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Homework 1
Due 5pm, Monday, September 19, 2022

Problem 1: Control variates. Let X and Y be scalar-valued random variables such that

and
E[(X — )% = Zxx, E[(Y)?] = Zyy, E[(X - )Y] =Zxy.

Assume 0 < Yxx < oo and 0 < Yyy < oco. Our goal is to estimate I with small variance.
Clearly,
E[X +7Y]=1

for any v € R. Find the solution to

minimize Var(X +~vY).
yER

Remark. The point is that if X and Y are correlated, i.e., if Y¥xy # 0, then the optimal
is non-zero. In such setups, Y is referred to as a control variate, as it is a random variable
(variate) one can use to control (reduce) the variance. Of course, the variance is reduced only
when ~ is chosen well.

Problem 2: Tweedie’s formula. Consider the vector-valued continuous random variables
Y=X+Z7ZeR",

where X ~ py and Z ~ N(0,%) with X > 0 are independent. (To clarify, px is a probability
density function.) Write py to denote the probability density function of Y. Show that

EX|Y] =Y +XViogpy(Y).
You may swap the order of derivatives and integrals without proof.
Hint. Start with the scalar case (so n = 1) with ¥ = 1. Define

py(y) _ Jrpyvix (| z)px (z) da

W)= 07 ()
and show J
@e(y) = E[X [Y](y).

Then, use the formula
d
EX|Y] = —logl(y).
(X [Y] =5, los ()

Clarification. We do not assume X is a Gaussian.



Problem 3: Let p4(s) € R" and $p(s) € R™*" be neural networks parameterized by 6 € R .
Assume Yy(s) is symmetric and strictly positive definite for any s € S and § € R”. Given
s€S, let

a = tanh(z), z ~ N(pg(s), Xo(s)).

Let mp(a | s) be the implicitly defined probability density function of the random variable a € R™.
Show that

z = tanh ™1 (a)

log my(a| ) = — log det Sp(s) — 5 (= — 10()) 75" (5)(= — ()

— %log(%r) - ; log(1 — tanh?(z;)).

Problem 4: Let Xi,..., X7 be a sequence with the hidden Markov property with respect to
hi,...,hp € H, where |H| =m < co. Define

pr(hr) =1, VhyreH

and
pi—1(hi—1) =P(Xy, ..., X7 | he—1), Vhi—1 € H.

Show that

pi—1 = 9(X¢, pt)

for some function g: X x R™ — R™.

Problem 5: Consider the setup of Problem 4 and let sq,...,s7 be as defined in the lecture.
Let

pe(Xe) = Y se(he)pr(he)P(X; | he).
ht€H

Assume X; € X and |X| < oo, i.e., X; is a discrete random variable with finite possible
realizations, for t = 1,...,7. Show that

P(X; | X1, X1, Xeg1s -, X7) = 182(Xy),

where p? is the normalized probability mass function corresponding to .



Problem 6: Backprop for FFJORD. Consider the neural ODE

d
T2(8) = f(=(9).0.5),  s€[0.1]

Let .7-"91’0: RP — RP be the flow operator from pseudo-time s = 1 to s = 0. Let 2 € R be a
given datapoint, and consider the problem of evaluating a stochastic gradient of

log p(x) = log po (7, "(x)) - /0 E (?<z<s>,0,s>> ds,

z

where pg is a suitable latent distribution. To this end, sample a random v € R? such that

E[vvT] = I and solve
% m (s) = [Vfggy] (2(5),0,5)

with terminal values z(1) = z and A(1) = 0 to obtain z(0) and ¢ = logpo(zo) — A(0). The
argument with the Hutchinson estimator shows that

1
P10 (73°@)) = [ 75l e(00.0. 5w s,

is an unbiased estimator of logp(x). Show that solving

d 0 g 0

d—Z(s) = —aa—i(z(s),e,s) ~ 5, a—ﬁ(z(s),@, s)v, s €0,1]
and

db 0 o .0

()= ~a gt (2(),0.5) — Sov L ((5), 0,90, s€[0,1]

with initial conditions a(0) = Vlog pp(2(0)) and b(0) = 0 yields

ol

b(1) = 5.

Hint. Apply the adjoint method theorem with reversed pseudo-time and

f

of
—_pyT<L
viazv

= T =l |G, ceo) =i ogm0) - 20,

Then, simplify the dynamics using the fact that =522 = 0.



Problem 7: Let p: [0,7] — R. Consider the d-dimensional SDE
dXy = f(Xg, t)dt + p(t)dWy,  t€[0,T]

with initial condition Xo ~ pg. Let {p:}]_, be the marginal marginal density functions. Show
that {p;}1_, satisfies the Fokker—Planck equation

2
Ope = =V - (fpe) + %Apt,

d
82
where A = E 92 is the Laplacian operator.
4
i=1 %

Problem 8: Let o; > 0 be a smooth non-decreasing function for 0 < ¢ < 7T'. Define

p(t) = \/%a?, t e 0,T].

For simplicity, assume d = 1. Consider the SDE
dX; = p(t)dWy, te0,T]
with initial condition X¢ ~ pg. Show X; | Xo ~ N (Xo, 0?) by verifying that

T — )2
pe(x) = /deto(wly)po(y) dy:/Rd\/%atexp [—(205)] po(y) dy

satisfies the Fokker—Planck equation.
Remark. Tt is actually sufficient to assume that o is absolutely continuous, rather than smooth.

Problem 9: Consider the ODE

g*(t)
2

dX, = <f(Xt,t) - Vx, logpt(Xt)> dt,  tel0,T]

with terminal condition X7 ~ pp. Let {pt}?zo be the marginal marginal density functions. For
simplicity, assume d = 1. Show that {p;}, satisfies the Fokker—Planck equation

2
Opr = —0x(fpe) + %(ﬁpt-

Hint. As with the derivation of the Fokker—Planck equation, start with

g2 (t)
2

OB lpX)] = 1B [ (X +e (100 - E0x 10810 ) - )]



