show that

qj ke

Vg’

Ay =

7q'1fi
T

7(]27
: ERLXdK,

76127

E[A;¢] =0,

E[(Age)?] =

10

00 e{1,..., L},

S -
S
K= 2

k]

for all ¢, ¢’

1 ife£e

2 i =1,

te{l,...,L}, je{l,...,dx},

c RLXdK



Problem 22: Bradley—Terry as softmax. Assume we have data of the form

(:E?yA?yB’ Z) € D7

where z = 0 if y4 > yp as judged by some reward function and z = 1 if y4 < yp. Assume there
are no ties between y4 and yp. Let

f1§;1) (33, Yya, yB)

€ R?
f1§;2) (33, ya, yB)

fo(x,y4,yB) = [

be a neural network parameterized by ¢. Consider fitting fy to solve the 2-class classification
task of predicting the value of z given (x,y4,yB)-

(a) Show that the standard cross-entropy loss is

effz,l)(rv,ymys) eff>(:v,y,4,y5)

L) = Z —(1-2)log —g; —zlog

@ §Y) ®)
(yagm)ED efo @yays) | o fy (2yays) fy (@yays) 4 Fy7 (@yays)

e

(b) Further assume
fqi;l) (:1:7 Ya, yB)] _ |:’I"w(l’, yA):|

Folevarus) = [f’lf) (z,94,yB) ry (2, y)

Show that L£(1)) recovers the loss used to train the Bradley—Terry model.

Remark. The conclusion is that Bradley—Terry is the 2-class soft-max regression with a specific
parameterization for the neural network.

11



Problem 23: Better estimator for KL-divergence. Let p(x) and g(x) be probability mass func-
tions for x € X'. Then,

og 20 _ g 1og2Y)
Dxui(pllq) = ;{p (x) X]fE;p [l & Q(X)}

It is well known that Dkr(pllg) > 0, and the proof follows from an application of Jensen’s
inequality. Assume we have data X1,..., Xy ~ p.

(a) Show that

| X
Hu_ L
RN
is an unbiased estimator of Dkr,(pl|q).

(b) Show that DM < 0 is possible.
(c) Show that

- 1o [ q(X;) q(X;)
D(2):NZ< o o X')—1>

=\
is an also unbiased estimator of Dk, (pl|q).

(d) Show that D®) > 0 always holds.

Remark. The original InstructGPT uses DM to estimate the KL-penalty, but many subsequent
works, such as the GRPO paper, use D2,

Problem 24: Encoder-only transformers without positional embeddings are permutation equiv-
ariant. Let o be a permutation of length L, i.e., 0(1),0(2),...,0(L) take values 1, ..., L exactly
once. If
T1,XL2y...,T],
is a sequence of tokens,
Lo(1)) Lo (2)s -+ Lo(L)

is the permuted (shuffled) sequence of tokens. Let f be an encoder-only transformer. Specifi-
cally, f is a composition of the token embedding layer with multiple Pre-LN transformer layers

without the causal mask. For simplicity, let us ignore the tokenizer and view f as a function of
the one-hot tokens w1, ...,ur, € RV and

flur,...,ur) = (y1,-..,yL),

where y1, ...,y € R%. For simplicity, do not consider an output embedding layer or a classifi-
cation head. Crucially, assume positional embeddings are not used. Show that

f(uo@ys s uor)) = Wo)s - Yo(L))s

i.e., if the input is shuffled, the output is exactly the same but shuffled in the same way.

Remark. This property is referred to as permutation equivariance.

12



Problem 25: Inferring absolute position with NoPE. Consider a token embedding layer and a
masked single-head self-attention layer mapping {ug}l_ | — {z,}l, — {ye}l, as

where uq, ...
embedding layer, {us}l, Cc RN, {z,}L |
weights, (W), (WK)T € RIxxd and (WV)T € R,

¢ = Muy fort=1,...,L
(WQ Tz, ke = (WH5)Tay, v = (W), fort=1,...,L
qlkj/Vdk ifi>j .
{ if i < j fori,je{l,...,L}
Ajj = ————, fori,j € {1,...,L}
Z/ 16 i’
for{=1,...,L

Yo = Z Agprvr,
r=1

embeddings are used. Assume the message starts with the special token

u1 = <|lim_start|>,

,ur, € RN are the tokenized one-hot vectors, M € RN represents the token
c R, {yg}élzl Cc R%, A € REXE contain the attention
In particular, no explicit positional

and, without loss of generality, assume <|im_start|> is first token, i.e., u; = e, where e; € RV
is the unit vector with a 1 in the first coordinate and 0’s everywhere else. Let

e oo |
%k % * 100 0
M=, , . . (WK)T: 1 00 0 ’ (WV)T:
1 00 0 *
ERERE * | L J L

where * denotes an arbitrary value. Let (W®)T € R4 %4 be arbitrary. Show that

1/¢
*

for/=1,...,L.

Ye

Remark. This problem shows that there is a configuration of the transformer such that the
inverse of the absolute position is revealed in the first coordinates of y1,...,yr, even though
no explicit positional embedding mechanism was used. This result also shows that a masked
single-head self-attention layer (and therefore a decoder-only transformer) is not permutation
equivariant.

13



Problem 26: Softmax bottleneck. Consider a decoder-only transformer with an output projec-
tion layer that maps

V1, ...,V eR"
to

Wiy ..., WL, ERN
with

wp = Buy for{=1,...,L,

where h is the hidden dimension and N is the number of tokens. After this, the output proba-
bilities will be computed via p(wy), where p is the softmax function defined by

e

wz)), = ——— fori=1,...,N.
( ( ))z 25\7:1 e%i
Throughout this problem, use the notation
-
B = : c RNxh
bl —
50 bi,...,by € R". Assume h < N — 1, as is the case in practice.

This standard setup is potentially problematic because u(wy) = u(Bwvy) cannot possibly repre-
sent an arbitrary probability distribution on N tokens (which has N — 1 degrees of freedom),
because v, € R" only has h degrees of freedom. This limitation is called the softmaz bottleneck.

(a) Assume that the rows of B are normalized and distinct, i.e.,
1okl =1 fork=1,...,N

and
b # by for k # k'

Show that for any unit vector e; € RY (which is the one-hot vector with non-zero com-
ponent at position k), there is a vy such that

p(Bup) ~ e,
where ~ can be made as accurate as we want it to be.

(b) As a toy example, let h =2, N =8, and

e i/ I T S

Show that there is a vy such that
1(Buyg) ~ (1/2,1/2,0,0,0,0,0,0).
(c) Consider the setup of part (b). Show that
1(Bug) ~ (1/2,0,1/2,0,0,0,0,0)

is not possible.

Remark. The takeaway is that despite the softmax bottleneck, one-hot vectors can be repre-
sented as the output distribution. However, some distributions where multiple tokens share the
probabilities may not be representable.

14



Problem 27: Parameter and FLOP count of transformers. Consider a multi-head self-attention
(MHA) layer without the causal mask, followed by a positionwise FFN with expansion factor
4. Specifically, the operation maps {z/}%_ , — {w,} | as

z1,...,21 € RY, {z}l, = X e REXD

forh=1,...,H

Y, = Attention(X W2, XW/i, XW)) € RExdx

Z = MHA(X) = concat(Y1,...,Yg)WO°

Z1yee ey 2L ERd, {Zg}gl:l :ZGRLXd

wg:WQO'(Wl,Zg), fOI‘EZl,...,L

where W, € R4*4 and W, € R¥44 5 is some activation function and the single-head attention
layer is defined as

Q=XWe eRMIx K= XWFE ¢RIk, V =XW"V e RFXdx
T

K
Y = Attention(Q, K, V) = softmax(Q )V e REbxdx
Vdg
et ki/Vdi o
AZj: Z[; leqz_kj//m, for 1,] E{l,,L}
] =
L
yZ:ZAETU’“ fOI'gz].,...,L
r=1
Yi,...,yL € R, {ye}l, =Y e RE>dx,

Note that g¢-, k-, and v-vectors share the same dimension dg. Finally, set dx = d/H, as is
commonly done in modern transformers.

(a) Show that the trainable parameters in the MHA and the position-wise FFN layers are
roughly comparable.

(b) Show that the number of necessary arithmetic operations required to do a forward pass
(computing {z,}}; — {w,} ) is on the order of

©(L*d + Ld*)

(c) In the FLOP estimate of (b), at what value of L does the first term (dependent on L?)
become more dominant?

Remark. For references, the Llama 3 405B model has dimensions d = 16384 and H = 128.

Remark. The key takeaway is that the inference cost of LLMs does not scale quadratically with
the sequence length L for moderate values of L, despite some incorrect claims to the contrary
in the literature. Moreover, as L increases, compute efficiency improves, making the L? term
less visible in practical timing measurements.
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Problem 28: Unbiasedness of Dr. GRPO. In this problem, we derive the unbiasedness prop-
erty of Dr. GRPO. To clarify, the statement [the “advantage” estimate of Dr. GRPO is an
unbiased estimate of the advantage function] is not true. Rather, the claim of correctness and
“unbiasedness” of the Dr. GRPO is made through the following analysis.

(a)

Let
T = (507a0ar07517a13T17827 . )

be a trajectory of an MDP. Let Y be a random variable independent of 7. Show that

E [Vglogmg(as|s:)b(Y)] = 0.

T~(po,mg,p)
Y

Consider an undiscounted MDP (y = 1) with terminal rewards as in the GRPO setup. Let
7., 7)) be IID trajectories with terminal times 7, ..., T™N) and terminal rewards
r e To clarify, for i =1,..., N,

where ngi) = <term> and the rewards at all times except the terminal one are all 0. Let
N0
mean(r) = N ;r .
Show that
E liTg:lv 1 @) | Dy () _ _N-1
c e | N & 2 VOB m(ay” | 5,”) (rl? — mean(r)) | = —=—=V.7(0).

To clarify, in this undiscounted terminal reward MDP setup,

Je = E [r],

T~(po,7g,p)

where r is the terminal reward of the trajectory 7 ~ (po, 7g, p).

Remark. Replacing the advantage estimate in policy-gradient-type methods with (") — mean(r)
was previously explored under the name REINFORCE Leave-One-Out (RLOO), although it did
not receive much mainstream attention before GRPO and Dr. GRPO. Also, the now-common
practice of referring to r(® — mean(r) as an “advantage estimate” is somewhat misleading, as
it is not an unbiased estimate of the true advantage function.
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