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Monotone operator theory

Convex optimization theory, the main subject of study in this class,
focuses on the derivation and analysis of convex optimization algorithms.

Monotone operator theory views monotone operators as interesting
objects in their own right and focuses on understanding them better.

One goal of this section is to provide theoretical completeness and prove
several results that were simply asserted in other sections. Another goal
is to provide a gentle exposure to the field of monotone operator theory.

Monotone operator theory takes place in infinite-dimensional Banach or
Hilbert spaces, where a new set of interesting challenges arise. We limit
our attention to finite-dimensional Euclidean spaces.
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Operator extensions

�̄ : Rn ⇒ Rn is an extension of � : Rn ⇒ Rn if Gra �̄ ⊇ Gra�.
�̄ is a proper extension of � if the containment Gra �̄ ⊃ Gra� is strict.
Recall, a monotone operator is maximal if it has no proper monotone
extension.

As discussed in §2, if � : Rn ⇒ Rn is maximal monotone, then
dom �� = Rn.
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Maximality of subdifferential

Theorem 7.
If f : Rn → Rn ∪ {∞} is CCP, then ∂f is maximal monotone.

Proof. We know ∂f is monotone. Assume for contradiction that there is
(x̃, g̃) /∈ ∂f such that {(x̃, g̃)} ∪ ∂f is monotone. Define (x, g) ∈ ∂f with

x = argmin
z

{
f(z) +

1

2
‖z − (x̃+ g̃)‖2

}
, 0 = x− x̃+ g − g̃.

Since (x̃, g̃) /∈ ∂f , either x 6= x̃ or g 6= g̃ (or both). Using
x− x̃ = −g + g̃, we have

〈g − g̃, x− x̃〉 = −‖x− x̃‖22 = −‖g − g̃‖22 < 0,

which contradicts the assumption that {(x̃, g̃)} ∪ ∂f is monotone.
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Maximality of subdifferential

Key idea of proof: Given v ∈ Rn,

v 7→ (Proxf (v)︸ ︷︷ ︸
=x

, v − Proxf (v)︸ ︷︷ ︸
=g

) ∈ ∂f

provides a unique decomposition v = x+ g such that (x, g) ∈ ∂f .
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Fitzpatrick function

For � : Rn ⇒ Rn, Fitzpatrick function F� : Rn ×Rn → R ∪ {∞} is

F�(x, u) = 〈x, u〉− inf
(y,v)∈�

〈x−y, u−v〉 = sup
(y,v)∈�

{〈y, u〉+ 〈x, v〉 − 〈y, v〉} .

Lemma 3.
Assume � : Rn ⇒ Rn is maximal monotone. Then

I F� is CCP,

I F�(x, u) ≥ 〈x, u〉 for all x, u ∈ Rn, and

I F�(x, u) = 〈x, u〉 if and only if (x, u) ∈ �.
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Fitzpatrick function

We say F� is a representative function of �, since F� is a convex
extension of 〈x, u〉 from Gra� to Rn ×Rn that furthermore satisfies
F�(x, u) ≥ 〈x, u〉.

Common technique in monotone operator theory: analyze a
representative function to conclude results about the original operator.
Analyzing F�, a CCP function, with results from convex analysis is easier
than directly considering �.
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Fitzpatrick function

Proof. If (x, u) ∈ �, then 〈x− y, u− v〉 ≥ 0 for all (y, v) ∈ � by
monotonicity, and the infimum

inf
(y,v)∈�

〈x− y, u− v〉 = 0

is attained at (x, u). So F�(x, u) = 〈x, u〉.

Assume (x, u) /∈ �. Then by maximality there exists a (y, v) ∈ � such
that 〈x− y, u− v〉 < 0. Therefore

inf
(y,v)∈�

〈x− y, u− v〉 < 0

and F�(x, u) > 〈x, u〉.
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Fitzpatrick function

Define
fy,v(x, u) = 〈y, u〉+ 〈x, v〉 − 〈y, v〉,

which is a closed convex function for all (y, v) ∈ �. Then

epiF� =
⋂

(y,v)∈�

epi fy,v

is a closed convex set as it is an intersection of closed convex sets.

Since F�(x, u) ≥ fy,v(x, u) > −∞ for any (y, v) ∈ �, we have
F� > −∞ always. On the other hand,

F�(x, u) = 〈x, u〉 <∞

for any (x, u) ∈ �. So F� is proper.
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Minty surjectivity theorem

The Minty surjectivity theorem is foundational to operator splitting
methods as it ensures that methods using resolvents are well defined.

We say � + � is surjective if range (� + �) = Rn. If � + � is surjective,
then dom �� = Rn.

Theorem 8.
If � : Rn ⇒ Rn is maximal monotone, then range (� + �) = Rn.
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Minty surjectivity theorem

Proof. Want to show u ∈ range (� + �) for any u ∈ Rn and maximal
monotone �. We first establish 0 ∈ range (� + �) for any maximal
monotone �. Then the maximal monotone operator �(x) = �(x)− u
satisfies 0 ∈ range (� + �), which implies u ∈ range (� + �) for any
u ∈ Rd.
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Minty surjectivity theorem

We now show 0 ∈ range (� + �). Define (y, v) ∈ Rn ×Rn with

(y, v) = argmin
(x,u)∈Rn×Rn

{
F�(x, u) +

1

2
‖x‖2 +

1

2
‖u‖2

}
= ProxF�

(0, 0).

This implies [
−y
−v

]
∈ ∂F�(y, v).

Since F� is convex, the subgradient inequality tells us〈[
−y
−v

]
,

[
x
u

]
−
[
y
v

]〉
≤ F�(x, u)− F�(y, v) ∀ (x, u) ∈ Rn ×Rn.

By Lemma 3,

F�(x, u)− F�(y, v) ≤ 〈x, u〉 − 〈y, v〉 ∀ (x, u) ∈ �.
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Minty surjectivity theorem

Combining the two inequalities and reorganize to get

‖y + v‖2 ≤ 〈x+ v, u+ y〉 ∀ (x, u) ∈ �. (1)

Since 0 ≤ ‖y + v‖2 and since � is maximal monotone, this implies
(−v,−y) ∈ �. By letting (x, u) = (−v,−y) in (1), we get v = −y.
Thus (y,−y) ∈ � and we have

0 ∈ (� + �)(y).

Fitzpatrick function 15



Converse of Minty

The converse of Theorem 8 is true. As a consequence, we can show a
monotone operator � : Rn ⇒ Rn is maximal if dom �� = Rn.

Theorem 9.
If � : Rn ⇒ Rn is monotone and range (J + �) = Rn for a symmetric
positive definite J ∈ Rn×n, then � is maximal monotone.
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Converse of Minty

Proof. First consider the case J = �. Assume {(x, u)} ∪� is monotone,
i.e.,

0 ≤ 〈x− z, u− w〉 ∀(z, w) ∈ �.

To establish maximality, enough to show (x, u) ∈ �. Since
range (� + �) = Rn, there is a y such that x+ u ∈ (� + �)y. Let

v = x+ u− y ∈ �y.

Then
0 ≤ 〈x− y, u− v〉 = −‖x− y‖2 = −‖u− v‖2.

So x = y and u = v, which implies (x, u) ∈ �.

When J 6= �. Then J−1/2�J−1/2 is monotone and, becuase J + � is
surjective,

range (� + J−1/2�J−1/2) = Rn.

This implies J−1/2�J−1/2 is maximal and so is �.



Outline

Maximality of subdifferential

Fitzpatrick function

Maximality and extension theorems

Maximality and extension theorems 18



Maximality and extensions

Let P be a property of an operator such as monotonicity, θ-averagedness,
or L-Lipschitz continuity. We say � : Rn ⇒ Rn is “maximal P” if there
is no proper extension �̄ with property P . We now characterize maximal
extensions of certain operator classes.

Whether a given operator can be extended while preserving certain
properties is a classical question in analysis. (E.g., Hahn–Banach and
Kirszbraun–Valentine theorems.)
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Maximal monotone extension

Theorem 13.
A monotone operator has a maximal monotone extension.

Proof. Let � : Rn ⇒ Rn be monotone and let

P = {� : Rn ⇒ Rn |� is monotone and Gra� ⊆ Gra�},

which is non-empty. We impose the partial order on P with �1 � �2 if
and only if Gra�1 ⊆ Gra�2 for all �1,�2 ∈ P . Every chain C in P has
the upper bound �̄ ∈ P given by

Gra �̄ =
⋃
�∈C

Gra�.

By Zorn’s lemma, there is a maximal element �̄ in P. This element �̄

extends � by definition of P and cannot be properly extended as it is
maximal in P.
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Maximal µ-strongly monotone extension

Theorem 14.
For µ > 0, a µ-strongly monotone operator has a maximal µ-strongly
monotone extension. Furthermore, if � : Rn ⇒ Rn is µ-strongly
monotone, then � is maximal µ-strongly monotone if and only if
range (�) = Rn.

Proof. Since µ-strong monotonicity of � is defined as

〈�x−�y, x− y〉 ≥ µ‖x− y‖2 ∀x, y ∈ Rn,

� is µ-strongly monotone if and only if � = �− µ� is monotone.

Extending � and � are equivalent in the following sense. If �̄ is a
µ-strongly monotone extension of �, then �̄− µ� is a monotone
extension of �. If �̄ is a monotone extension of �, then �̄ + µ� is a
µ-strongly monotone extension of �. By Theorem 13, � has a maximal
monotone extension �̄, and � has a maximal µ-strongly monotone
extension �̄ + µ�.

Moreover, � is maximal µ-strongly monotone if and only if � is maximal
monotone. By Theorems 8 and 9, � is maximal monotone if and only if
range (�) = range (� + µ�) = Rn. Finally, chaining the equivalences
provides the second stated result.



Maximal β-cocoercive extension

Theorem 15.
Let β > 0. A β-cocoercive operator has a maximal β-cocoercive
extension. Furthermore, if � : Rn ⇒ Rn is β-cocoercive, then � is
maximal β-cocoercive if and only if dom� = Rn.

Proof. Note � is β-cocoercive if and only if �−1 is β-strongly
monotone.

Extending � and �−1 are equivalent in the following sense. If �̄ is a
β-cocoercive extension of �, then �̄−1 is a β-strongly monotone
extension of �−1. If �−1 is a β-strongly monotone extension of �−1,
then (�−1)−1 is a β-cocoercive extension of �. By Theorem 14, �−1

has a maximal β-strongly monotone extension �−1, and � has a
maximal β-cocoercive extension (�−1)−1.
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Maximal β-cocoercive extension

Moreover, � is maximal β-cocoercive if and only if �−1 is maximal
β-strongly monotone. By Theorem 14, �−1 is maximal β-strongly
monotone if and only if range (�−1) = Rn, which holds if and only if
dom (�) = Rn. Finally, chaining the equivalences provides the second
stated result.

Remember that a β-cocoercive operators must be single-valued. By
Theorem 15, [� : Rn ⇒ Rn is maximal β-cocoercive] is equivalent to
[� : Rn → Rn is β-cocoercive] since � : Rn → Rn implies dom� = Rn.
For the sake of conciseness, we usually avoid the former expression.
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Maximal L-Lipschitz extension

Theorem 16.
Let L > 0. An L-Lipschitz operator has a maximal L-Lipschitz extension.
Furthermore, if � : Rn ⇒ Rn is L-Lipschitz, then � is maximal
L-Lipschitz if and only if dom� = Rn.

This result is known as the Kirszbraun–Valentine theorem. Proof follows
from similar reasoning.
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