
ADMM-Type Methods

Ernest K. Ryu and Wotao Yin

Large-Scale Convex Optimization via Monotone Operators

Function-Linearized Proximal ADMM (FLiP-ADMM)

Consider primal problem

minimize
x∈Rp, y∈Rq

f1(x) + f2(x)︸ ︷︷ ︸
=f(x)

+ g1(y) + g2(y)︸ ︷︷ ︸
=g(x)

subject to Ax+By = c

generated by

L(x, y, u) = f(x) + g(y) + 〈u,Ax+By − c〉.

Assume f1, f2, g1, g2 are CCP and f2, g2 are also differentiable.

2

FLiP-ADMM

minimize
x∈Rp, y∈Rq

f1(x) + f2(x) + g1(y) + g2(y)

subject to Ax+By = c

Function-linearized proximal alternating direction method of multipliers
(FLiP-ADMM) is

xk+1 ∈ argmin
x∈Rp

{
f1(x) + 〈∇f2(xk) +Aᵀuk, x〉+ ρ

2
‖Ax+Byk − c‖2 + 1

2
‖x− xk‖2P

}
yk+1 ∈ argmin

y∈Rq

{
g1(y) + 〈∇g2(yk) +Bᵀuk, y〉+ ρ

2
‖Axk+1 +By − c‖2 + 1

2
‖y − yk‖2Q

}
uk+1 = uk + ϕρ(Axk+1 +Byk+1 − c),

where ρ > 0, ϕ > 0, P ∈ Rp×p, P � 0, Q ∈ Rq×q, and Q � 0.

3

Convergence theorem

Theorem 6.
Assume total duality, that x- and y-subproblems always have solutions,
that f2 is Lf -smooth and g2 is Lg-smooth, and there is an ε ∈ (0, 2− ϕ)
such that

P � LfI, Q � 0, ρ

(
1− (1− ϕ)2

2− ϕ− ε

)
BᵀB +Q � 3LgI.

Then FLiP-ADMM iterates xk, yk satisfy

f(xk) + g(yk)→ f(x?) + g(y?), Axk +Byk − c→ 0,

where (x?, y?) is a solution of the primal problem.

When f2 = 0 or g2 = 0, we set Lf = 0 or Lg = 0.

4

Convergence theorem

The condition

ρ

(
1− (1− ϕ)2

2− ϕ− ε

)
BᵀB +Q � 3LgI (1)

imposes restrictions on ϕ, ρ: since ϕ =
√
5+1
2 leads to 1− (1−ϕ)2

2−ϕ = 0,

I if ϕ ∈ (0,
√
5+1
2), then ∃ small ε such that 1− (1−ϕ)2

2−ϕ−ε > 0, so large ρ

helps to meet (1)

I if ϕ ∈ (
√
5+1
2 , 2) and ε ∈ (0, 2− ϕ), then 1− (1−ϕ)2

2−ϕ−ε < 0, so small ρ

helps to meet (1)

Choices of FLiP-ADMM parameters affect convergence speed and
computational cost per iteration. The optimal choice for a given problem
balances the speed and the cost.

5

Outline

Discussions of parameter choices, special cases, and differences

Proof of main theorem

Derived ADMM-type methods

Discussions of parameter choices, special cases, and differences 6

Golden-ratio ADMM, Dual extrapolation parameter ϕ

While ϕ = 1 is common, a larger ϕ may provide a speedup.

With f2 = 0, g2 = 0, P = 0, and Q = 0, FLiP-ADMM reduces to
“Golden-ratio ADMM”:

xk+1 ∈ argmin
x∈Rp

Lρ(x, y
k, uk)

yk+1 ∈ argmin
y∈Rq

Lρ(x
k+1, y, uk)

uk+1 = uk + ϕρ(Axk+1 +Byk+1 − c),

where

Lρ(x, y, u) = f(x) + g(y) + 〈u,Ax+By − c〉+
ρ

2
‖Ax+By − c‖2.

Condition (1) reduces to 0 < ϕ < (1 +
√

5)/2 ≈ 1.618.

Discussions of parameter choices, special cases, and differences 7

Penalty parameter ρ

Parameter ρ controls the relative priority between primal and dual
convergence.

The Lyapunov function in the proof (below) contains the terms

I primal error: ρ‖B(yk − y?)‖2,

I dual error: 1
ϕρ‖u

k − u?‖2.

Large ρ prioritizes primal accuracy while small ρ prioritizes dual accuracy.

Discussions of parameter choices, special cases, and differences 8

Proximal terms via P and Q

The letter “P” in FLiP-ADMM describes the presence of the proximal
terms

1

2
‖x− xk‖2P ,

1

2
‖y − yk‖2Q.

Empirically, smaller P and Q leads to fewer required iterations.

When f2 = 0 and g2 = 0, the choice P = 0 and Q = 0 is often optimal
in the number of required iterations.

However, proper choices of P and Q can cancel out unwieldy quadratic
terms and thus reduce the costs of subproblems.

Discussions of parameter choices, special cases, and differences 9

Linearization of f2, g2

The x-subproblem of FLiP-ADMM

xk+1 ∈ argmin
x∈Rp

{
f1(x) + f2(xk) + 〈∇f2(xk), x− xk〉+ g(yk)

+ 〈uk, Ax+Byk − c〉+
ρ

2
‖Ax+Byk − c‖2 +

1

2
‖x− xk‖2P

}
,

uses f2’s first-order approximation f2(xk) + 〈∇f2(xk), x− xk〉, described
by “FLi (Function-Linearized)” in FLiP-ADMM.

FLiP-ADMM gives us the choice to use f2 or not. Choosing f2 = 0 leads
to fewer iterations. In some cases, however, nonzero f2 reduces the cost
of subproblem.

The same discussion holds for the y-subproblem.

Discussions of parameter choices, special cases, and differences 10

Relation to Method of Multipliers

‘MM” in FLiP-ADMM stands for method of multipliers, which has only
one primal subproblem.

When q = 0, the entire y-subproblem and B-matrix vanish. FLiP-ADMM
reduces to the method of multipliers:

xk+1 ∈ argmin
x

{
f(x) + 〈uk, Ax〉+

ρ

2
‖Ax− c‖2

}
uk+1 = uk + ϕρ(Axk+1 − c),

which converges for ϕ ∈ (0, 2) by Theorem 6.

Discussions of parameter choices, special cases, and differences 11

Outline

Discussions of parameter choices, special cases, and differences

Proof of main theorem

Derived ADMM-type methods

Proof of main theorem 12

Difference from previous lectures

Theorem 6 establishes:

I the convergence of objective values,

I the convergence of constraint violations,

but not the convergence of iterates.

The convergence proof (below) does not rely on the machinery of
monotone operators.

Proof of main theorem 13

About the proof

The key challenge is the construction of the Lyapunov function (a name
borrowed from nonlinear system, used to prove the system’s stability).

The proof is not long (only 4 pages in the textbook), easy to follow, but
hardly intuitive.

ADMM-type methods are modular. Hence, the proof comes from the
insights we accumulated over years of reading (and writing) papers on
ADMM-type methods.

Proof of main theorem 14

Constants and Lyapunov function

The assumption of total duality means L has a saddle point (x?, y?, u?).
Define

w? =

x?y?
u?

 , wk =

xkyk
uk

 for k = 0, 1,

Define η = 2−ϕ− ε. Define the symmetric positive semidefinite matrices

M0 =
1

2

P 0 0
0 ρBᵀB +Q 0
0 0 1

ϕρI

 , M1 =
1

2

0 0 0
0 Q+ LgI 0
0 0 η

ϕ2ρI

 ,
M2 =

1

2

P − LfI 0 0

0 ρ
(

1− (1−ϕ)2
η

)
BᵀB +Q− 3LgI 0

0 0 2−ϕ−η
ϕ2ρ I

 .
Define the Lyapunov function

V k = ‖wk − w?‖2M0
+ ‖wk − wk−1‖2M1

.

Proof of main theorem 15

Proof sketch

The proof has 4 stages. We present only the key terms. You should focus
on the proof flow rather than the each single term.

Stage 1: Use the facts that xk+1 and yk+1 are subproblem minimizers
to obtain inequalities that relate xk+1 with x? and yk+1 with y?. Add
those inequalities and combine terms to arrive at:

L(xk+1, yk+1, u?)− L(x?, y?, u?) (2)

≤ Lf
2
‖xk+1 − xk‖2 +

Lg
2
‖yk+1 − yk‖2 +

(
1− 1

ϕ

)
1

ϕρ
‖uk+1 − uk‖2

− 2〈wk+1 − wk, wk+1 − w?〉M0
+

1

ϕ
〈uk+1 − uk, B(yk+1 − yk)〉.

Since we cannot determine the signs of the two inner-product terms, we
must transform them.

Proof of main theorem 16

Stage 2: Bound 1
ϕ 〈u

k+1 − uk, B(yk+1 − yk)〉.

Use the fact that yk, yk+1 are minimizers to their respective subproblems
to obtain inequalities that relate them. Add those inequalities to get

1

ϕ
〈uk+1 − uk, B(yk+1 − yk)〉

≤ Lg
2
‖yk+1 − yk‖2 +

Lg
2
‖yk − yk−1‖2 − ‖yk+1 − yk‖2Q

+ 〈yk+1 − yk, yk − yk−1〉Q −
(

1− 1

ϕ

)
〈uk − uk−1, B(yk+1 − yk)〉.

Apply Young’s inequality 〈a, b〉 ≤ ζ
2‖a‖

2 + 1
2ζ ‖b‖

2 to last 2 terms ...

Proof of main theorem 17

... to get

1

ϕ
〈uk+1 − uk, B(yk+1 − yk)〉 ≤ 1

2
‖yk+1 − yk‖2

LgI−Q+
(1−ϕ)2

η ρBᵀB
(3)

+
1

2
‖yk − yk−1‖2LgI+Q +

η

2ϕ2ρ
‖uk − uk−1‖2

If we had applied Young’s inequality to 1
ϕ 〈u

k+1 − uk, B(yk+1 − yk)〉
directly, then we couldn’t get ‖yk − yk−1‖2 and ‖uk − uk−1‖2 terms and
thus not V k (which is easy to try and verify).

Proof of main theorem 18

Stage 3: Substitute (3) and the generalized cosine identity

‖wk+1−w?‖2M0
= ‖wk−w?‖2M0

−‖wk+1−wk‖2M0
+2〈wk+1−wk, wk+1−w?〉M0

into (2); after combine terms, we arrive at the master inequality

V k+1 ≤ V k − ‖wk+1 − wk‖2M2
−
(
L(xk+1, yk+1, u?)− L(x?, y?, u?)

)
.

Since (x?, y?, u?) is a saddle point of L,

L(xk+1, yk+1, u?)− L(x?, y?, u?) ≥ 0.

Proof of main theorem 19

Stage 4: Applying the summability argument on the master inequality
tells us

I ‖wk+1 − wk‖2M2
→ 0, from which we conclude uk+1 − uk → 0 and

thus
Axk +Bxk − c→ 0;

I L(xk+1, yk+1, u?)− L(x?, y?, u?)→ 0, from which and

L(xk+1, yk+1, u?) = f(xk+1)+g(yk+1)+ 〈u?, Axk+1 +Byk+1 − c〉︸ ︷︷ ︸
→0

,

we also conclude

f(xk) + g(yk)→ f(x?) + g(y?).

Proof of main theorem 20

Outline

Discussions of parameter choices, special cases, and differences

Proof of main theorem

Derived ADMM-type methods

Derived ADMM-type methods 21

Linearized methods

“Linearization” refers to more than one technique. Most often, it refers
to canceling out inconvenient quadratic terms, leaving with linear terms.

Consider
minimize
x∈Rp, y∈Rq

f1(x) + g1(y)

subject to Ax+By = c,

where f2 = 0 and g2 = 0.

With P = (1/α)I − ρAᵀA and Q = (1/β)I − ρBᵀB, we recover
linearized ADMM (we saw this method in CH3 with ϕ = 1):

xk+1 = Proxαf
(
xk − αAᵀ(uk + ρ(Axk +Byk − c))

)
yk+1 = Proxβg

(
yk − βBᵀ(uk + ρ(Axk+1 +Byk − c))

)
uk+1 = uk + ϕρ(Axk+1 +Byk+1 − c).

Converge if 1 ≥ αρλmax(AᵀA), 1 ≥ βρλmax(BᵀB), ϕ < (1 +
√

5)/2.

Derived ADMM-type methods 22

Consider
minimize
x∈Rp, y∈Rq

f1(x) + g1(y)

subject to −Ix+By = 0.

We recover primal-dual hybrid gradient (PDHG) with ϕ = 1, P = 0,
Q = (1/β)I − ρBᵀB in an FLiP-ADMM:

µk+1 = Proxρf∗
1

(
µk + ρB(2yk − yk−1)

)
yk+1 = Proxβg1

(
yk − βBᵀµk+1

)
.

Converge if 1 ≥ βρλmax(BᵀB).

Derived ADMM-type methods 23

Function-linearized methods

FLiP-ADMM linearizes accesses f2 and g2 through their gradient
evaluations. This feature provides great flexibility.

Consider
minimize
x∈Rp, y∈Rq

f1(x) + g1(y) + g2(y)

subject to −Ix+By = 0.

FLiP-ADMM with ϕ = 1, P = 0, and Q = (1/β)I − ρBᵀB is

xk+1 = Prox(1/ρ)f1

(
(1/ρ)uk +Byk

)
yk+1 = Proxβg1

(
yk − β∇g2(yk)− βBᵀ(uk − ρ(xk+1 −Byk))

)
uk+1 = uk − ρ(xk+1 −Byk+1).

Apply the Moreau identity to recover Condat–Vũ

µk+1 = Proxρf∗
1

(
µk + ρB(2yk − yk−1)

)
yk+1 = Proxβg1

(
yk − β∇g2(yk)− βBᵀµk+1

)
.

However, FLiP-ADMM condition 1 ≥ βρλmax(BᵀB) + 3βLg is worse
than what we have in Ch3.

Derived ADMM-type methods 24

Consider
minimize
x∈Rp, y∈Rq

f1(x) + f2(x) + g1(y) + g2(y)

subject to Ax+By = c.

FLiP-ADMM with P = (1/α)I − ρAᵀA and Q = (1/β)I − ρBᵀB is

xk+1 = Proxαf1
(
xk − α

(
∇f2(xk) +Aᵀuk + ρAᵀ(Axk +Byk − c)

))
yk+1 = Proxβg1

(
yk − β

(
∇g2(yk) +Bᵀuk + ρBᵀ(Axk+1 +Byk − c)

))
uk+1 = uk + ϕρ(Axk+1 +Byk+1 − c).

We call it doubly-linearized ADMM, which generalizes PDHG and
Condat–Vũ.

Converge if 1 ≥ αρλmax(AᵀA) + αLf , 1 ≥ βρλmax(BᵀB) + 3βLg, and
0 < ϕ < (1 +

√
5)/2.

Derived ADMM-type methods 25

Partial linearization

Consider
minimize
x∈Rp, y∈Rq

f2(x) + g1(y) + g2(y)

subject to Ax+By = c.

Assume

I γI + ρAᵀA is not easily invertible

I γI + C is easily invertible for some C ≈ ρAᵀA

Choose P = γI + C − ρAᵀA where γ > λmax(ρAᵀA− C) is small.

Then, the x-update of FLiP-ADMM

xk+1 = xk − (γI + C)−1(∇f2(xk) +Aᵀuk + ρAᵀ(Axk +Byk − c)),

is easy to compute. Call it partial linearization. It reduces iterations
compared to (full) linearization (with P = γI − ρAᵀA).

Derived ADMM-type methods 26

CT imaging with total variation regularization

Let x represent a 2D or 3D image to recover from CT measurements b:

minimize
x∈Rp

`(Ax− b) + λ‖Dx‖1,

where A is the discrete Radon transform operator, D is a finite difference
operator, and ` is a CCP function.

PDHG has low-cost steps and but requires too many iterations. Classic
ADMM requires (much) fewer iterations but an expensive step:

xk+1 = xk − (ρAᵀA+ ρDᵀD)−1
(
Aᵀuk+1 +Dvk+1

)
.

Since AᵀA and DᵀD are discretizations of shift-invariant continuous
operators, they can be approximated by circulant matrices, so we use a
circulant matrix

C ≈ ρAᵀA+ ρDᵀD.

Derived ADMM-type methods 27

Let cᵀ be the first row of C and ĉ is its discrete Fourier transform. Let
F (·) be a discrete Fourier transform. By the convolution theorem, for
any vector x and its inverse Fourier transform x̆, we have

(γI + C)x = F (Diag(γ1 + ĉ)x̆)

(γI + C)−1x = F (Diag−1(γ1 + ĉ)x̆),

so (γI + C)−1 is easy by fast Fourier transform (FFT).

FLiP-ADMM with partial linearization P = γI + C − ρAᵀA− ρDᵀD

uk+1 = Proxρ`∗
(
uk + ρA(2xk − xk−1)− ρb

)
vk+1 = Π[−λ,λ]

(
vk+1 + ρD(2xk − xk−1)

)
xk+1 = xk − (γI + C)−1

(
Aᵀuk+1 +Dvk+1

)
has easy-to-compute steps. A small γ > λmax(ρAᵀA+ ρDᵀD−C) leads
a minimal increase in iterations over classic ADMM.

Derived ADMM-type methods 28

Multi-block ADMM problem

Partition x ∈ Rp into m non-overlapping blocks of sizes p1, . . . , pm.

Partition matrix A =
[
A:,1 A:,2 · · · A:,m

]
such that

Ax = A:,1x1 +A:,2x2 + · · ·+A:,mxm.

Multi-block ADMM problem or extended monotropic program is

minimize
(x1,...,xm)∈Rp

f1(x1) + f2(x2) + · · ·+ fm(xm)

subject to A:,1x1 +A:,2x2 + · · ·+A:,mxm = c.
(4)

Unless the column-blocks of A are orthogonal, i.e., Aᵀ
:,iA:,j = 0 for all

i 6= j, the blocks xk+1
1 , . . . , xk+1

m cannot be computed independently.

Next, we present two splitting techniques with which xk+1
1 , . . . , xk+1

m can
be computed independently in parallel.

Derived ADMM-type methods 29

Jacobi ADMM

In numerical linear algebra, the Jacobi method is an iterative method for
solving certain linear systems. It updates the blocks of x independently.

Consider problem (4) and matrix

P =

γI −ρAᵀ
:,1A:,2 · · · · · · −ρAᵀ

:,1A:,m

−ρAᵀ
:,2A:,1 γI · · · · · · −ρAᵀ

:,2A:,m

...
. . .

...
...

. . .
...

−ρAᵀ
:,mA:,1 −ρAᵀ

:,mA:,2 · · · −ρAᵀ
:,mA:,(m−1) γI

 ,

which is positive semidefinite for γ ≥ ρλmax(AᵀA).

Derived ADMM-type methods 30

Let

Lρ(x, u) =

m∑
i=1

fi(xi) + 〈u,Ax− c〉+
ρ

2
‖Ax− c‖2.

Let xk6=i denote all components of xk excluding xki . FLiP-ADMM with
the matrix P is

xk+1
i = argmin

xi∈Rpi

{
Lρ(xi, x

k
6=i, u

k) +
γ

2
‖xi − xki ‖2

}
for i = 1, . . . ,m

uk+1 = uk + ϕρ
(
Axk+1 − c

)
.

This method is called Jacobi ADMM in analogy to the Jacobi method.

See Exercise 8.3 for other choices of P , where the diagonal γI is replaced
by diagonal blocks.

Derived ADMM-type methods 31

Dummy variable technique + FLiP-ADMM

Consider the following generalization to problem (4):

minimize
(x1,...,xm)∈Rp

y∈Rn

m∑
i=1

fi(xi) + g(y)

subject to Ax+ y = c.

Introduce dummy variables z1, . . . , zm and eliminate y to get the
equivalent problem

minimize
(x1,...,xm)∈Rp
z1,...,zm∈Rn

m∑
i=1

fi(xi) + g

(
c−

m∑
i=1

zi

)
subject to A:,ixi − zi = 0 for i = 1, . . . ,m.

Derived ADMM-type methods 32

Apply FLiP-ADMM with P = 0, Q = 0, no function linearization, and
initial u-variables satisfying u01 = · · · = u0m. Then we can show
uk1 = · · · = ukm for k = 1, . . . ,m, and the iteration simplifies to

xk+1
i ∈ argmin

xi∈Rpi

{
fi(xi)+

〈
uk+

ρ

m
(Axk − zksum), A:,ixi

〉
+
ρ

2

∥∥A:,i(xi − xki)
∥∥2}

for i = 1, . . . ,m
zk+1
sum = c− Proxm

ρ g

(
c−Axk+1 − m

ρ
uk
)

uk+1 = uk +
ϕρ

m

(
Axk+1 − zk+1

sum

)
.

The method converges if ϕ ∈ (0, (1 +
√

5)/2).

Derived ADMM-type methods 33

Consensus technique + FLiP-ADMM

Consider

minimize
x∈Rp

n∑
i=1

fi(x).

Use the consensus technique to get the equivalent problem

minimize
x1,...,xn,z∈Rp

n∑
i=1

fi(xi)

subject to xi = z, for i = 1, . . . , n.

Here, xi ∈ Rp is a copy of x ∈ Rp. This contrasts with block splitting,
where each xi represented a single block of x.

Derived ADMM-type methods 34

Apply FLiP-ADMM with P = 0, Q = 0, no function linearization, and
initial u-variables satisfying u01 + · · ·+ u0n = 0 to get

xk+1
i = argmin

x∈Rp

{
fi(xi) + 〈uki , xi〉+

ρ

2
‖xi − zk‖2

}
for i = 1, . . . , n

zk+1 =
1

n

n∑
i=1

xk+1
i

uk+1
i = uki + ϕρ(xk+1

i − zk+1) for i = 1, . . . , n.

Converge if ϕ ∈ (0, (1 +
√

5)/2).

The consensus technique is versatile. Instead of constraining x1, . . . , xn
to equal a single z here, we will equal them to multiple z-variables
through a graph structure to obtain a decentralized method in CH11.

Derived ADMM-type methods 35

2-1-2 ADMM

This is a technique that applies an ADMM method to a problem with
one or two more blocks (if they are strongly-convex quadratic) than what
it is designed for.

Assume g is a strongly convex quadratic function with affine constraints,
i.e.,

g(y) = yᵀMy + µᵀy + δ{y∈Rq |Ny=ν}(y)

for M ∈ Rq×q with M � 0, N ∈ Rs×q, and ν ∈ R(N). If no affine
constraint, we set s = 0.

Define

Lρ(x, y, u) = f(x) + g(y) + 〈u,Ax+By − c〉+
ρ

2
‖Ax+By − c‖2.

Derived ADMM-type methods 36

2-1-2 ADMM is the method:

yk+1/2 = argmin
y∈Rq

Lρ(x
k, y, uk)

xk+1 ∈ argmin
x∈Rp

Lρ(x, y
k+ 1

2 , uk)

yk+1 = argmin
y∈Rq

Lρ(x
k+1, y, uk)

uk+1 = uk + ϕρ(Axk+1 +Byk+1 − c).

It is equivalent to (single-block) FLiP-ADMM applied to

(xk+1, yk+1) ∈ argmin
x∈Rp, y∈Rq

{
Lρ(x, y, u

k) +
ρ

2
‖x− xk‖2P

}
uk+1 = uk + ϕρ(Axk+1 +Byk+1 − c)

with P = AᵀBTBᵀA. Converge if ϕ ∈ (0, 2).

See Exercises 8.11 for 4-block ADMM with 2-1-2-4-3-4 updates and 8.12
for generalization with function linearization and proximal terms.

Derived ADMM-type methods 37

Trip-ADMM

Consider the more problem

minimize
x∈Rp, y∈Rq

f1(Cx) + f2(x) + g1(Dy) + g2(y)

subject to Ax+By = c.

Trip-ADMM (Triple-linearized ADMM) is the method
xk+1/2 = xk − σ

(
Cᵀvk +∇f2(xk) +Aᵀuk + ρAᵀ(Axk +Byk − c)

)
vk+1 = Proxτf∗

1

(
vk + τCxk+1/2

)
xk+1 = xk+1/2 − σCᵀ

(
vk+1 − vk

)
yk+1/2 = yk − σ

(
Dᵀwk +∇g2(yk) +Bᵀuk + ρBᵀ(Axk+1 +Byk − c)

)
wk+1 = Proxτg∗1

(
wk + τDyk+1/2

)
yk+1 = yk+1/2 − σDᵀ

(
wk+1 − wk

)
uk+1 = uk + ρ

(
Axk+1 +Byk+1 − c

)
,

which generalizes FLiP-ADMM.
Derived ADMM-type methods 38

If the parameters satisfy ρ > 0, σ > 0, τ > 0,

1 ≥ σρλmax(AᵀA) + σLf , 1 ≥ σρλmax(BᵀB) + 3σLg,

1 ≥ στλmax(CCᵀ), 1 ≥ στλmax(DDᵀ)

and assume total duality, we have

f1

(
Cxk − σC̃ᵀC̃(vk+1 − vk)

)
+ f2(xk)

+ g1

(
Dyk − σD̃ᵀD̃(wk+1 − wk)

)
+ g2(yk)

→ f1(Cx?) + f2(x?) + g1(Dy?) + g2(y?),

Axk +Bxk − c→ 0.

Derived ADMM-type methods 39

Conclusion

FLiP-ADMM is a combination of four techniques: alternating update,
method of multipliers, linearization, function-linearization, and use of
proximal terms.

These techniques can be combined like modules to solver problems with
complicated structures.

ADMM-type methods are “splitting methods”, intimately related to
monotone operator methods, though are not monotone operator methods
themselves.

Fully general FLiP-ADMM (with dual extrapolation ϕ) cannot be reduced
to a monotone operator splitting method and must be analyzed directly.

Derived ADMM-type methods 40

	Discussions of parameter choices, special cases, and differences
	Proof of main theorem
	Derived ADMM-type methods

