
Reinforcement Learning of Large Language Models
E. Ryu
Spring 2025

Homework exercises

Problem 1: Monotonicity of Bellman operators. Let γ ∈ (0, 1), |S| < ∞, |A| < ∞, and
|r| ≤ R <∞ almost surely. Let π be a policy, not necessarily optimal. Let Bπ be the Bellman
operator for π and B⋆ the Bellman optimality operator. Show that for any V : S → R,

Bπ[V] ≤ B⋆[V].

Also show that for any U : S → R and V : S → R such that U ≤ V ,

B⋆[U] ≤ B⋆[V].

Problem 2: Bellman operators for Q are contractions. Let γ ∈ (0, 1), |S| <∞, |A| <∞, and
|r| ≤ R <∞ almost surely. Show that the Bπ and B⋆ for Q are γ-contractions.

Problem 3: Optimal Q-function dominates all Q-functions. Let γ ∈ (0, 1), |S| <∞, |A| <∞,
and |r| ≤ R <∞ almost surely. Let π⋆ be an optimal policy, i.e., assume

V π⋆(s) ≥ V π(s), ∀ s ∈ S, policy π.

Show that
Qπ

⋆
(s, a) ≥ Qπ(s, a), ∀ s ∈ S, a ∈ A, policy π.

Problem 4: Optimal policies form a convex set. Let γ ∈ (0, 1), |S| < ∞, |A| < ∞, and
|r| ≤ R <∞ almost surely. Show the following:

(a) Show that a policy π (not necessarily deterministic) is optimal if and only if

V π(s) = V ⋆(s), ∀ s ∈ S.

(b) Show that

E
(r,s′)∼p(·,· | s,a)

[r + γV ⋆(s′) | s, a] = Q⋆(s, a), ∀ s ∈ S, a ∈ A.

(c) Show that
V ⋆(s) = max

a∈A
Q⋆(s, a), ∀ s ∈ S.

(d) Show that a policy π (not necessarily deterministic) is optimal if and only if

supp
(
π(· | s)

)
⊆ argmaxQ⋆(s, ·), ∀ s ∈ S.

i.e., show that π is optimal if and only if it selects actions that maximize Q⋆(s, ·).

(e) Let π⋆ and ν⋆ be two optimal policies. For any θ ∈ [0, 1], show that

µ⋆ = θπ⋆ + (1− θ)ν⋆

is also an optimal policy. Conclude that the set of optimal policies is a convex set.

Hint. For (d), show that Bπ[V ⋆](s) = E
a∼π(· | s)

[Q⋆(s, a) | s].

1

Problem 5: Exercise with advantage. For any policy π, let Aπ(s, a) = Qπ(s, a)− V π(s) be the
advantage of a at s.

(a) Show that
E

a∼π(· | s)
[Aπ(s, a) | s] = 0

(b) Show that π is optimal if and only if [Aπ(s, a) ≤ 0 for all s ∈ S and a ∈ A].

Problem 6: Removing past rewards from policy gradients Consider an MDP with no terminal
state, i.e. T =∞ with probability 1. Let k be a fixed positive integer. Consider the dynamics
where we take actions based on policy πθ for t ̸= k, and we take the action based on the policy
πθ+δ at t = k.

(a) Show that
∇δ E

s0∼p0
at∼πθ(· | st) for t̸=k
ak∼πθ+δ(· | sk)

(rt,st+1)∼p(·,· | st,at)

[r0 + r1 + r2 + · · ·+ rk−1] = 0.

(b) Let τ = (s0, a0, r0, s1, a1, r1, . . .) be the (continual) trajectory, and let H(τ) be some
function of the trajectory. Show that

∇δ

(
E

s0∼p0
at∼πθ(· | st) for t̸=k
ak∼πθ+δ(· | sk)

(rt,st+1)∼p(·,· | st,at)

[H(τ)]

)∣∣∣∣∣
δ=0

= E
s0∼p0

at∼πθ(· | st) for all t
(rt,st+1)∼p(·,· | st,at)

[H(τ)∇θ log πθ(ak | sk)].

(c) Show that

E
s0∼p0

at∼πθ(· | st) for all t
(rt,st+1)∼p(·,· | st,at)

[(r0 + r1 + r2 + · · ·+ rk−1)∇θ log πθ(ak | sk)] = 0.

Remark. The goal of this problem is to ascribe meaning to the terms in the “enhancement #1”
of the policy gradient derivation.

Problem 7: MMSE estimator. Let (X,Y) ∼ P be a pair of random variables. Assume you
have full knowledge of P and you observe Y . However, you did not observe X, and your goal is
to estimate the unknown value of X. Your estimator is a function of your observed data, and
you wish to find the function that minimizes the mean-squared error with respect to X, i.e., we
wish to solve

minimize
f

E
(X,Y)∼P

[
(X − f(Y))2

]
.

A solution f⋆ to this optimization problem is the minimum mean square error (MMSE) esti-
mator. Show that

f⋆(Y) = E
X∼PX |Y

[X |Y].

2

Problem 8: Pushing up and down probabilities in PG. Consider an MDP with state space
S = {1, . . . , ℓ} and action space A = {1, 2, . . . , k}. Let µ : Rk → Rk be the softmax function
defined as

µi(z) =
(
µ(z)

)
i
=

ezi∑k
j=1 e

zj

for i = 1, . . . , k. Let fΘ : S → Rk be a defined as

fΘ(s) = θs, for s = 1, . . . , ℓ,

where θ1, . . . , θℓ ∈ Rk are the trainable parameters. We use the notation

Θ =
[
θ1 θ2 · · · θℓ

]
∈ Rk×ℓ.

With some abuse of notation, we denote our policy πΘ as

πΘ(s) = µ(fΘ(s)) =


P(a = 1 | s)
P(a = 2 | s)

...
P(a = k | s)

 .
Let a0 ∈ A and s0 ∈ S.

(a) Show that
log πΘ(a0 | s0) = Θa0,s0 − log

(
1⊺eθs0

)
,

where 1 ∈ Rk is the vector with all entries 1 and eθs0 ∈ Rk is the element-wise exponen-
tiation of θs0 ∈ Rk.

(b) Show that
∇θs′ log πΘ(a0 | s0) = 0, for s′ ̸= s0.

(c) Show that

∇θs0 log πΘ(a0 | s0) = ua0 −
eθs0

1⊺eθs0
= ua0 − πΘ(· | s0).

where ua0 ∈ Rk is the (a0)-th unit vector with all 0 entries except a 1 in the (a0)-th
coordinate.

(d) Let g ∈ Rk such that g1 > gj for j = 2, . . . , k. Show that

µ1(z + αg) > µ1(z)

for sufficiently small α > 0.

(e) Let s0 ∈ S and a0 ∈ A. Let
g = ∇Θ log πΘ(a0 | s0).

Show that
πΘ+αg(a0 | s0) > πΘ(a0 | s0)

for sufficiently small α > 0.

3

(f) Let s0 ∈ S. Let
g = E

a∼πΘ(· | s0)

[
Ca∇Θ log πΘ(a | s0)

∣∣ s0].
Assume C1 − E

a∼π(· | s0)
[Ca | s0] > 0 and Cj − E

a∼π(· | s0)
[Ca | s0] < 0 for j = 2, . . . , k. Show that

πΘ+αg(a = 1 | s0) > πΘ(a = 1 | s0)

for sufficiently small α > 0.

(g) Let s0 ∈ S. Let
g = E

a∼πΘ(· | s0)

[
Ca∇Θ log πΘ(a | s0)

∣∣ s0].
Assume C1, . . . , Ck > 0. Show that it is possible that

πΘ+αg(a = 1 | s0) < πΘ(a = 1 | s0).

for sufficiently small α > 0. (Construct a specific example with k = 2.)

(h) Let s0 ∈ S. Let
g = E

a∼πΘ(· | s0)

[
Ca∇Θ log πΘ(a | s0)

∣∣ s0].
Assume C1 > 0 and C2, . . . , Ck < 0. Show that it is possible that

πΘ+αg(a = 2 | s0) > πΘ(a = 2 | s0)

for sufficiently small α > 0. (Construct a specific example with k = 3.)

4

Problem 9: Rao–Blackwell theorem with PG. Consider an MDP with no terminal state, i.e.
T =∞ with probability 1. Let π be a policy, not necessarily optimal. Let t be a fixed positive
integer. Let

(τ (t), at) = (s0, a0, r0, · · · , st−1, at−1, rt−1, st, at)

be the partial trajectory up to at generated by following some policy. Assume the remaining
trajectory

(rt, st+1, at+1, rt+1, st+2, at+2, rt+2, st+3, . . .)

is generated by following by policy π starting from (st, at). We require Q̂t to be a random
variable such that

Eπ
[
Q̂t
∣∣ τ (t), at] = Qπ(st, at).

(a) Show that
Q̂t = rt + γrt+1 + γ2rt+2 + γ3rt+3 + · · ·

satisfies the requirement.

(b) Show that
Q̂t = rt + γQπ(st+1, at+1)

satisfies the requirement.

(c) Show that
Q̂t = rt + γV π(st+1)

satisfies the requirement.

(d) Show that
Q̂t = rt + γrt+1 + γ2V π(st+2)

satisfies the requirement.

(e) Show that

Eπ
[
∇θ log πθ(at | st)γt

(
Q̂t − b(st)

) ∣∣ τ (t), at] = ∇θ log πθ(at | st)γt(Qπ(st, at)− b(st))
for any Q̂t satisfying the requirement.

Remark. The Rao–Blackwell theorem stated and proved in class is for scalar random variables,
but the Rao–Blackwellized estimator in part (d) is a vector random variable. A vector version
of the Rao–Blackwell theorem can be shown with essentially the same steps.

5

Problem 10: Rao–Blackwell again. Consider an MDP with no terminal state, i.e. T =∞ with
probability 1. Let π be a policy, not necessarily optimal. Let t be a fixed positive integer. Let
the trajectory (s0, a0, r0, s1, a1, r1, s2, . . .) be generated by policy π.

(a) Let

Q̂
TD(1)
t = rt+γV

π(st+1), Q̂
TD(2)
t = rt+γrt+1+γ

2V π(st+2), Q̂
TD(∞)
t = rt+γrt+1+γ

2rt+2+· · · .

Show that
E[Q̂TD(1)

t] = E[Q̂TD(2)
t] = E[Q̂TD(∞)

t]

and
Var(Q̂

TD(1)
t) ≤ Var(Q̂

TD(2)
t) ≤ Var(Q̂

TD(∞)
t).

(b) Let

Q̂
TD(1)
t = rt + γV π(st+1), Q̂

TD(1.5)
t = rt + γQπ(st+1, at+1)

Show that
E[Q̂TD(1)

t] = E[Q̂TD(1.5)
t]

and
Var(Q̂

TD(1)
t) ≤ Var(Q̂

TD(1.5)
t).

Problem 11: GAE derivations. Consider an MDP with no terminal state, i.e. T = ∞ with
probability 1. Let γ ∈ (0, 1]. Let π be a policy, not necessarily optimal. Let

δV
π

t = rt + γV π(st+1)− V π(st), for t = 0, 1,

(a) Show that
E[δV

π

t | st, at] = Aπ(st, at), for t = 0, 1,

(b) Show that
E[δV

π

t | st] = 0, for t = 0, 1,

(c) Show that
E[δV

π

t+ℓ | st, at] = 0, for ℓ ≥ 1, t = 0, 1,

(d) Show that

Â
TD(k)
t = rt + γrt+1 + γ2rt+2 + · · ·+ γk−1rt+k−1 + γkV π(st+k)− V π(st)

= δV
π

t + γδV
π

t+1 + γ2δV
π

t+2 + · · ·+ γk−1δV
π

t+k−1, for k ≥ 1, t = 0, 1,

(e) Let λ ∈ (0, 1). Show that

(1− λ)
(
Â

TD(1)
t + λÂ

TD(2)
t + λ2Â

TD(3)
t + · · ·

)
=

∞∑
l=0

(γλ)lδVt+l, for t = 0, 1,

6

Problem 12: Policy evaluation for Q and V. Consider an MDP with discount factor γ ∈ (0, 1].
Let π be a policy, not necessarily optimal. Let s0 ∼ p0, a0 ∈ π(· | s0), (r0, s1) ∼ p(·, · | s0, a0).
Assume p0 assigns positive probability on all states in S. Let

Q̂ = r0 + γV π(s1).

Assume Vϕ is a neural network that can represent arbitrary functions (infinite expressive power).

(a) Show that
E
[
(Q̂− Vϕ(s0))2

]
is minimized at Vϕ = V π.

(b) Show that
E
[
(Q̂−Qϕ(s0, a0))2

]
is minimized at Qϕ = Qπ.

(c) Show that
E
[
(Q̂− V π(s0))

2
]
≥ E

[
(Q̂−Qπ(s0, a0))2

]
.

Remark. Although policy evaluations for the Q- and V-value functions both fit the same quantity
Q̂, they are different in that the fitting function Vϕ may only depend on s while Qϕ may also
depend on a.

Problem 13: Backpropagating continuous tanh-Gaussian actions. Let µθ(s) ∈ Rn and Σθ(s) ∈
Rn×n be neural networks parameterized by θ ∈ RP . Assume Σθ(s) is symmetric and strictly
positive definite for any s ∈ S and θ ∈ RP . Given s ∈ S, let

a = tanh(z), z ∼ N (µθ(s),Σθ(s)).

Let πθ(a | s) be the implicitly defined probability density function of the random variable a ∈ Rn.
Show that

z = tanh−1(a)

log πθ(a | s) = −
1

2
log detΣθ(s)−

1

2
(z − µθ(s))⊺Σ−1

θ (s)(z − µθ(s))

− n

2
log(2π)−

n∑
i=1

log(1− a2i).

Problem 14: PPO clipped surrogate objective. Let ℓ ≥ 0 and ε ∈ (0, 1). Define

Cε(ℓ, A) = min
(
ℓA, clip1+ε1−ε (ℓ)A

)
.

Show that if A ≥ 0, then
Cε(ℓ, A) = min (ℓ, 1 + ε)A

and that if A < 0, then
Cε(ℓ, A) = max (ℓ, 1− ε)A.

7

Problem 15: Policy iteration. Implement the policy iteration in the Cliff Walk MDP environ-
ment. Perform the policy evaluation step exactly using the linear algebra approach.

Problem 16: Fitted Monte Carlo policy evaluation for Q. Implement fitted Monte Carlo policy
evaluation in the Cliff Walk MDP environment for the Q-value function. Use the neural network
provided in the starter code CliffWalkQ.py.

Problem 17: Fitted k-step TD policy evaluation for Q. Implement fitted k-step TD policy
evaluation in the Cliff Walk MDP environment for the Q-value function. Use the neural network
provided in the starter code CliffWalkQ.py.

Problem 18: Implementing policy gradient without k-step TD. In the undiscounted Cliff Walk
MDP, implement the deep policy gradient method without k-step TD. Specifically, implement
the following pseudo-code:

while (not converged)

gθ = 0, gϕ = 0

sample trajectory τ ∼ (p0, πθ, p)

for t = 0, 1, . . . , T − 1

Q̂ = rt + rt+1 + rt+2 + · · ·+ rT−1

gθ += −
(
∇θ log πθ(at | st)

)(
Q̂− Vϕ(st)

)
gϕ += ∇ϕ

1

2

(
JQ̂K− Vϕ(st)

)2
end

update θ and ϕ using gθ and gϕ with an optimizer

end

Problem 19: GRPO for cliffwalk. For the Cliff Walk MDP, modify the rewards to keep only
the terminal rewards ±100 and remove the intermediate −1 rewards. Implement GRPO. Do
not implement KL penalties.

8

Problem 20: Why output projection on MHA? Consider the standard multi-head self-attention
(MHA) layer defined by

output︸ ︷︷ ︸
L×dout

= concat(head1, . . . ,headH)︸ ︷︷ ︸
L×Hdhead

WO

headh︸ ︷︷ ︸
L×dhead

= Attention(XWQ
h , XW

K
h , XW

V
h) for h = 1, . . . ,H,

where

Attention(Q̃, K̃, Ṽ) = softmax
(Q̃K̃⊺

√
dattn

)
Ṽ

WO ∈ RHdhead×dout , WQ
h , W

K
h ∈ Rdin×dattn , W V

h ∈ Rdin×dhead , X ∈ RL×din .

Let us call this model MHA1.

Next, consider a variant that we call MHA2.

output︸ ︷︷ ︸
L×dout

= head1 + · · ·+ headH

headh︸ ︷︷ ︸
L×dhead

= Attention(XWQ
h , XW

K
h , XW

V
h) for h = 1, . . . ,H,

where

Attention(Q̃, K̃, Ṽ) = softmax
(Q̃K̃⊺

√
dattn

)
Ṽ

WQ
h , W

K
h ∈ Rdin×dattn , W V

h ∈ Rdin×dout , X ∈ RL×din .

(a) Given an MHA1 model, decompose the rows of WO as

WO =


WO

1

WO
2
...

WO
H

 ∈ RHdhead×dout

such thatWO
1 ,W

O
2 , . . . ,W

O
H ∈ Rdhead×dout . Show that if we set the parameters of an MHA2

model as W V
h ← W V

h W
O
h for h = 1, . . . ,H and keep all other parameters the same, then

the MHA1 and MHA2 models are equivalent, i.e., (MHA1(X) = MHA2(X) for all X).

(b) How many trainable parameters do MHA1 and MHA2 have?

(c) If din = dout = 512 and dhead = 64, what is the difference in the number of trainable
parameters?

9

Problem 21: Scaling QK inner products. Assume that X ∈ RL×dX is randomly initialized as
IID unit Guassians, i.e.,

Xℓ,j ∼ N (0, 1), ℓ ∈ {1, . . . , L}, j ∈ {1, . . . , dX}

independently. Let
Q = XWQ, K = XWK ,

where WQ,WK ∈ RdX×dK .

(a) AssumeWQ andWK are randomly initialized as IID Gaussians with mean 0 and variance
1/dX , i.e., use the LeCun initialization. (So, we are assuming X, WK , and WQ are
mutually independent.) Show that

Qℓ,j , Kℓ,j , ℓ ∈ {1, . . . , L}, j ∈ {1, . . . , dK},

have zero mean, have unit variance, and are uncorrelated.

(b) Let

Aℓ,ℓ′ =
q⊺ℓ kℓ′√
dK

, ℓ, ℓ′ ∈ {1, . . . , L},

where

Q =


— q⊺1 —
— q⊺2 —

...
— q⊺L—

 ∈ RL×dK , K =


— k⊺1 —
— k⊺2 —

...
— k⊺L—

 ∈ RL×dK .

Show that

E[Aℓ,ℓ′] = 0, for all ℓ, ℓ′

E[(Aℓ,ℓ′)2] =
{

1 if ℓ ̸= ℓ′
dX+2
dX

if ℓ = ℓ′.

10

Problem 22: Bradley–Terry as softmax. Assume we have data of the form

(x, yA, yB, z) ∈ D,

where z = 0 if yA > yB as judged by some reward function and z = 1 if yA < yB. Assume there
are no ties between yA and yB. Let

fψ(x, yA, yB) =

[
f
(1)
ψ (x, yA, yB)

f
(2)
ψ (x, yA, yB)

]
∈ R2

be a neural network parameterized by ψ. Consider fitting fψ to solve the 2-class classification
task of predicting the value of z given (x, yA, yB).

(a) Show that the standard cross-entropy loss is

L(ψ) =
∑

(x,yA,yB ,z)∈D

−(1−z) log ef
(1)
ψ (x,yA,yB)

ef
(1)
ψ (x,yA,yB) + ef

(2)
ψ (x,yA,yB)

−z log ef
(2)
ψ (x,yA,yB)

ef
(1)
ψ (x,yA,yB) + ef

(2)
ψ (x,yA,yB)

(b) Further assume

fψ(x, yA, yB) =

[
f
(1)
ψ (x, yA, yB)

f
(2)
ψ (x, yA, yB)

]
=

[
rψ(x, yA)
rψ(x, yB)

]
.

Show that L(ψ) recovers the loss used to train the Bradley–Terry model.

Remark. The conclusion is that Bradley–Terry is the 2-class soft-max regression with a specific
parameterization for the neural network.

11

Problem 23: Better estimator for KL-divergence. Let p(x) and q(x) be probability mass func-
tions for x ∈ X . Then,

DKL(p∥q) =
∑
x∈X

p(x) log
p(x)

q(x)
= E

X∼p

[
log

p(X)

q(X)

]
It is well known that DKL(p∥q) ≥ 0, and the proof follows from an application of Jensen’s
inequality. Assume we have data X1, . . . , XN ∼ p.

(a) Show that

D̂(1) =
1

N

N∑
i=1

log
p(Xi)

q(Xi)

is an unbiased estimator of DKL(p∥q).

(b) Show that D̂(1) < 0 is possible.

(c) Show that

D̂(2) =
1

N

N∑
i=1

(
q(Xi)

p(Xi)
− log

q(Xi)

p(Xi)
− 1

)
is an also unbiased estimator of DKL(p∥q).

(d) Show that D̂(2) ≥ 0 always holds.

Remark. The original InstructGPT uses D̂(1) to estimate the KL-penalty, but many subsequent
works, such as the GRPO paper, use D̂(2).

Problem 24: Encoder-only transformers without positional embeddings are permutation equiv-
ariant. Let σ be a permutation of length L, i.e., σ(1), σ(2), . . . , σ(L) take values 1, . . . , L exactly
once. If

x1, x2, . . . , xL

is a sequence of tokens,
xσ(1), xσ(2), . . . , xσ(L)

is the permuted (shuffled) sequence of tokens. Let f be an encoder-only transformer. Specifi-
cally, f is a composition of the token embedding layer with multiple Pre-LN transformer layers
without the causal mask. For simplicity, let us ignore the tokenizer and view f as a function of
the one-hot tokens u1, . . . , uL ∈ RN and

f(u1, . . . , uL) = (y1, . . . , yL),

where y1, . . . , yL ∈ Rd. For simplicity, do not consider an output embedding layer or a classifi-
cation head. Crucially, assume positional embeddings are not used. Show that

f(uσ(1), . . . , uσ(L)) = (yσ(1), . . . , yσ(L)),

i.e., if the input is shuffled, the output is exactly the same but shuffled in the same way.

Remark. This property is referred to as permutation equivariance.

12

Problem 25: Inferring absolute position with NoPE. Consider a token embedding layer and a
masked single-head self-attention layer mapping {uℓ}Lℓ=1 7→ {xℓ}Lℓ=1 7→ {yℓ}Lℓ=1 as

xℓ =Muℓ for ℓ = 1, . . . , L

qℓ = (WQ)⊺xℓ, kℓ = (WK)⊺xℓ, vℓ = (W V)⊺xℓ for ℓ = 1, . . . , L

Ãij =

{
q⊺i kj/

√
dK if i ≥ j

−∞ if i < j
for i, j ∈ {1, . . . , L}

Aij =
eÃij∑L
j′=1 e

Ãij′
, for i, j ∈ {1, . . . , L}

yℓ =

ℓ∑
r=1

Aℓrvr, for ℓ = 1, . . . , L,

where u1, . . . , uL ∈ RN are the tokenized one-hot vectors, M ∈ Rd×N represents the token
embedding layer, {uℓ}Lℓ=1 ⊂ RN , {xℓ}Lℓ=1 ⊂ Rd, {yℓ}Lℓ=1 ⊂ Rd, A ∈ RL×L contain the attention
weights, (WQ)⊺, (WK)⊺ ∈ RdK×d, and (W V)⊺ ∈ Rd×d. In particular, no explicit positional
embeddings are used. Assume the message starts with the special token

u1 = <|im start|>,

and, without loss of generality, assume <|im start|> is first token, i.e., u1 = e1, where e1 ∈ RN
is the unit vector with a 1 in the first coordinate and 0’s everywhere else. Let

M =



1 1 1 · · · 1
1 0 0 · · · 0
∗ ∗ ∗ · · · ∗
∗ ∗ ∗ · · · ∗
...

...
...

. . .
...

∗ ∗ ∗ · · · ∗


, (WK)⊺ =


1 0 0 · · · 0
1 0 0 · · · 0
1 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0

 , (W V)⊺ =


0 1 0 · · · 0
∗ ∗ ∗ · · · ∗
∗ ∗ ∗ · · · ∗
...

...
...

. . .
...

∗ ∗ ∗ · · · ∗

 ,

where ∗ denotes an arbitrary value. Let (WQ)⊺ ∈ RdK×d be arbitrary. Show that

yℓ =


1/ℓ
∗
...
∗

 for ℓ = 1, . . . , L.

Remark. This problem shows that there is a configuration of the transformer such that the
inverse of the absolute position is revealed in the first coordinates of y1, . . . , yL, even though
no explicit positional embedding mechanism was used. This result also shows that a masked
single-head self-attention layer (and therefore a decoder-only transformer) is not permutation
equivariant.

13

Problem 26: Softmax bottleneck. Consider a decoder-only transformer with an output projec-
tion layer that maps

v1, . . . , vL ∈ Rh

to
w1, . . . , wL ∈ RN

with
wℓ = Bvℓ for ℓ = 1, . . . , L,

where h is the hidden dimension and N is the number of tokens. After this, the output proba-
bilities will be computed via µ(wℓ), where µ is the softmax function defined by(

µ(z)
)
i
=

ezi∑N
j=1 e

zj
for i = 1, . . . , N.

Throughout this problem, use the notation

B =

— b⊺1 —
...

— b⊺N —

 ∈ RN×h,

so b1, . . . , bN ∈ Rh. Assume h < N − 1, as is the case in practice.

This standard setup is potentially problematic because µ(wℓ) = µ(Bvℓ) cannot possibly repre-
sent an arbitrary probability distribution on N tokens (which has N − 1 degrees of freedom),
because vℓ ∈ Rh only has h degrees of freedom. This limitation is called the softmax bottleneck.

(a) Assume that the rows of B are normalized and distinct, i.e.,

∥bk∥ = 1 for k = 1, . . . , N

and
bk ̸= bk′ for k ̸= k′.

Show that for any unit vector ek ∈ RN (which is the one-hot vector with non-zero com-
ponent at position k), there is a vℓ such that

µ(Bvℓ) ≈ ek,

where ≈ can be made as accurate as we want it to be.

(b) As a toy example, let h = 2, N = 8, and

bk =

[
cos(πk/4)
sin(πk/4)

]
for k = 1, . . . , 8.

Show that there is a vℓ such that

µ(Bvℓ) ≈ (1/2, 1/2, 0, 0, 0, 0, 0, 0).

(c) Consider the setup of part (b). Show that

µ(Bvℓ) ≈ (1/2, 0, 1/2, 0, 0, 0, 0, 0)

is not possible.

Remark. The takeaway is that despite the softmax bottleneck, one-hot vectors can be repre-
sented as the output distribution. However, some distributions where multiple tokens share the
probabilities may not be representable.

14

Problem 27: Parameter and FLOP count of transformers. Consider a multi-head self-attention
(MHA) layer without the causal mask, followed by a positionwise FFN with expansion factor
4. Specifically, the operation maps {xℓ}Lℓ=1 7→ {wℓ}Lℓ=1 as

x1, . . . , xL ∈ Rd, {xℓ}Lℓ=1 = X ∈ RL×d

for h = 1, . . . ,H

Yh = Attention(XWQ
h , XW

K
h , XW

V
h) ∈ RL×dK

Z = MHA(X) = concat(Y1, . . . , YH)W
O

z1, . . . , zL ∈ Rd, {zℓ}Lℓ=1 = Z ∈ RL×d

wℓ =W2σ(W1zℓ), for ℓ = 1, . . . , L

where W1 ∈ R4d×d and W2 ∈ Rd×4d, σ is some activation function and the single-head attention
layer is defined as

Q = XWQ ∈ RL×dK , K = XWK ∈ RL×dK , V = XW V ∈ RL×dK

Y = Attention(Q,K, V) = softmax
(QK⊺

√
dK

)
V ∈ RL×dK

Aij =
eq

⊺
i kj/

√
dK∑L

j′=1 e
q⊺i kj′/

√
dK
, for i, j ∈ {1, . . . , L}

yℓ =
L∑
r=1

Aℓrvr, for ℓ = 1, . . . , L

y1, . . . , yL ∈ RdK , {yℓ}Lℓ=1 = Y ∈ RL×dK .

Note that q-, k-, and v-vectors share the same dimension dK . Finally, set dK = d/H, as is
commonly done in modern transformers.

(a) Show that the trainable parameters in the MHA and the position-wise FFN layers are
roughly comparable.

(b) Show that the number of necessary arithmetic operations required to do a forward pass
(computing {xℓ}Lℓ=1 7→ {wℓ}Lℓ=1) is on the order of

Θ
(
L2d+ Ld2

)
(c) In the FLOP estimate of (b), at what value of L does the first term (dependent on L2)

become more dominant?

Remark. For references, the Llama 3 405B model has dimensions d = 16384 and H = 128.

Remark. The key takeaway is that the inference cost of LLMs does not scale quadratically with
the sequence length L for moderate values of L, despite some incorrect claims to the contrary
in the literature. Moreover, as L increases, compute efficiency improves, making the L2 term
less visible in practical timing measurements.

15

Problem 28: Unbiasedness of Dr. GRPO. In this problem, we derive the unbiasedness prop-
erty of Dr. GRPO. To clarify, the statement [the “advantage” estimate of Dr. GRPO is an
unbiased estimate of the advantage function] is not true. Rather, the claim of correctness and
“unbiasedness” of the Dr. GRPO is made through the following analysis.

(a) Let
τ = (s0, a0, r0, s1, a1, r1, s2, . . .)

be a trajectory of an MDP. Let Y be a random variable independent of τ . Show that

E
τ∼(p0,πθ,p)

Y

[∇θ log πθ(at | st)b(Y)] = 0.

(b) Consider an undiscounted MDP (γ = 1) with terminal rewards as in the GRPO setup. Let
τ (1), . . . , τ (N) be IID trajectories with terminal times T (1), . . . , T (N) and terminal rewards
r(1), . . . , r(N). To clarify, for i = 1, . . . , N ,

τ (i) =
(
s
(i)
0 , a

(i)
0 , s

(i)
1 , a

(i)
1 , . . . , s

(i)

T (i)−1
, a

(i)

T (i)−1
, r(i), s

(i)

T (i)

)
,

where s
(i)

T (i) = <term> and the rewards at all times except the terminal one are all 0. Let

mean(r) =
1

N

N∑
i=1

r(i).

Show that

E
τ (1),...,τ (N)

[
1

N

N∑
i=1

T (i)−1∑
t=0

∇θ log πθ(a
(i)
t | s

(i)
t)
(
r(i) −mean(r)

)]
=
N − 1

N
∇J (θ).

To clarify, in this undiscounted terminal reward MDP setup,

J (θ) = E
τ∼(p0,πθ,p)

[
r
]
,

where r is the terminal reward of the trajectory τ ∼ (p0, πθ, p).

Remark. Replacing the advantage estimate in policy-gradient-type methods with r(i)−mean(r)
was previously explored under the name REINFORCE Leave-One-Out (RLOO), although it did
not receive much mainstream attention before GRPO and Dr. GRPO. Also, the now-common
practice of referring to r(i) −mean(r) as an “advantage estimate” is somewhat misleading, as
it is not an unbiased estimate of the true advantage function.

16

