
Mathematical Algorithms II, M1407.000500
E. Ryu
Fall 2022

Homework 1
Due 5pm, Monday, September 19, 2022

Problem 1: Control variates. Let X and Y be scalar-valued random variables such that

E[X] = I, E[Y ] = 0

and
E[(X − I)2] = ΣXX , E[(Y )2] = ΣY Y , E[(X − I)Y ] = ΣXY .

Assume 0 < ΣXX < ∞ and 0 < ΣY Y < ∞. Our goal is to estimate I with small variance.
Clearly,

E[X + γY ] = I

for any γ ∈ R. Find the solution to

minimize
γ∈R

Var(X + γY ).

Remark. The point is that if X and Y are correlated, i.e., if ΣXY ̸= 0, then the optimal γ
is non-zero. In such setups, Y is referred to as a control variate, as it is a random variable
(variate) one can use to control (reduce) the variance. Of course, the variance is reduced only
when γ is chosen well.

Problem 2: Tweedie’s formula. Consider the vector-valued continuous random variables

Y = X + Z ∈ Rn,

where X ∼ pX and Z ∼ N (0,Σ) with Σ ≻ 0 are independent. (To clarify, pX is a probability
density function.) Write pY to denote the probability density function of Y . Show that

E[X |Y ] = Y +Σ∇ log pY (Y ).

You may swap the order of derivatives and integrals without proof.

Hint. Start with the scalar case (so n = 1) with Σ = 1. Define

ℓ(y) =
pY (y)

pZ(y)
=

∫
R pY |X(y |x)pX(x) dx

pZ(y)

and show
d

dy
ℓ(y) = E[X |Y ]ℓ(y).

Then, use the formula

E[X |Y ] =
d

dy
log ℓ(y).

Clarification. We do not assume X is a Gaussian.
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Problem 3: Let µθ(s) ∈ Rn and Σθ(s) ∈ Rn×n be neural networks parameterized by θ ∈ RP .
Assume Σθ(s) is symmetric and strictly positive definite for any s ∈ S and θ ∈ RP . Given
s ∈ S, let

a = tanh(z), z ∼ N (µθ(s),Σθ(s)).

Let πθ(a | s) be the implicitly defined probability density function of the random variable a ∈ Rn.
Show that

z = tanh−1(a)

log πθ(a | s) = −1

2
log detΣθ(s)−

1

2
(z − µθ(s))

⊺Σ−1
θ (s)(z − µθ(s))

− n

2
log(2π)−

n∑
i=1

log(1− tanh2(zi)).

Problem 4: Let X1, . . . , XT be a sequence with the hidden Markov property with respect to
h1, . . . , hT ∈ H, where |H| = m < ∞. Define

ρT (hT ) = 1, ∀hT ∈ H

and
ρt−1(ht−1) = P(Xt, . . . , XT |ht−1), ∀ht−1 ∈ H.

Show that

ρt−1 = g(Xt, ρt)

for some function g : X × Rm → Rm.

Problem 5: Consider the setup of Problem 4 and let s1, . . . , sT be as defined in the lecture.
Let

µt(Xt) =
∑
ht∈H

st(ht)ρt(ht)P(Xt |ht).

Assume Xt ∈ X and |X | < ∞, i.e., Xt is a discrete random variable with finite possible
realizations, for t = 1, . . . , T . Show that

P(Xt |X1, . . . , Xt−1, Xt+1, . . . , XT ) = µ♭
t(Xt),

where µ♭
t is the normalized probability mass function corresponding to µt.
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Problem 6: Backprop for FFJORD. Consider the neural ODE

d

ds
z(s) = f(z(s), θ, s), s ∈ [0, 1].

Let F1,0
θ : RD → RD be the flow operator from pseudo-time s = 1 to s = 0. Let x ∈ RD be a

given datapoint, and consider the problem of evaluating a stochastic gradient of

log p(x) = log p0

(
F1,0
θ (x)

)
−
∫ 1

0
Tr

(
∂f

∂z
(z(s), θ, s)

)
ds,

where p0 is a suitable latent distribution. To this end, sample a random ν ∈ RD such that
E[νν⊺] = I and solve

d

ds

[
z
λ

]
(s) =

[
f

−ν⊺ ∂f
∂z ν

]
(z(s), θ, s)

with terminal values z(1) = x and λ(1) = 0 to obtain z(0) and ℓ̂ = log p0(z0) − λ(0). The
argument with the Hutchinson estimator shows that

ℓ̂ = log p0

(
F1,0
θ (x)

)
−
∫ 1

0
ν⊺

∂f

∂z
(z(s), θ, s)ν ds,

is an unbiased estimator of log p(x). Show that solving

da

ds
(s) = −a

∂f

∂z
(z(s), θ, s)− ∂

∂z
ν⊺

∂f

∂z
(z(s), θ, s)ν, s ∈ [0, 1]

and

db

ds
(s) = −a

∂f

∂θ
(z(s), θ, s)− ∂

∂θ
ν⊺

∂f

∂z
(z(s), θ, s)ν, s ∈ [0, 1]

with initial conditions a(0) = ∇ log p0(z(0)) and b(0) = 0 yields

b(1) =
∂ℓ̂

∂θ
.

Hint. Apply the adjoint method theorem with reversed pseudo-time and

z̃ =

[
z
λ

]
, f̃(z(s), θ, s) =

[
f

−ν⊺ ∂f
∂z ν

]
(z(s), θ, s), L(z̃(0)) = ℓ̂ = log p0(z(0))− λ(0).

Then, simplify the dynamics using the fact that ∂f̃(z(s),θ,s)
∂λ = 0.
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Problem 7: Let ρ : [0, T ] → R. Consider the d-dimensional SDE

dXt = f(Xt, t)dt+ ρ(t)dWt, t ∈ [0, T ]

with initial condition X0 ∼ p0. Let {pt}Tt=0 be the marginal marginal density functions. Show
that {pt}Tt=0 satisfies the Fokker–Planck equation

∂tpt = −∇x · (fpt) +
ρ2

2
∆pt,

where ∆ =
d∑

i=1

∂2

∂x2i
is the Laplacian operator.

Problem 8: Let σt > 0 be a smooth non-decreasing function for 0 ≤ t ≤ T . Define

ρ(t) =

√
d

dt
σ2
t , t ∈ [0, T ].

For simplicity, assume d = 1. Consider the SDE

dXt = ρ(t)dWt, t ∈ [0, T ]

with initial condition X0 ∼ p0. Show Xt |X0 ∼ N (X0, σ
2
t ) by verifying that

pt(x) =

∫
Rd

pt|0(x | y)p0(y) dy =

∫
Rd

1√
2πσt

exp

[
−(x− y)2

2σ2
t

]
p0(y) dy

satisfies the Fokker–Planck equation.

Remark. It is actually sufficient to assume that σt is absolutely continuous, rather than smooth.

Problem 9: Consider the ODE

dXt =

(
f(Xt, t)−

g2(t)

2
∇Xt log pt(Xt)

)
dt, t ∈ [0, T ]

with terminal condition XT ∼ pT . Let {pt}Tt=0 be the marginal marginal density functions. For
simplicity, assume d = 1. Show that {pt}Tt=0 satisfies the Fokker–Planck equation

∂tpt = −∂x(fpt) +
g2

2
∂2
xpt.

Hint. As with the derivation of the Fokker–Planck equation, start with

∂tEX∼pt [φ(X)] ≈ 1

ε
EX∼pt

[
φ

(
X + ε

(
f(X, t)− g2(t)

2
∇X log pt(X)

))
− φ(X)

]
.
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