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Attouch–Théra duality and splitting methods

We present Attouch–Théra duality, which is analogous to, but simpler
than, convex duality, and explore its connection to base splitting methods.
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Fenchel duality

Fenchel duality: primal

minimize
x∈Rn

f(x) + g(x),

and dual
maximize
u∈Rn

−f∗(−u)− g∗(u)

generated by
L(x, u) = f(x) + 〈x, u〉 − g∗(u).

Total duality is subtle.
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One Interpretation of Fenchel duality

For simplicity, assume total duality and f , g, f∗, and g∗ differentiable.

Primal is to find point x such that ∇f and ∇g at x sum to 0:

find
x∈Rn

0 = ∇f(x) +∇g(x),

Dual is to find gradient u such that ∇f produces −u and ∇g produces u
at the same point:

find
u∈Rn

(∇f)−1(−u) = (∇g)−1(u)

This is one of the many viewpoints of convex duality.
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Attouch–Théra duality

Duality in splitting methods
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Attouch–Théra duality

Consider
find
x∈Rn

0 ∈ (� + �)x,

where � and � are maximal monotone.

Define �−>(u) = −�−1(−u).

Attouch–Théra dual monotone inclusion problem is

find
u∈Rn

0 ∈ (�−> + �−1)u.
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Attouch–Théra duality

Attouch–Théra duality is, in a sense, easier than Fenchel duality since

Zer (� + �) 6= ∅ ⇔ Zer (�−> + �−1) 6= ∅,

i.e., a primal solution exists if and only if a dual solution exists.

Proof.

∃x [0 ∈ (� + �)x] ⇔ ∃x, u [−u ∈ �x, u ∈ �x]

⇔ ∃x, u
[
−x ∈ �−>u, x ∈ �−1u

]
⇔ ∃u

[
0 ∈ (�−> + �−1)u

]
.

(No notion of strong duality, since no function values.)
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Attouch–Théra vs. Fenchel duality

Attouch–Théra generalizes Fenchel duality in the following sense:

∂(proper convex function) ⊂ monotone operators

However, Attouch–Théra fails to capture the subtleties of Fenchel duality.

In Fenchel duality, strong duality may fail, a primal solution may exist
while a dual solution does not, or vice versa. No analogous pathologies in
Attouch–Théra duality.
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Dual solutions as certificates

It is desirable for a method to produce both primal and dual solutions as
the dual solution can certify correctness of the primal solution.

If a primal-dual solution (x?, u?) satisfying

−u? ∈ �x? and u? ∈ �x? (1)

is provided, verifying (1) certifies correctness of the solutions.

If only a primal solution x? is provided, we must verify 0 ∈ �x? + �x?.
How do we compute the Minkowski sum �x? + �x??
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FBS

The FPI with FBS

xk+1/2 = xk − α�xk

xk+1 = �α�x
k+1/2

often not considered a primal-dual method. We can make it primal-dual:

xk+1/2 = xk − α�xk

uk+1/2 = −�xk

xk+1 = �α�x
k+1/2

uk+1 = α−1(xk+1/2 − xk+1).

Note uk+1 ∈ �xk+1. If xk → x?, then

uk+1/2 → u?, uk+1 → u?, u? ∈ Zer (�−> + �−1).
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Characterization of fixed points of DRS

With Attouch–Théra dual, characterize fixed points of PRS and DRS:

Fix (ℝα�ℝα�) ⊆ Zer (� + �) + αZer (�−> + �−1)

Proof.

z =ℝα�ℝα�z

⇔ z + 2�α�(2�α� − �)z − 2�α�z = z, x = �α�z

⇔ �α�(x− αu) = x, z = x+ αu, u ∈ �x

⇔ x− αu = x+ αv, v ∈ �x, z = x+ αu, u ∈ �x

⇔ v = −u, v ∈ �x, u ∈ �x, z = x+ αu

⇔ −u ∈ �x, u ∈ �x, z = x+ αu

⇔ −u ∈ �x, u ∈ �x, −x ∈ �−>u, x ∈ �−1u, z = x+ αu

⇒ 0 ∈ (� + �)x, 0 ∈ (�−> + �−1)u, z = x+ αu.

Last step is not an equivalence, so characterization with ⊆, not =.
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Primal-dual DRS

We can make the FPI with DRS more explicitly primal-dual:

xk+1/2 = �α�(zk)

uk+1/2 =
1

α
(zk − xk+1/2)

xk+1 = �α�(2xk+1/2 − zk)

uk+1 =
1

α
(xk+1 − xk+1/2 + αuk+1/2)

zk+1 = zk + xk+1 − xk+1/2.

Note uk+1/2 ∈ �xk+1/2, −uk+1 ∈ �xk+1. If Zer (� + �) 6= ∅, then

xk+1/2 → x?, xk+1 → x?, x? ∈ Zer (� + �)

uk+1/2 → u?, uk+1 → u?, u? ∈ Zer (�−> + �−1)

zk → x? + αu?.
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Self-dual property of DRS

PRS and DRS are self-dual:

ℝ�ℝ� = ℝ�−>ℝ�−1

Follows from ��−> = � + ��(−�) and ��−1 = �− ��:

(2��−> − �)(2��−1 − �) = (2��(−�) + �)(�− 2��)

= (2��(−�) + �)(−�)(2�� − �)

= (2�� − �)(2�� − �)
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Self-dual property of DRS

When α = 1, DRS is:

xk+1/2 = ��(zk)

uk+1/2 = ��−1(zk) = zk − xk+1/2

xk+1 = ��(2xk+1/2 − zk)

uk+1 = ��−>(2uk+1/2 − zk) = xk+1 − xk+1/2 + uk+1/2

zk+1 = zk + xk+1 − xk+1/2 = zk + uk+1 − uk+1/2

Nicely reveals the symmetry. (Algorithmically no need to use both the x
and u.) When α 6= 1, similar but less elegant self-dual form.

(This self-dual property explains why the infimal postcomposition
technique and the dualization technique yield the same ADMM.)
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DYS

For
find
x∈Rn

0 ∈ (� + � + ℂ)x,

where �, �, and ℂ are maximal monotone and ℂ is single-valued,
Attouch–Théra dual is

find
u∈Rn

0 ∈ ((� + ℂ)−> + �−1)u.

Fixed points of DYS:

Fix (�− �α� + �α�(ℝα� − αℂ�α�))

⊆ Zer (� + � + ℂ) + αZer ((� + ℂ)−> + �−1).
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Primal-dual DYS

We can make the FPI with DYS more explicitly primal-dual:

xk+1/2 = �α�(zk)

uk+1/2 =
1

α
(zk − xk+1/2)

xk+1 = �αA(2xk+1/2 − zk − αℂxk+1/2)

uk+1 =
1

α
(xk+1 − xk+1/2 + αuk+1/2)

zk+1 = zk + xk+1 − xk+1/2.

Note uk+1/2 ∈ �xk+1/2, −uk+1 ∈ �xk+1 + ℂxk+1/2. If zk → z?, then

xk+1/2 → x?, xk+1 → x?, x? ∈ Zer (� + � + ℂ)

uk+1/2 → u?, uk+1 → u?, u? ∈ Zer ((� + ℂ)−> + �−1)

zk → x? + αu?.

DYS is not self-dual as it uses an evaluation of ℂ, a primal operation.
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