Homework 1

Due 5pm, Monday, September 19, 2022

Problem 1: Control variates. Let X and Y be scalar-valued random variables such that

$$
\mathbb{E}[X]=I, \quad \mathbb{E}[Y]=0
$$

and

$$
\mathbb{E}\left[(X-I)^{2}\right]=\Sigma_{X X}, \quad \mathbb{E}\left[(Y)^{2}\right]=\Sigma_{Y Y}, \quad \mathbb{E}[(X-I) Y]=\Sigma_{X Y}
$$

Assume $0<\Sigma_{X X}<\infty$ and $0<\Sigma_{Y Y}<\infty$. Our goal is to estimate I with small variance. Clearly,

$$
\mathbb{E}[X+\gamma Y]=I
$$

for any $\gamma \in \mathbb{R}$. Find the solution to

$$
\underset{\gamma \in \mathbb{R}}{\operatorname{minimize}} \operatorname{Var}(X+\gamma Y)
$$

Remark. The point is that if X and Y are correlated, i.e., if $\Sigma_{X Y} \neq 0$, then the optimal γ is non-zero. In such setups, Y is referred to as a control variate, as it is a random variable (variate) one can use to control (reduce) the variance. Of course, the variance is reduced only when γ is chosen well.

Problem 2: Tweedie's formula. Consider the vector-valued continuous random variables

$$
Y=X+Z \in \mathbb{R}^{n}
$$

where $X \sim p_{X}$ and $Z \sim \mathcal{N}(0, \Sigma)$ with $\Sigma \succ 0$ are independent. (To clarify, p_{X} is a probability density function.) Write p_{Y} to denote the probability density function of Y. Show that

$$
\mathbb{E}[X \mid Y]=Y+\Sigma \nabla \log p_{Y}(Y)
$$

You may swap the order of derivatives and integrals without proof.

Hint. Start with the scalar case (so $n=1$) with $\Sigma=1$. Define

$$
\ell(y)=\frac{p_{Y}(y)}{p_{Z}(y)}=\frac{\int_{\mathbb{R}} p_{Y \mid X}(y \mid x) p_{X}(x) d x}{p_{Z}(y)}
$$

and show

$$
\frac{d}{d y} \ell(y)=\mathbb{E}[X \mid Y] \ell(y)
$$

Then, use the formula

$$
\mathbb{E}[X \mid Y]=\frac{d}{d y} \log \ell(y)
$$

Clarification. We do not assume X is a Gaussian.

Problem 3: Let $\mu_{\theta}(s) \in \mathbb{R}^{n}$ and $\Sigma_{\theta}(s) \in \mathbb{R}^{n \times n}$ be neural networks parameterized by $\theta \in \mathbb{R}^{P}$. Assume $\Sigma_{\theta}(s)$ is symmetric and strictly positive definite for any $s \in \mathcal{S}$ and $\theta \in \mathbb{R}^{P}$. Given $s \in \mathcal{S}$, let

$$
a=\tanh (z), \quad z \sim \mathcal{N}\left(\mu_{\theta}(s), \Sigma_{\theta}(s)\right) .
$$

Let $\pi_{\theta}(a \mid s)$ be the implicitly defined probability density function of the random variable $a \in \mathbb{R}^{n}$. Show that

$$
\begin{aligned}
z= & \tanh ^{-1}(a) \\
\log \pi_{\theta}(a \mid s)= & -\frac{1}{2} \log \operatorname{det} \Sigma_{\theta}(s)-\frac{1}{2}\left(z-\mu_{\theta}(s)\right)^{\top} \Sigma_{\theta}^{-1}(s)\left(z-\mu_{\theta}(s)\right) \\
& -\frac{n}{2} \log (2 \pi)-\sum_{i=1}^{n} \log \left(1-\tanh ^{2}\left(z_{i}\right)\right) .
\end{aligned}
$$

Problem 4: Let X_{1}, \ldots, X_{T} be a sequence with the hidden Markov property with respect to $h_{1}, \ldots, h_{T} \in \mathcal{H}$, where $|\mathcal{H}|=m<\infty$. Define

$$
\rho_{T}\left(h_{T}\right)=1, \quad \forall h_{T} \in \mathcal{H}
$$

and

$$
\rho_{t-1}\left(h_{t-1}\right)=\mathbb{P}\left(X_{t}, \ldots, X_{T} \mid h_{t-1}\right), \quad \forall h_{t-1} \in \mathcal{H}
$$

Show that

$$
\rho_{t-1}=g\left(X_{t}, \rho_{t}\right)
$$

for some function $g: \mathcal{X} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$.
Problem 5: Consider the setup of Problem 4 and let s_{1}, \ldots, s_{T} be as defined in the lecture. Let

$$
\mu_{t}\left(X_{t}\right)=\sum_{h_{t} \in \mathcal{H}} s_{t}\left(h_{t}\right) \rho_{t}\left(h_{t}\right) \mathbb{P}\left(X_{t} \mid h_{t}\right)
$$

Assume $X_{t} \in \mathcal{X}$ and $|\mathcal{X}|<\infty$, i.e., X_{t} is a discrete random variable with finite possible realizations, for $t=1, \ldots, T$. Show that

$$
\mathbb{P}\left(X_{t} \mid X_{1}, \ldots, X_{t-1}, X_{t+1}, \ldots, X_{T}\right)=\mu_{t}^{b}\left(X_{t}\right)
$$

where μ_{t}^{b} is the normalized probability mass function corresponding to μ_{t}.

Problem 6: Backprop for FFJORD. Consider the neural ODE

$$
\frac{d}{d s} z(s)=f(z(s), \theta, s), \quad s \in[0,1] .
$$

Let $\mathcal{F}_{\theta}^{1,0}: \mathbb{R}^{D} \rightarrow \mathbb{R}^{D}$ be the flow operator from pseudo-time $s=1$ to $s=0$. Let $x \in \mathbb{R}^{D}$ be a given datapoint, and consider the problem of evaluating a stochastic gradient of

$$
\log p(x)=\log p_{0}\left(\mathcal{F}_{\theta}^{1,0}(x)\right)-\int_{0}^{1} \operatorname{Tr}\left(\frac{\partial f}{\partial z}(z(s), \theta, s)\right) d s
$$

where p_{0} is a suitable latent distribution. To this end, sample a random $\nu \in \mathbb{R}^{D}$ such that $\mathbb{E}\left[\nu \nu^{\top}\right]=I$ and solve

$$
\frac{d}{d s}\left[\begin{array}{l}
z \\
\lambda
\end{array}\right](s)=\left[\begin{array}{c}
f \\
-\nu^{\top} \frac{\partial f}{\partial z} \nu
\end{array}\right](z(s), \theta, s)
$$

with terminal values $z(1)=x$ and $\lambda(1)=0$ to obtain $z(0)$ and $\hat{\ell}=\log p_{0}\left(z_{0}\right)-\lambda(0)$. The argument with the Hutchinson estimator shows that

$$
\hat{\ell}=\log p_{0}\left(\mathcal{F}_{\theta}^{1,0}(x)\right)-\int_{0}^{1} \nu^{\top} \frac{\partial f}{\partial z}(z(s), \theta, s) \nu d s
$$

is an unbiased estimator of $\log p(x)$. Show that solving

$$
\frac{d a}{d s}(s)=-a \frac{\partial f}{\partial z}(z(s), \theta, s)-\frac{\partial}{\partial z} \nu^{\top} \frac{\partial f}{\partial z}(z(s), \theta, s) \nu, \quad s \in[0,1]
$$

and

$$
\frac{d b}{d s}(s)=-a \frac{\partial f}{\partial \theta}(z(s), \theta, s)-\frac{\partial}{\partial \theta} \nu^{\top} \frac{\partial f}{\partial z}(z(s), \theta, s) \nu, \quad s \in[0,1]
$$

with initial conditions $a(0)=\nabla \log p_{0}(z(0))$ and $b(0)=0$ yields

$$
b(1)=\frac{\partial \hat{\ell}}{\partial \theta} .
$$

Hint. Apply the adjoint method theorem with reversed pseudo-time and

$$
\tilde{z}=\left[\begin{array}{l}
z \\
\lambda
\end{array}\right], \quad \tilde{f}(z(s), \theta, s)=\left[\begin{array}{c}
f \\
-\nu^{\top} \frac{\partial f}{\partial z} \nu
\end{array}\right](z(s), \theta, s), \quad \mathcal{L}(\tilde{z}(0))=\hat{\ell}=\log p_{0}(z(0))-\lambda(0) .
$$

Then, simplify the dynamics using the fact that $\frac{\partial \tilde{f}(z(s), \theta, s)}{\partial \lambda}=0$.

Problem 7: Let $\rho:[0, T] \rightarrow \mathbb{R}$. Consider the d-dimensional SDE

$$
d X_{t}=f\left(X_{t}, t\right) d t+\rho(t) d W_{t}, \quad t \in[0, T]
$$

with initial condition $X_{0} \sim p_{0}$. Let $\left\{p_{t}\right\}_{t=0}^{T}$ be the marginal marginal density functions. Show that $\left\{p_{t}\right\}_{t=0}^{T}$ satisfies the Fokker-Planck equation

$$
\partial_{t} p_{t}=-\nabla_{x} \cdot\left(f p_{t}\right)+\frac{\rho^{2}}{2} \Delta p_{t},
$$

where $\Delta=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial x_{i}^{2}}$ is the Laplacian operator.
Problem 8: Let $\sigma_{t}>0$ be a smooth non-decreasing function for $0 \leq t \leq T$. Define

$$
\rho(t)=\sqrt{\frac{d}{d t} \sigma_{t}^{2}}, \quad t \in[0, T] .
$$

For simplicity, assume $d=1$. Consider the SDE

$$
d X_{t}=\rho(t) d W_{t}, \quad t \in[0, T]
$$

with initial condition $X_{0} \sim p_{0}$. Show $X_{t} \mid X_{0} \sim \mathcal{N}\left(X_{0}, \sigma_{t}^{2}\right)$ by verifying that

$$
p_{t}(x)=\int_{\mathbb{R}^{d}} p_{t \mid 0}(x \mid y) p_{0}(y) d y=\int_{\mathbb{R}^{d}} \frac{1}{\sqrt{2 \pi} \sigma_{t}} \exp \left[-\frac{(x-y)^{2}}{2 \sigma_{t}^{2}}\right] p_{0}(y) d y
$$

satisfies the Fokker-Planck equation.
Remark. It is actually sufficient to assume that σ_{t} is absolutely continuous, rather than smooth.
Problem 9: Consider the ODE

$$
d X_{t}=\left(f\left(X_{t}, t\right)-\frac{g^{2}(t)}{2} \nabla_{X_{t}} \log p_{t}\left(X_{t}\right)\right) d t, \quad t \in[0, T]
$$

with terminal condition $X_{T} \sim p_{T}$. Let $\left\{p_{t}\right\}_{t=0}^{T}$ be the marginal marginal density functions. For simplicity, assume $d=1$. Show that $\left\{p_{t}\right\}_{t=0}^{T}$ satisfies the Fokker-Planck equation

$$
\partial_{t} p_{t}=-\partial_{x}\left(f p_{t}\right)+\frac{g^{2}}{2} \partial_{x}^{2} p_{t} .
$$

Hint. As with the derivation of the Fokker-Planck equation, start with

$$
\partial_{t} \mathbb{E}_{X \sim p_{t}}[\varphi(X)] \approx \frac{1}{\varepsilon} \mathbb{E}_{X \sim p_{t}}\left[\varphi\left(X+\varepsilon\left(f(X, t)-\frac{g^{2}(t)}{2} \nabla_{X} \log p_{t}(X)\right)\right)-\varphi(X)\right] .
$$

