
Mathematical Algorithms II, M1407.000500
E. Ryu
Fall 2022

Homework 2
Due 5pm, Wednesday, November 02, 2022

Problem 1: Let π⋆ be an optimal policy. Show that for any policy π,

Qπ⋆
(s, a) ≥ Qπ(s, a), ∀ s ∈ S, a ∈ A.

Problem 2: Bellman operators for Q are contractions. Show that the Bπ and B⋆ for Q are
γ-contractions.

Problem 3: Let π be a policy, not necessarily optimal. Let Bπ be the Bellman operator for π
and B⋆ the Bellman optimality operator. Show that for any V : S → R,

Bπ[V ] ≤ B⋆[V ].

Also show that for any U : S → R and V : S → R such that U ≤ V ,

B⋆[U ] ≤ B⋆[V ].

Problem 4: Gaussian calculations for DDPM. Let {βt}t=1,...,T ⊂ (0, 1), X0 ∼ p0, and

Xt |Xt−1 ∼ N
(√

1− βtXt−1, βtI
)
, for t = 1, . . . , T.

Show that

Xt |X0 ∼ N
(√

ᾱtX0, (1− ᾱt)I
)
, ᾱt =

t∏
s=1

(1− βs).

Also show that

P(Xt−1 |Xt) ≈ N (µ(Xt, t), βtI), µ(Xt, t) =
1√

1− βt
(Xt + βt log∇pt(Xt))

for small βt.

Hint. For small βt, use the approximation

pt(x) = pt−1(x) + h.o.t., ∀x ∈ Rd.

Problem 5: Fixed-point of Langevin SDE. Let p(x) is a probability density function that is
smooth and strictly positive for all x ∈ Rd. Let {pt}t∈[0,T ] be the marginal density functions of
the Langevin SDE

dXt =
1

2
∇Xt log p(Xt)dt+ dWt.

Show that if p0 = p, then pt = p for all t > 0.
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Problem 6: Reverse conditional distribution conditioned on X0. DDPM considers the forward
process

P(Xt |Xt−1) ∼ N (
√

1− βtXt, βtI)

for t = 1, 2, . . . with X0 ∼ pdata. In class, we argued that

P(Xt−1|Xt) ≈ N (µt(Xt), βtI) , µt(Xt) =
1√

1− βt
(Xt + βt∇ log pt(Xt))

for t = 1, 2, . . . when βt ≈ 0. In this problem, show that

P(Xt−1|Xt, X0) = N
(
µt(Xt |X0), β̃tI

)
,

µt(Xt |X0) =
1√

1− βt
(Xt + βt∇Xt log pt | 0(Xt |X0)), β̃t =

1−
∏t−1

s=1(1− βs)

1−
∏t

s=1(1− βs)
βt

for t = 1, 2, . . . . Do not assume βt ≈ 0.

Problem 7: DKL of Gaussian random variables. Show that

DKL

(
N (µ0, σ

2
0I)∥N (µ1, σ

2
1I)

)
=

1

2σ2
1

∥µ1 − µ0∥2 +
(σ2

0/σ
2
1 − 1)d

2
+ d log

(
σ1
σ0

)
,

where d is the underlying dimension of the random variables, µ0, µ1 ∈ Rd, σ0 > 0, and σ1 > 0.

Remark. In the context of deep learning, if σ0 and σ1 are not trainable parameters, then we
can write

DKL

(
N (µ0, σ

2
0I)∥N (µ1, σ

2
1I)

)
=

1

2σ2
1

∥µ1 − µ0∥2 + C.

2



Problem 8: Single-Q overestimates and double-Q underestimates. Let X1, . . . , XN ∈ R be
independent (but not necessarily identically distributed) continuous random variables. Assume
E[|Xi|] < ∞ for i = 1, . . . , N . Write µi, fi, and Fi to respectively denote the mean, PDF, and
CDF of Xi for i = 1, . . . , N . Consider the goal of estimating maxi=1,...,N µi.

(a) Using Jensen’s inequality, show

max
i=1,...,N

E[Xi] ≤ E
[

max
i=1,...,N

Xi

]
.

(b) Show

E
[

max
i=1,...,N

Xi

]
=

N∑
i=1

∫ ∞

−∞
xfi(x)

∏
j ̸=i

Fj(x) dx.

(c) Assume we have another set of independent random variables X ′
1, X

′
2, . . . , X

′
N such that

X ′
i

D
= Xi. To clarify, Xi and X ′

j are independent for all i, j ∈ {1, . . . , N}, including the
case i = j. Consider the estimator

X ′
I , I ∈ argmax

i=1,...,N
Xi.

Show

E
[
X ′

I

]
=

N∑
j=1

E[X ′
i]P(I = i) =

N∑
i=1

∫ ∞

−∞
µifi(x)

∏
j ̸=i

Fj(x) dx.

(d) Show that
E
[
X ′

I

]
≤ max

i=1,...,N
µi.

Hint. Note, maxi=1,...,N Xi has CDF
∏N

i=1 Fi. Once (c) is established, (d) is immediate.
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