ADMM-Type Methods

Ernest K. Ryu and Wotao Yin

Large-Scale Convex Optimization via Monotone Operators

Function-Linearized Proximal ADMM (FLiP-ADMM)

Consider primal problem

$$\begin{array}{ll} \underset{x \in \mathbb{R}^{p}, y \in \mathbb{R}^{q}}{\text{minimize}} & \underbrace{f_{1}(x) + f_{2}(x)}_{=f(x)} + \underbrace{g_{1}(y) + g_{2}(y)}_{=g(x)} \\ \text{subject to} & Ax + By = c \end{array}$$

generated by

$$\mathbf{L}(x, y, u) = f(x) + g(y) + \langle u, Ax + By - c \rangle.$$

Assume f_1, f_2, g_1, g_2 are CCP and f_2, g_2 are also differentiable.

FLiP-ADMM

$$\begin{array}{ll} \underset{x \in \mathbb{R}^{p}, \, y \in \mathbb{R}^{q}}{\text{minimize}} & f_{1}(x) + f_{2}(x) + g_{1}(y) + g_{2}(y) \\ \text{subject to} & Ax + By = c \end{array}$$

Function-linearized proximal alternating direction method of multipliers (FLiP-ADMM) is

$$\begin{aligned} x^{k+1} &\in \underset{x \in \mathbb{R}^{p}}{\operatorname{argmin}} \left\{ f_{1}(x) + \langle \nabla f_{2}(x^{k}) + A^{\mathsf{T}}u^{k}, x \rangle + \frac{\rho}{2} \|Ax + By^{k} - c\|^{2} + \frac{1}{2} \|x - x^{k}\|_{P}^{2} \right\} \\ y^{k+1} &\in \underset{y \in \mathbb{R}^{q}}{\operatorname{argmin}} \left\{ g_{1}(y) + \langle \nabla g_{2}(y^{k}) + B^{\mathsf{T}}u^{k}, y \rangle + \frac{\rho}{2} \|Ax^{k+1} + By - c\|^{2} + \frac{1}{2} \|y - y^{k}\|_{Q}^{2} \right\} \\ u^{k+1} &= u^{k} + \varphi \rho (Ax^{k+1} + By^{k+1} - c), \end{aligned}$$

where $\rho > 0$, $\varphi > 0$, $P \in \mathbb{R}^{p \times p}$, $P \succeq 0$, $Q \in \mathbb{R}^{q \times q}$, and $Q \succeq 0$.

Convergence theorem

Theorem 6.

Assume total duality, that x- and y-subproblems always have solutions, that f_2 is L_f -smooth and g_2 is L_g -smooth, and there is an $\varepsilon \in (0, 2 - \varphi)$ such that

$$P \succeq L_f I, \qquad Q \succeq 0, \qquad \rho \left(1 - \frac{(1 - \varphi)^2}{2 - \varphi - \varepsilon} \right) B^{\mathsf{T}} B + Q \succeq 3L_g I.$$

Then FLiP-ADMM iterates x^k, y^k satisfy

$$f(x^k) + g(y^k) \to f(x^\star) + g(y^\star), \qquad Ax^k + By^k - c \to 0,$$

where (x^{\star}, y^{\star}) is a solution of the primal problem.

When $f_2 = 0$ or $g_2 = 0$, we set $L_f = 0$ or $L_g = 0$.

Convergence theorem

The condition

$$\rho\left(1 - \frac{(1 - \varphi)^2}{2 - \varphi - \varepsilon}\right) B^{\mathsf{T}} B + Q \succeq 3L_g I \tag{1}$$

imposes restrictions on φ, ρ : since $\varphi = \frac{\sqrt{5}+1}{2}$ leads to $1 - \frac{(1-\varphi)^2}{2-\varphi} = 0$,

- ▶ if $\varphi \in (0, \frac{\sqrt{5}+1}{2})$, then \exists small ε such that $1 \frac{(1-\varphi)^2}{2-\varphi-\varepsilon} > 0$, so large ρ helps to meet (1)
- ▶ if $\varphi \in (\frac{\sqrt{5}+1}{2}, 2)$ and $\varepsilon \in (0, 2 \varphi)$, then $1 \frac{(1-\varphi)^2}{2-\varphi-\varepsilon} < 0$, so small ρ helps to meet (1)

Choices of FLiP-ADMM parameters affect convergence speed and computational cost per iteration. The optimal choice for a given problem balances the speed and the cost.

Outline

Discussions of parameter choices, special cases, and differences

Proof of main theorem

Derived ADMM-type methods

Discussions of parameter choices, special cases, and differences

Golden-ratio ADMM, Dual extrapolation parameter φ

While $\varphi = 1$ is common, a larger φ may provide a speedup.

With $f_2 = 0$, $g_2 = 0$, P = 0, and Q = 0, FLiP-ADMM reduces to "Golden-ratio ADMM":

$$\begin{aligned} x^{k+1} &\in \operatorname*{argmin}_{x \in \mathbb{R}^p} \mathbf{L}_{\rho}(x, y^k, u^k) \\ y^{k+1} &\in \operatorname*{argmin}_{y \in \mathbb{R}^q} \mathbf{L}_{\rho}(x^{k+1}, y, u^k) \\ u^{k+1} &= u^k + \varphi \rho(Ax^{k+1} + By^{k+1} - c), \end{aligned}$$

where

$$\mathbf{L}_{\rho}(x, y, u) = f(x) + g(y) + \langle u, Ax + By - c \rangle + \frac{\rho}{2} ||Ax + By - c||^{2}.$$

Condition (1) reduces to $0 < \varphi < (1 + \sqrt{5})/2 \approx 1.618$.

Discussions of parameter choices, special cases, and differences

Penalty parameter ρ

Parameter ρ controls the relative priority between primal and dual convergence.

The Lyapunov function in the proof (below) contains the terms

• primal error:
$$\rho \|B(y^k - y^\star)\|^2$$
,

• dual error:
$$\frac{1}{\varphi \rho} \| u^k - u^\star \|^2$$

Large ρ prioritizes primal accuracy while small ρ prioritizes dual accuracy.

Proximal terms via P and Q

The letter "P" in FLi**P**-ADMM describes the presence of the *proximal terms*

$$\frac{1}{2} \|x - x^k\|_P^2, \qquad \frac{1}{2} \|y - y^k\|_Q^2.$$

Empirically, smaller P and Q leads to fewer required iterations.

When $f_2 = 0$ and $g_2 = 0$, the choice P = 0 and Q = 0 is often optimal in the number of required iterations.

However, proper choices of P and Q can cancel out unwieldy quadratic terms and thus reduce the costs of subproblems.

Linearization of f_2, g_2

The x-subproblem of FLiP-ADMM

$$x^{k+1} \in \underset{x \in \mathbb{R}^{p}}{\operatorname{argmin}} \left\{ f_{1}(x) + f_{2}(x^{k}) + \langle \nabla f_{2}(x^{k}), x - x^{k} \rangle + g(y^{k}) + \langle u^{k}, Ax + By^{k} - c \rangle + \frac{\rho}{2} \|Ax + By^{k} - c\|^{2} + \frac{1}{2} \|x - x^{k}\|_{P}^{2} \right\},$$

uses f_2 's first-order approximation $f_2(x^k) + \langle \nabla f_2(x^k), x - x^k \rangle$, described by "FLi (Function-Linearized)" in **FLi**P-ADMM.

FLiP-ADMM gives us the choice to use f_2 or not. Choosing $f_2 = 0$ leads to fewer iterations. In some cases, however, nonzero f_2 reduces the cost of subproblem.

The same discussion holds for the *y*-subproblem.

Relation to Method of Multipliers

'MM" in FLiP-AD**MM** stands for *method of multipliers*, which has only one primal subproblem.

When q = 0, the entire *y*-subproblem and *B*-matrix vanish. FLiP-ADMM reduces to the method of multipliers:

$$\begin{aligned} x^{k+1} &\in \underset{x}{\operatorname{argmin}} \left\{ f(x) + \langle u^k, Ax \rangle + \frac{\rho}{2} \|Ax - c\|^2 \right\} \\ u^{k+1} &= u^k + \varphi \rho(Ax^{k+1} - c), \end{aligned}$$

which converges for $\varphi \in (0,2)$ by Theorem 6.

Outline

Discussions of parameter choices, special cases, and differences

Proof of main theorem

Derived ADMM-type methods

Difference from previous lectures

Theorem 6 establishes:

- the convergence of objective values,
- the convergence of constraint violations,

but not the convergence of iterates.

The convergence proof (below) does not rely on the machinery of monotone operators.

About the proof

The key challenge is the construction of the *Lyapunov function* (a name borrowed from nonlinear system, used to prove the system's stability).

The proof is not long (only 4 pages in the textbook), easy to follow, but hardly intuitive.

ADMM-type methods are modular. Hence, the proof comes from the insights we accumulated over years of reading (and writing) papers on ADMM-type methods.

Constants and Lyapunov function

The assumption of total duality means L has a saddle point $(x^{\star}, y^{\star}, u^{\star})$. Define

$$w^{\star} = \begin{bmatrix} x^{\star} \\ y^{\star} \\ u^{\star} \end{bmatrix}, \qquad w^{k} = \begin{bmatrix} x^{k} \\ y^{k} \\ u^{k} \end{bmatrix} \quad \text{for } k = 0, 1, \dots$$

Define $\eta=2-\varphi-\varepsilon.$ Define the symmetric positive semidefinite matrices

$$\begin{split} M_0 &= \frac{1}{2} \begin{bmatrix} P & 0 & 0 \\ 0 & \rho B^{\intercal}B + Q & 0 \\ 0 & 0 & \frac{1}{\varphi\rho}I \end{bmatrix}, \qquad M_1 = \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 \\ 0 & Q + L_g I & 0 \\ 0 & 0 & \frac{\eta}{\varphi^2\rho}I \end{bmatrix}, \\ M_2 &= \frac{1}{2} \begin{bmatrix} P - L_f I & 0 & 0 \\ 0 & \rho \left(1 - \frac{(1-\varphi)^2}{\eta}\right) B^{\intercal}B + Q - 3L_g I & 0 \\ 0 & 0 & \frac{2-\varphi - \eta}{\varphi^2\rho}I \end{bmatrix}. \end{split}$$

Define the Lyapunov function

$$V^{k} = \|w^{k} - w^{\star}\|_{M_{0}}^{2} + \|w^{k} - w^{k-1}\|_{M_{1}}^{2}.$$

Proof sketch

The proof has 4 stages. We present only the key terms. You should focus on the proof flow rather than the each single term.

Stage 1: Use the facts that x^{k+1} and y^{k+1} are subproblem minimizers to obtain inequalities that relate x^{k+1} with x^* and y^{k+1} with y^* . Add those inequalities and combine terms to arrive at:

$$\mathbf{L}(x^{k+1}, y^{k+1}, u^{\star}) - \mathbf{L}(x^{\star}, y^{\star}, u^{\star}) \tag{2}$$

$$\leq \frac{L_{f}}{2} \|x^{k+1} - x^{k}\|^{2} + \frac{L_{g}}{2} \|y^{k+1} - y^{k}\|^{2} + \left(1 - \frac{1}{\varphi}\right) \frac{1}{\varphi \rho} \|u^{k+1} - u^{k}\|^{2}$$

$$- 2\langle w^{k+1} - w^{k}, w^{k+1} - w^{\star} \rangle_{M_{0}} + \frac{1}{\varphi} \langle u^{k+1} - u^{k}, B(y^{k+1} - y^{k}) \rangle.$$

Since we cannot determine the signs of the two inner-product terms, we must transform them.

Stage 2: Bound $\frac{1}{\varphi}\langle u^{k+1} - u^k, B(y^{k+1} - y^k) \rangle$.

Use the fact that y^k, y^{k+1} are minimizers to their respective subproblems to obtain inequalities that relate them. Add those inequalities to get

$$\begin{split} &\frac{1}{\varphi} \langle u^{k+1} - u^k, B(y^{k+1} - y^k) \rangle \\ &\leq \frac{L_g}{2} \|y^{k+1} - y^k\|^2 + \frac{L_g}{2} \|y^k - y^{k-1}\|^2 - \|y^{k+1} - y^k\|_Q^2 \\ &+ \langle y^{k+1} - y^k, y^k - y^{k-1} \rangle_Q - \left(1 - \frac{1}{\varphi}\right) \langle u^k - u^{k-1}, B(y^{k+1} - y^k) \rangle. \end{split}$$

Apply Young's inequality $\langle a,b\rangle \leq \frac{\zeta}{2} \|a\|^2 + \frac{1}{2\zeta} \|b\|^2$ to last 2 terms ...

... to get

$$\frac{1}{\varphi} \langle u^{k+1} - u^k, B(y^{k+1} - y^k) \rangle \leq \frac{1}{2} \|y^{k+1} - y^k\|_{L_g I - Q + \frac{(1-\varphi)^2}{\eta}\rho B^{\intercal} B}^2 \quad (3)$$

$$+ \frac{1}{2} \|y^k - y^{k-1}\|_{L_g I + Q}^2 + \frac{\eta}{2\varphi^2 \rho} \|u^k - u^{k-1}\|^2$$

If we had applied Young's inequality to $\frac{1}{\varphi}\langle u^{k+1} - u^k, B(y^{k+1} - y^k) \rangle$ directly, then we couldn't get $\|y^k - y^{k-1}\|^2$ and $\|u^k - u^{k-1}\|^2$ terms and thus not V^k (which is easy to try and verify).

Stage 3: Substitute (3) and the generalized cosine identity $\|w^{k+1} - w^{\star}\|_{M_0}^2 = \|w^k - w^{\star}\|_{M_0}^2 - \|w^{k+1} - w^k\|_{M_0}^2 + 2\langle w^{k+1} - w^k, w^{k+1} - w^{\star} \rangle_{M_0}$ into (2); after combine terms, we arrive at the master inequality $V^{k+1} \le V^k - \|w^{k+1} - w^k\|_{M_2}^2 - \left(\mathbf{L}(x^{k+1}, y^{k+1}, u^{\star}) - \mathbf{L}(x^{\star}, y^{\star}, u^{\star})\right).$

Since $(x^{\star}, y^{\star}, u^{\star})$ is a saddle point of L,

$$\mathbf{L}(x^{k+1}, y^{k+1}, u^{\star}) - \mathbf{L}(x^{\star}, y^{\star}, u^{\star}) \ge 0.$$

Stage 4: Applying the summability argument on the master inequality tells us

$$\begin{split} \|w^{k+1} - w^k\|_{M_2}^2 &\to 0, \text{ from which we conclude } u^{k+1} - u^k \to 0 \text{ and thus} \\ & Ax^k + Bx^k - c \to 0; \\ \mathbf{L}(x^{k+1}, y^{k+1}, u^*) - \mathbf{L}(x^*, y^*, u^*) \to 0, \text{ from which and} \\ & \mathbf{L}(x^{k+1}, y^{k+1}, u^*) = f(x^{k+1}) + g(y^{k+1}) + \underbrace{\langle u^*, Ax^{k+1} + By^{k+1} - c \rangle}_{\to 0}, \end{split}$$

we also conclude

$$f(x^k) + g(y^k) \to f(x^\star) + g(y^\star).$$

Outline

Discussions of parameter choices, special cases, and differences

Proof of main theorem

Derived ADMM-type methods

Linearized methods

"Linearization" refers to more than one technique. Most often, it refers to canceling out inconvenient quadratic terms, leaving with linear terms.

Consider

$$\begin{array}{ll} \underset{x \in \mathbb{R}^{p}, y \in \mathbb{R}^{q}}{\text{minimize}} & f_{1}(x) + g_{1}(y) \\ \text{subject to} & Ax + By = c, \end{array}$$

where $f_2 = 0$ and $g_2 = 0$.

With $P = (1/\alpha)I - \rho A^{\mathsf{T}}A$ and $Q = (1/\beta)I - \rho B^{\mathsf{T}}B$, we recover linearized ADMM (we saw this method in CH3 with $\varphi = 1$):

$$\begin{split} x^{k+1} &= \operatorname{Prox}_{\alpha f} \left(x^k - \alpha A^{\mathsf{T}} (u^k + \rho (Ax^k + By^k - c)) \right) \\ y^{k+1} &= \operatorname{Prox}_{\beta g} \left(y^k - \beta B^{\mathsf{T}} (u^k + \rho (Ax^{k+1} + By^k - c)) \right) \\ u^{k+1} &= u^k + \varphi \rho (Ax^{k+1} + By^{k+1} - c). \end{split}$$

Converge if $1 \ge \alpha \rho \lambda_{\max}(A^{\intercal}A)$, $1 \ge \beta \rho \lambda_{\max}(B^{\intercal}B)$, $\varphi < (1 + \sqrt{5})/2$.

Consider

$$\begin{array}{ll} \underset{x \in \mathbb{R}^{p}, y \in \mathbb{R}^{q}}{\text{minimize}} & f_{1}(x) + g_{1}(y) \\ \text{subject to} & -Ix + By = 0. \end{array}$$

We recover primal-dual hybrid gradient (PDHG) with $\varphi = 1$, P = 0, $Q = (1/\beta)I - \rho B^{T}B$ in an FLiP-ADMM:

$$\mu^{k+1} = \operatorname{Prox}_{\rho f_1^*} \left(\mu^k + \rho B(2y^k - y^{k-1}) \right)$$

$$y^{k+1} = \operatorname{Prox}_{\beta g_1} \left(y^k - \beta B^{\mathsf{T}} \mu^{k+1} \right).$$

Converge if $1 \ge \beta \rho \lambda_{\max}(B^{\mathsf{T}}B)$.

Function-linearized methods

FLiP-ADMM linearizes accesses f_2 and g_2 through their gradient evaluations. This feature provides great flexibility.

Consider

FLiP-ADMM with $\varphi = 1$, P = 0, and $Q = (1/\beta)I - \rho B^{\mathsf{T}}B$ is

$$\begin{aligned} x^{k+1} &= \operatorname{Prox}_{(1/\rho)f_1} \left((1/\rho) u^k + B y^k \right) \\ y^{k+1} &= \operatorname{Prox}_{\beta g_1} \left(y^k - \beta \nabla g_2(y^k) - \beta B^{\mathsf{T}} (u^k - \rho(x^{k+1} - B y^k)) \right) \\ u^{k+1} &= u^k - \rho(x^{k+1} - B y^{k+1}). \end{aligned}$$

Apply the Moreau identity to recover Condat–Vũ

$$\mu^{k+1} = \operatorname{Prox}_{\rho f_1^*} \left(\mu^k + \rho B(2y^k - y^{k-1}) \right) y^{k+1} = \operatorname{Prox}_{\beta g_1} \left(y^k - \beta \nabla g_2(y^k) - \beta B^{\mathsf{T}} \mu^{k+1} \right).$$

However, FLiP-ADMM condition $1 \ge \beta \rho \lambda_{\max}(B^{\intercal}B) + 3\beta L_g$ is worse than what we have in Ch3. Derived ADMM-type methods Consider

$$\begin{array}{ll} \underset{x \in \mathbb{R}^{p}, \ y \in \mathbb{R}^{q}}{\text{minimize}} & f_{1}(x) + f_{2}(x) + g_{1}(y) + g_{2}(y) \\ \text{subject to} & Ax + By = c. \end{array}$$

FLiP-ADMM with $P = (1/\alpha)I - \rho A^\intercal A$ and $Q = (1/\beta)I - \rho B^\intercal B$ is

$$x^{k+1} = \operatorname{Prox}_{\alpha f_1} \left(x^k - \alpha \left(\nabla f_2(x^k) + A^{\mathsf{T}} u^k + \rho A^{\mathsf{T}} (Ax^k + By^k - c) \right) \right)$$

$$y^{k+1} = \operatorname{Prox}_{\beta g_1} \left(y^k - \beta \left(\nabla g_2(y^k) + B^{\mathsf{T}} u^k + \rho B^{\mathsf{T}} (Ax^{k+1} + By^k - c) \right) \right)$$

$$u^{k+1} = u^k + \varphi \rho (Ax^{k+1} + By^{k+1} - c).$$

We call it **doubly-linearized ADMM**, which generalizes PDHG and Condat–Vũ.

Converge if $1 \ge \alpha \rho \lambda_{\max}(A^{\intercal}A) + \alpha L_f$, $1 \ge \beta \rho \lambda_{\max}(B^{\intercal}B) + 3\beta L_g$, and $0 < \varphi < (1 + \sqrt{5})/2$.

Partial linearization

Consider

$$\begin{array}{ll} \underset{x \in \mathbb{R}^{p}, \, y \in \mathbb{R}^{q}}{\text{minimize}} & f_{2}(x) + g_{1}(y) + g_{2}(y) \\ \text{subject to} & Ax + By = c. \end{array}$$

Assume

• $\gamma I + \rho A^{\mathsf{T}} A$ is *not* easily invertible • $\gamma I + C$ is easily invertible for some $C \approx \rho A^{\mathsf{T}} A$

Choose $P = \gamma I + C - \rho A^{\intercal} A$ where $\gamma > \lambda_{\max}(\rho A^{\intercal} A - C)$ is small.

Then, the x-update of FLiP-ADMM

$$x^{k+1} = x^k - (\gamma I + C)^{-1} (\nabla f_2(x^k) + A^{\mathsf{T}} u^k + \rho A^{\mathsf{T}} (Ax^k + By^k - c)),$$

is easy to compute. Call it **partial linearization**. It reduces iterations compared to (full) linearization (with $P = \gamma I - \rho A^{\mathsf{T}} A$).

CT imaging with total variation regularization

Let x represent a 2D or 3D image to recover from CT measurements b:

$$\underset{x \in \mathbb{R}^p}{\text{minimize}} \quad \ell(Ax - b) + \lambda \|Dx\|_1,$$

where A is the discrete Radon transform operator, D is a finite difference operator, and ℓ is a CCP function.

PDHG has low-cost steps and but requires too many iterations. Classic ADMM requires (much) fewer iterations but an expensive step:

$$x^{k+1} = x^k - (\rho A^{\mathsf{T}} A + \rho D^{\mathsf{T}} D)^{-1} \left(A^{\mathsf{T}} u^{k+1} + D v^{k+1} \right).$$

Since $A^{\mathsf{T}}A$ and $D^{\mathsf{T}}D$ are discretizations of shift-invariant continuous operators, they can be approximated by circulant matrices, so we use a *circulant matrix*

$$C \approx \rho A^{\mathsf{T}} A + \rho D^{\mathsf{T}} D.$$

Let c^{T} be the first row of C and \hat{c} is its discrete Fourier transform. Let $F(\cdot)$ be a discrete Fourier transform. By the *convolution theorem*, for any vector x and its inverse Fourier transform \check{x} , we have

$$(\gamma I + C)x = F(\operatorname{Diag}(\gamma \mathbf{1} + \hat{c})\breve{x})$$

$$(\gamma I + C)^{-1}x = F(\operatorname{Diag}^{-1}(\gamma \mathbf{1} + \hat{c})\breve{x}),$$

so $(\gamma I + C)^{-1}$ is easy by fast Fourier transform (FFT).

FLiP-ADMM with partial linearization $P = \gamma I + C - \rho A^{\mathsf{T}}A - \rho D^{\mathsf{T}}D$

$$u^{k+1} = \operatorname{Prox}_{\rho\ell^*} \left(u^k + \rho A(2x^k - x^{k-1}) - \rho b \right)$$

$$v^{k+1} = \Pi_{[-\lambda,\lambda]} \left(v^{k+1} + \rho D(2x^k - x^{k-1}) \right)$$

$$x^{k+1} = x^k - (\gamma I + C)^{-1} \left(A^{\mathsf{T}} u^{k+1} + Dv^{k+1} \right)$$

has easy-to-compute steps. A small $\gamma > \lambda_{\max}(\rho A^{\intercal}A + \rho D^{\intercal}D - C)$ leads a minimal increase in iterations over classic ADMM.

Multi-block ADMM problem

Partition $x \in \mathbb{R}^p$ into m non-overlapping blocks of sizes p_1, \ldots, p_m . Partition matrix $A = \begin{bmatrix} A_{:,1} & A_{:,2} & \cdots & A_{:,m} \end{bmatrix}$ such that

$$Ax = A_{:,1}x_1 + A_{:,2}x_2 + \dots + A_{:,m}x_m.$$

Multi-block ADMM problem or extended monotropic program is

$$\begin{array}{ll} \underset{(x_1,\ldots,x_m)\in\mathbb{R}^p}{\text{minimize}} & f_1(x_1) + f_2(x_2) + \cdots + f_m(x_m) \\ \text{subject to} & A_{:,1}x_1 + A_{:,2}x_2 + \cdots + A_{:,m}x_m = c. \end{array}$$
(4)

Unless the column-blocks of A are orthogonal, i.e., $A_{:,i}^{\mathsf{T}}A_{:,j} = 0$ for all $i \neq j$, the blocks $x_1^{k+1}, \ldots, x_m^{k+1}$ cannot be computed independently.

Next, we present two splitting techniques with which $x_1^{k+1}, \ldots, x_m^{k+1}$ can be computed independently in parallel.

Jacobi ADMM

In numerical linear algebra, the Jacobi method is an iterative method for solving certain linear systems. It updates the blocks of x independently.

Consider problem (4) and matrix

$$P = \begin{bmatrix} \gamma I & -\rho A_{:,1}^{\mathsf{T}} A_{:,2} & \cdots & \cdots & -\rho A_{:,1}^{\mathsf{T}} A_{:,m} \\ -\rho A_{:,2}^{\mathsf{T}} A_{:,1} & \gamma I & \cdots & \cdots & -\rho A_{:,2}^{\mathsf{T}} A_{:,m} \\ \vdots & & \ddots & & \vdots \\ \vdots & & & \ddots & & \vdots \\ -\rho A_{:,m}^{\mathsf{T}} A_{:,1} & -\rho A_{:,m}^{\mathsf{T}} A_{:,2} & \cdots & -\rho A_{:,m}^{\mathsf{T}} A_{:,(m-1)} & \gamma I \end{bmatrix},$$

which is positive semidefinite for $\gamma \ge \rho \lambda_{\max}(A^{\intercal}A)$.

Let

$$\mathbf{L}_{\rho}(x,u) = \sum_{i=1}^{m} f_i(x_i) + \langle u, Ax - c \rangle + \frac{\rho}{2} ||Ax - c||^2.$$

Let $x_{\neq i}^k$ denote all components of x^k excluding $x_i^k.$ FLiP-ADMM with the matrix P is

$$x_{i}^{k+1} = \underset{x_{i} \in \mathbb{R}^{p_{i}}}{\operatorname{argmin}} \left\{ \mathbf{L}_{\rho}(x_{i}, x_{\neq i}^{k}, u^{k}) + \frac{\gamma}{2} \|x_{i} - x_{i}^{k}\|^{2} \right\} \quad \text{for } i = 1, \dots, m$$
$$u^{k+1} = u^{k} + \varphi \rho \left(A x^{k+1} - c \right).$$

This method is called Jacobi ADMM in analogy to the Jacobi method.

See Exercise 8.3 for other choices of P, where the diagonal γI is replaced by diagonal blocks.

Dummy variable technique + FLiP-ADMM

Consider the following generalization to problem (4):

$$\begin{array}{ll} \underset{(x_1,\ldots,x_m)\in\mathbb{R}^p}{\text{minimize}} & \sum_{i=1}^m f_i(x_i) + g(y) \\ \underset{y\in\mathbb{R}^n}{\text{subject to}} & Ax + y = c. \end{array}$$

Introduce dummy variables z_1, \ldots, z_m and eliminate y to get the equivalent problem

$$\begin{array}{ll} \underset{\substack{(x_1,\ldots,x_m)\in\mathbb{R}^p\\z_1,\ldots,z_m\in\mathbb{R}^n}}{\text{minimize}} & \sum_{i=1}^m f_i(x_i) + g\left(c - \sum_{i=1}^m z_i\right)\\ \text{subject to} & A_{:,i}x_i - z_i = 0 & \text{for } i = 1,\ldots,m. \end{array}$$

Apply FLiP-ADMM with P = 0, Q = 0, no function linearization, and initial *u*-variables satisfying $u_1^0 = \cdots = u_m^0$. Then we can show $u_1^k = \cdots = u_m^k$ for $k = 1, \ldots, m$, and the iteration simplifies to

$$\begin{split} x_{i}^{k+1} &\in \operatorname*{argmin}_{x_{i} \in \mathbb{R}^{p_{i}}} \left\{ f_{i}(x_{i}) + \left\langle u^{k} + \frac{\rho}{m} (Ax^{k} - z_{\mathrm{sum}}^{k}), A_{:,i}x_{i} \right\rangle + \frac{\rho}{2} \left\| A_{:,i}(x_{i} - x_{i}^{k}) \right\|^{2} \right\} \\ z_{\mathrm{sum}}^{k+1} &= c - \operatorname{Prox}_{\frac{m}{\rho}g} \left(c - Ax^{k+1} - \frac{m}{\rho}u^{k} \right) \\ u^{k+1} &= u^{k} + \frac{\varphi\rho}{m} \left(Ax^{k+1} - z_{\mathrm{sum}}^{k+1} \right). \end{split}$$

The method converges if $\varphi \in (0, (1 + \sqrt{5})/2)$.

Consensus technique + FLiP-ADMM

Consider

$$\underset{x \in \mathbb{R}^p}{\text{minimize}} \quad \sum_{i=1}^n f_i(x).$$

Use the consensus technique to get the equivalent problem

$$\begin{array}{ll} \underset{x_1,\ldots,x_n,z\in\mathbb{R}^p}{\text{minimize}} & \sum_{i=1}^n f_i(x_i) \\ \text{subject to} & x_i=z, \quad \text{ for } i=1,\ldots,n. \end{array}$$

Here, $x_i \in \mathbb{R}^p$ is a copy of $x \in \mathbb{R}^p$. This contrasts with block splitting, where each x_i represented a single block of x.

Apply FLiP-ADMM with P = 0, Q = 0, no function linearization, and initial *u*-variables satisfying $u_1^0 + \cdots + u_n^0 = 0$ to get

$$\begin{split} x_i^{k+1} &= \operatorname*{argmin}_{x \in \mathbb{R}^p} \left\{ f_i(x_i) + \langle u_i^k, x_i \rangle + \frac{\rho}{2} \| x_i - z^k \|^2 \right\} \quad \text{for } i = 1, \dots, n \\ z^{k+1} &= \frac{1}{n} \sum_{i=1}^n x_i^{k+1} \\ u_i^{k+1} &= u_i^k + \varphi \rho(x_i^{k+1} - z^{k+1}) \quad \text{for } i = 1, \dots, n. \end{split}$$

Converge if $\varphi \in (0, (1 + \sqrt{5})/2)$.

The consensus technique is versatile. Instead of constraining x_1, \ldots, x_n to equal a single z here, we will equal them to multiple z-variables through a graph structure to obtain a decentralized method in CH11.

2-1-2 ADMM

This is a technique that applies an ADMM method to a problem with one or two more blocks (if they are strongly-convex quadratic) than what it is designed for.

Assume g is a strongly convex quadratic function with affine constraints, i.e.,

$$g(y) = y^{\mathsf{T}} M y + \mu^{\mathsf{T}} y + \delta_{\{y \in \mathbb{R}^q \mid Ny = \nu\}}(y)$$

for $M \in \mathbb{R}^{q \times q}$ with $M \succ 0$, $N \in \mathbb{R}^{s \times q}$, and $\nu \in \mathcal{R}(N)$. If no affine constraint, we set s = 0.

Define

$$\mathbf{L}_{\rho}(x, y, u) = f(x) + g(y) + \langle u, Ax + By - c \rangle + \frac{\rho}{2} ||Ax + By - c||^{2}.$$

2-1-2 ADMM is the method:

$$y^{k+1/2} = \underset{y \in \mathbb{R}^q}{\operatorname{argmin}} \mathbf{L}_{\rho}(x^k, y, u^k)$$
$$x^{k+1} \in \underset{x \in \mathbb{R}^p}{\operatorname{argmin}} \mathbf{L}_{\rho}(x, y^{k+\frac{1}{2}}, u^k)$$
$$y^{k+1} = \underset{y \in \mathbb{R}^q}{\operatorname{argmin}} \mathbf{L}_{\rho}(x^{k+1}, y, u^k)$$
$$u^{k+1} = u^k + \varphi \rho(Ax^{k+1} + By^{k+1} - c).$$

It is equivalent to (single-block) FLiP-ADMM applied to

$$(x^{k+1}, y^{k+1}) \in \underset{x \in \mathbb{R}^{p}, y \in \mathbb{R}^{q}}{\operatorname{argmin}} \left\{ \mathbf{L}_{\rho}(x, y, u^{k}) + \frac{\rho}{2} \|x - x^{k}\|_{P}^{2} \right\}$$
$$u^{k+1} = u^{k} + \varphi \rho(Ax^{k+1} + By^{k+1} - c)$$

with $P = A^{\mathsf{T}}BTB^{\mathsf{T}}A$. Converge if $\varphi \in (0, 2)$.

See Exercises 8.11 for 4-block ADMM with 2-1-2-4-3-4 updates and 8.12 for generalization with function linearization and proximal terms.

Trip-ADMM

Consider the more problem

$$\begin{array}{ll} \underset{x \in \mathbb{R}^{p}, \ y \in \mathbb{R}^{q}}{\text{minimize}} & f_{1}(Cx) + f_{2}(x) + g_{1}(Dy) + g_{2}(y) \\ \text{subject to} & Ax + By = c. \end{array}$$

Trip-ADMM (Triple-linearized ADMM) is the method

$$\begin{cases} x^{k+1/2} = x^k - \sigma \left(C^{\mathsf{T}} v^k + \nabla f_2(x^k) + A^{\mathsf{T}} u^k + \rho A^{\mathsf{T}} (Ax^k + By^k - c) \right) \\ v^{k+1} = \operatorname{Prox}_{\tau f_1^*} \left(v^k + \tau Cx^{k+1/2} \right) \\ x^{k+1} = x^{k+1/2} - \sigma C^{\mathsf{T}} \left(v^{k+1} - v^k \right) \\ \begin{cases} y^{k+1/2} = y^k - \sigma \left(D^{\mathsf{T}} w^k + \nabla g_2(y^k) + B^{\mathsf{T}} u^k + \rho B^{\mathsf{T}} (Ax^{k+1} + By^k - c) \right) \\ w^{k+1} = \operatorname{Prox}_{\tau g_1^*} \left(w^k + \tau Dy^{k+1/2} \right) \\ y^{k+1} = y^{k+1/2} - \sigma D^{\mathsf{T}} \left(w^{k+1} - w^k \right) \\ u^{k+1} = u^k + \rho \left(Ax^{k+1} + By^{k+1} - c \right), \end{cases}$$

which generalizes FLiP-ADMM. Derived ADMM-type methods If the parameters satisfy $\rho > 0$, $\sigma > 0$, $\tau > 0$,

$$\begin{split} 1 &\geq \sigma \rho \lambda_{\max}(A^{\mathsf{T}}A) + \sigma L_f, \qquad 1 \geq \sigma \rho \lambda_{\max}(B^{\mathsf{T}}B) + 3\sigma L_g, \\ 1 &\geq \sigma \tau \lambda_{\max}(CC^{\mathsf{T}}), \qquad 1 \geq \sigma \tau \lambda_{\max}(DD^{\mathsf{T}}) \end{split}$$

and assume total duality, we have

$$f_1 \left(Cx^k - \sigma \tilde{C}^{\mathsf{T}} \tilde{C}(v^{k+1} - v^k) \right) + f_2(x^k) + g_1 \left(Dy^k - \sigma \tilde{D}^{\mathsf{T}} \tilde{D}(w^{k+1} - w^k) \right) + g_2(y^k) \rightarrow f_1(Cx^*) + f_2(x^*) + g_1(Dy^*) + g_2(y^*), Ax^k + Bx^k - c \rightarrow 0.$$

Conclusion

FLiP-ADMM is a combination of four techniques: alternating update, method of multipliers, linearization, function-linearization, and use of proximal terms.

These techniques can be combined like modules to solver problems with complicated structures.

ADMM-type methods are "splitting methods", intimately related to monotone operator methods, though are not monotone operator methods themselves.

Fully general FLiP-ADMM (with dual extrapolation φ) cannot be reduced to a monotone operator splitting method and must be analyzed directly.