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Main idea

We study techniques for deriving primal-dual methods, methods that
explicitly maintain and update both primal and dual variables.

Base splitting methods are limited to minimizing f(x) + g(x) or
f(x) + g(x) + h(x). Primal-dual methods can solve a wider range of
problems and can exploit problem structures with a high level of freedom.
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Infimal postcomposition technique

Infimal postcomposition technique:

(i) Transform
minimize
x∈Rp

f(x) + · · ·
subject to Ax+ · · ·

into an equivalent form without constraints

minimize
z∈Rn

(AB f)(z) + · · ·

using the infimal postcomposition AB f .

(ii) Apply base splittings.
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Infimal postcomposition

Infimal postcomposition (IPC) of f by A:

(AB f)(z) = inf
x∈{x |Ax=z}

f(x).

To clarify, f : Rn → R ∪ {∞}, A ∈ Rm×n, and
AB f : Rm → R ∪ {±∞}. Also called the image of f under A.

If f is CCP and R(Aᵀ) ∩ ri dom f∗ 6= ∅, then AB f is CCP.
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IPC identity

Identity (i):
(AB f)∗(u) = f∗(Aᵀu)

Follows from

(AB f)∗(u) = sup
z∈Rm

{
〈u, z〉 − inf

x∈Rn

{
f(x) + δ{x |Ax=z}(x)

}}
= − inf

z∈Rm

{
−〈u, z〉+ inf

x∈Rn

{
f(x) + δ{x |Ax=z}(x)

}}
= − inf

x∈Rn,z∈Rm

{
f(x) + δ{x |Ax=z}(x)− 〈u, z〉

}
= − inf

x∈Rn
{f(x)− 〈u,Ax〉} = f∗(Aᵀu).

Identity (i) is why we encounter the infimal postcomposition.
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IPC identity

Identity (ii): If R(Aᵀ) ∩ ri dom f∗ 6= ∅, then

x ∈ argmin
x

{
f(x) + (1/2)‖Ax− y‖2

}
z = Ax

⇔ z = ProxABf (y)

and the argmin of the left-hand side exists. (The argminx may not be
unique, but z = Ax is unique.)

Proof in Exercise 3.1.
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Alternating direction method of multipliers (ADMM)

Consider the primal

minimize
x∈Rp, y∈Rq

f(x) + g(y)

subject to Ax+By = c

and the dual problem

maximize
u∈Rn

−f∗(−Aᵀu)− g∗(−Bᵀu)− cᵀu

generated by the Lagrangian

L(x, y, u) = f(x) + g(y) + 〈u,Ax+By − c〉.

Assume the regularity conditions

R(Aᵀ) ∩ ri dom f∗ 6= ∅, R(Bᵀ) ∩ ri dom g∗ 6= ∅.

We use the augmented Lagrangian

Lρ(x, y, u) = f(x) + g(y) + 〈u,Ax+By − c〉+
ρ

2
‖Ax+By − c‖2.



Alternating direction method of multipliers (ADMM)

Primal problem
minimize
x∈Rp, y∈Rq

f(x) + g(y)

subject to Ax+By = c,

is equivalent to

minimize
z∈Rn

x∈Rp, y∈Rq

f(x) + g(y)

subject to Ax = z, z +By = c,

which is in turn equivalent to

minimize
z∈Rn

(AB f)(z)︸ ︷︷ ︸
=f̃(z)

+ (B B g)(c− z)︸ ︷︷ ︸
=g̃(z)

.

Infimal postcomposition technique 9



Alternating direction method of multipliers (ADMM)

The DRS FPI with respect to (1/2)� + (1/2)ℝα−1∂f̃ℝα−1∂g̃ is

zk+1/2 = Proxα−1g̃(ζ
k)

zk+1 = Proxα−1f̃ (2zk+1/2 − ζk)

ζk+1 = ζk + zk+1 − zk+1/2.

Define zk+1/2 = c−Byk+1, zk+1 = Axk+2, and ζk = α−1uk +Axk+1

and use identity (ii) of page 7:

yk+1 ∈ argmin
y

{
g(y) + 〈uk, Axk+1 +By − c〉+

α

2
‖Axk+1 +By − c‖2

}
xk+2 ∈ argmin

x

{
f(x) + 〈uk+1, Ax+Byk+1 − c〉+

α

2
‖Ax+Byk+1 − c‖2

}
uk+1 = uk + α(Axk+1 +Byk+1 − c)
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Alternating direction method of multipliers (ADMM)

Reorder updates:

xk+1 ∈ argmin
x

{
f(x) + 〈uk, Ax+Byk − c〉+

α

2
‖Ax+Byk − c‖2

}
yk+1 ∈ argmin

y

{
g(y) + 〈uk, Axk+1 +By − c〉+

α

2
‖Axk+1 +By − c‖2

}
uk+1 = uk + α(Axk+1 +Byk+1 − c)

Write updates more concisely:

xk+1 ∈ argmin
x

Lα(x, yk, uk)

yk+1 ∈ argmin
y

Lα(xk+1, y, uk)

uk+1 = uk + α(Axk+1 +Byk+1 − c)

This is the alternating direction methods of multipliers (ADMM).
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Convergence analysis: ADMM

We have completed the core of the convergence analysis, but
bookkeeping remains: check conditions and translate the convergence of
DRS into the convergence of ADMM.

DRS requires total duality between

minimize
z∈Rn

(AB f)(z) + (B B g)(c− z)

and
maximize
u∈Rn

−f∗(−Aᵀu)− g∗(−Bᵀu)− cᵀu

generated by the Lagrangian

L̃(z, u) = (AB f)(z) + 〈z, u〉 − g∗(−Bᵀu)− cᵀu.

We need total duality with L̃, rather than L.
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Convergence analysis: ADMM

If

minimize
x∈Rp, y∈Rq

f(x) + g(y)

subject to Ax + By = c,

maximize
u∈Rn

−f∗(−Aᵀu) − g∗(−Bᵀu) − cᵀu

have solutions (x?, y?) and u? for which strong duality holds then

minimize
z∈Rn

(A B f)(z) + (B B g)(c − z), maximize
u∈Rn

−f∗(−Aᵀu) − g∗(−Bᵀu) − cᵀu

have solutions z? = Ax? and u? for which strong duality holds.
I.e., [total duality original problem] ⇒ [total duality equivalent problem]

If total duality between the original primal and dual problems holds, the
regularity condition of page 8 holds, and α > 0, then ADMM is
well-defined, Axk → Ax?, and Byk → By?.
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Discussion: Regularity condition

Regularity condition of page 8 ensures (i) AB f and B B g are CCP and
(ii) minimizers defining the iterations exist.
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Dualization technique

Dualization technique: apply base splittings to the dual.

Certain primal problems with constraints have duals without constraints.
We have seen this technique with the method of multipliers.
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Alternating direction method of multipliers (ADMM)

Alternate derivation of ADMM. Again consider

minimize
x∈Rp, y∈Rq

f(x) + g(y)

subject to Ax + By = c,

maximize
u∈Rn

− f
∗
(−A

ᵀ
u)︸ ︷︷ ︸

=f̃(u)

− (g
∗
(−B

ᵀ
u) + c

ᵀ
u)︸ ︷︷ ︸

=g̃(u)

generated by

L(x, y, u) = f(x) + g(y) + 〈u,Ax+By − c〉.

Apply DRS to dual: FPI with 1
2� + 1

2ℝα∂f̃ℝα∂g̃, is

µk+1/2 = �α∂g̃(ψ
k)

µk+1 = �α∂f̃ (2µk+1/2 − ψk)

ψk+1 = ψk + µk+1 − µk+1/2.
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Alternating direction method of multipliers (ADMM)

Using �α(�(·)+t)(u) = �α�(u− αt) and

v = Proxαf∗(Aᵀ·)(u) ⇔ x ∈ argminx
{
f(x)− 〈u,Ax〉+ α

2 ‖Ax‖
2
}

v = u− αAx,

write out resolvent evaluations:

ỹk+1 ∈ argmin
y

{
g(y) + 〈ψk − αc,By〉+

α

2
‖By‖22

}
µk+1/2 = ψk + α(Bỹk+1 − c)

x̃k+1 ∈ argmin
x

{
f(x) + 〈ψk + 2α(Bỹk+1 − c), Ax〉+

α

2
‖Ax‖22

}
µk+1 = ψk + αAx̃k+1 + 2α(Bỹk+1 − c)
ψk+1 = ψk + α(Ax̃k+1 +Bỹk+1 − c)
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Alternating direction method of multipliers (ADMM)

Eliminate µk+1/2 and µk+1 and reorganize:

ỹk+1 ∈ argmin
y

{
g(y) + 〈ψk − αAx̃k, By〉+

α

2
‖Ax̃k +By − c‖22

}
x̃k+1 ∈ argmin

x

{
f(x) + 〈ψk + α(Bỹk+1 − c), Ax〉+

α

2
‖Ax+Bỹk+1 − c‖22

}
ψk+1 = ψk + α(Ax̃k+1 +Bỹk+1 − c)

Substitute uk = ψk − αAx̃k:

ỹk+1 ∈ argmin
y

{
g(y) + 〈uk, By〉+

α

2
‖Ax̃k +By − c‖22

}
x̃k+1 ∈ argmin

x

{
f(x) + 〈uk+1, Ax〉+

α

2
‖Ax+Bỹk+1 − c‖22

}
uk+1 = uk + α(Ax̃k +Bỹk+1 − c)
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Alternating direction method of multipliers (ADMM)

Reorder the updates and substitute xk+1 = x̃k and yk = ỹk:

xk+1 ∈ argmin
x

Lα(x, yk, uk)

yk+1 ∈ argmin
y

Lα(xk+1, y, uk)

uk+1 = uk + α(Axk+1 +Byk+1 − c)

If total duality, the regularity condition of page 8, and α > 0 hold, then
uk → u?, Axk → Ax?, and Byk → By?.

Convergence analysis: The previous analysis with IPC established
Axk → Ax? and Byk → By?. Since µk+1/2 → u?, this implies
ψk → u? + αAx? and uk → u?.
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Remark: Multiple derivations

For some methods, we present multiple derivations. E.g. we derive PDHG
with variable metric PPM, with BCV, and from linearized ADMM.

Different derivations provide related but distinct interpretations.
They show intimate connection between various primal-dual methods.
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Alternating minimization algorithm (AMA)

Again consider

minimize
x∈Rp, y∈Rq

f(x) + g(y)

subject to Ax + By = c,

maximize
u∈Rn

− f
∗
(−A

ᵀ
u)︸ ︷︷ ︸

=f̃(u)

− (g
∗
(−B

ᵀ
u) + c

ᵀ
u)︸ ︷︷ ︸

=g̃(u)

generated by the Lagrangian

L(x, y, u) = f(x) + g(y) + 〈u,Ax+By − c〉.

Assume regularity conditions of page 8.

Further assume f is µ-strongly convex, which implies

f∗(−Aᵀu) is λmax(A
ᵀA)

µ -smooth.
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Alternating minimization algorithm (AMA)

Apply FBS to the dual. FPI with (� + α∂g̃)−1(�− α∇f̃) is

uk+1/2 = uk − α∇f̃(uk)

uk+1 = (I + α∂g̃)−1(uk+1/2).

Using the identities re-stated in page 18 and

u ∈ ∂(f∗(Aᵀ·))(y) ⇔ x ∈ argminz {f(z)− 〈y,Az〉}
u = Ax

write out gradient and resolvent evaluations:

xk+1 = argmin
x

{
f(x) + 〈uk, Ax〉

}
uk+1/2 = uk + αAxk+1

yk+1 ∈ argmin
y

{
g(y) + 〈uk+1/2 − αc,By〉+

α

2
‖By‖2

}
uk+1 = uk+1/2 + αByk+1 − αc

Dualization technique 23



Alternating minimization algorithm (AMA)

Simplify iteration:

xk+1 = argmin
x

L(x, yk, uk)

yk+1 ∈ argmin
y

Lα(xk+1, y, uk)

uk+1 = uk + α(Axk+1 +Byk+1 − c).

This is alternating minimization algorithm (AMA) or dual proximal
gradient.

If total duality, regularity conditions of page 8, µ-strongly convex of f ,
and α ∈ (0, 2µ/λmax(AᵀA)) hold, then uk → u?, xk → x?, and
Byk → By?.
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Convergence analysis: AMA

1. Since FBS converges, uk → u?.

2. [(x?, y?, u?) is a saddle point] ⇒ [x? = argminx L(x, y?, u?)]
⇒ [0 ∈ ∂f(x?) +Aᵀu?] ⇒ [x? = ∇f∗(−Aᵀu?)].

3. Since xk+1 = ∇f∗(−Aᵀuk) and ∇f∗ continuous, uk → u? implies
xk → x?.

4. [uk → u?] ⇒ [uk+1 − uk → 0] ⇒ [Axk+1 +Byk+1 − c→ 0]
⇒ [Byk → By?].
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Variable metric technique

Variable metric technique: use variable metric PPM or FBS with M
carefully chosen to cancels out certain terms.
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PDHG

Consider

minimize
x∈Rn

f(x) + g(Ax), maximize
u∈Rm

−f∗(−Aᵀu)− g∗(u)

generated by the Lagrangian

L(x, u) = f(x) + 〈u,Ax〉 − g∗(u).
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PDHG

Apply variable metric PPM to

∂L(x, u) =

[
0 Aᵀ

−A 0

] [
x
u

]
+

[
∂f(x)
∂g∗(u)

]
with

M =

[
(1/α)I −Aᵀ

−A (1/β)I

]
.

M � 0 if α, β > 0 and αβλmax(AᵀA) < 1.

FPI with (M + ∂L)−1M is[
xk+1

uk+1

]
=

([
(1/α)I 0
−2A (1/β)I

]
+

[
∂f
∂g∗

])−1 [
(1/α)xk −Aᵀuk

−Axk + (1/β)uk

]
,

which is equivalent to[
(1/α)I 0
−2A (1/β)I

] [
xk+1

uk+1

]
+

[
∂f(xk+1)
∂g∗(uk+1)

]
3
[

(1/α)xk −Aᵀuk

−Axk + (1/β)uk

]
.
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PDHG

Linear system is lower triangular, so compute xk+1 first and then uk+1:

xk+1 = Proxαf (xk − αAᵀuk)

uk+1 = Proxβg∗(u
k + βA(2xk+1 − xk))

This is primal-dual hybrid gradient (PDHG) or Chambolle–Pock.

If total duality holds, α > 0, β > 0, and αβλmax(AᵀA) < 1, then
xk → x? and uk → u?.
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Choice of metric

Although PDHG is derived from PPM, which is technically not an
operator splitting, PDHG is a splitting since f and g are split.

Choosing M to obtain a lower triangular system is crucial. For example,
FPI (xk+1, uk+1) = (� + ∂L)−1(xk, uk) is not useful; off-diagonal terms
couple xk+1 and uk+1 requiring simultaneous computation. With no
splitting, one iteration is no easier than the whole problem.
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Condat–Vũ

Consider

minimize
x∈Rn

f(x) + h(x) + g(Ax) maximize
u∈Rm

−(f + h)∗(−Aᵀu)− g∗(u),

where h is differentiable, generated by

L(x, u) = f(x) + h(x) + 〈u,Ax〉 − g∗(u).

Generalizes PDHG setup.
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Condat–Vũ

Apply variable metric FBS to ∂L with M of page 29 with splitting

∂L(x, u) =

[
∇h(x)

0

]
︸ ︷︷ ︸
=ℍ(x,u)

+

[
0 Aᵀ

−A 0

] [
x
u

]
+

[
∂f(x)
∂g∗(u)

]
︸ ︷︷ ︸

=�(x,u)

.

FPI with (xk+1, uk+1) = (M + �)−1(M −ℍ)(xk, uk) is[
xk+1

uk+1

]
=

([
(1/α)I 0
−2A (1/β)I

]
+

[
∂f
∂g∗

])−1 [
(1/α)xk −Aᵀuk −∇h(xk)

−Axk + (1/β)uk

]
.
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Condat–Vũ

Again, compute xk+1 first and then uk+1:

xk+1 = Proxαf (xk − αAᵀuk − α∇h(xk))

uk+1 = Proxβg∗(u
k + βA(2xk+1 − xk))

This is Condat–Vũ. If total duality holds, h is L-smooth, α > 0, β > 0,
and αL/2 + αβλmax(AᵀA) < 1, then xk → x? and uk → u?.
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Convergence analysis: Condat–Vũ

Note M � 0 under the stated conditions. With basic computation,

M−1 =

[
α(I − αβAᵀA)−1 αβAᵀ(I − αβAAᵀ)−1

αβA(I − αβAᵀA)−1 β(I − αβAAᵀ)−1

]
.

Let

θ =
2

L

(
1

α
− βλmax(AᵀA)

)
> 1.

(θ > 1 equivalent to αL/2 + αβλmax(AᵀA) < 1.)

θ

(
1

α
I − βAᵀA

)−1
� θ

(
1

α
− βλmax(AᵀA)

)−1
I =

2

L
I
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Convergence analysis: Condat–Vũ

If �− θM−1ℍ is nonexpansive in ‖ · ‖M , then �−M−1H is averaged in
‖ · ‖M and Condat–Vũ converges.

Nonexpansiveness of �− θM−1ℍ in ‖ · ‖M :

‖(�− θM−1ℍ)(x, u)− (�− θM−1ℍ)(y, v)‖2M
= ‖(x, u)− (y, v)‖2M
− 2θ〈(x, u)− (y, v),ℍ(x, u)−ℍ(y, v)〉+ θ2‖ℍ(x, u)−ℍ(y, v)‖2M−1

= ‖(x, u)− (y, v)‖2M
− 2θ〈x− y,∇h(x)−∇h(y)〉+ θ2‖∇h(x)−∇h(y)‖2α(I−αβAᵀA)−1

≤ ‖(x, u)− (y, v)‖2M
− (2θ/L)‖∇h(x)−∇h(y)‖2 + θ2‖∇h(x)−∇h(y)‖2(α−1I−βAᵀA)−1

≤ ‖(x, u)− (y, v)‖2M .
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Example: Computational tomography (CT)

In computational tomography (CT), the medical device measures the
(discrete) Radon transform of a patient. The Radon transform is a linear
operator R ∈ Rm×n and b ∈ Rm is the measurement.

Usually m < n (more unknowns than measurements) and b ≈ Rxtrue due
to measurement noise. Image is recovered with

minimize
x∈Rn

1
2‖Rx− b‖

2 + λ‖Dx‖1

where the optimization variable x ∈ Rn represents the 2D image to
recover, D is the 2D finite difference operator, and λ > 0.

Rᵀ is called backprojection. R and D are large matrices, but application
of them and their transposes are efficient.
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Example: Computational tomography (CT)

Problem is equivalent to

minimize
x∈Rn

0(x) + g(Ax),

where

A =

[
R

(β/α)D

]
, g(y, z) =

1

2
‖y − b‖2 + (λα/β)‖z‖1

for any α, β > 0. PDHG applied to this problem is

xk+1 = xk − (1/α)(αRᵀuk + βDᵀvk)

uk+1 =
1

1 + α
(uk + αR(2xk+1 − xk)− αb)

vk+1 = Π[−λα/β,λα/β]
(
vk + βD(2xk+1 − xk)

)
.
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Gaussian elimination technique

Gaussian elimination technique: make inclusions upper or lower triangular
by multiplying by an invertible matrix.
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Proximal method of multipliers

with function linearization

Consider primal problem

minimize
x∈Rn

f(x) + h(x)

subject to Ax = b,

where h is differentiable, generated by the Lagrangian

L(x, u) = f(x) + h(x) + 〈u,Ax− b〉.

Split saddle subdifferential:

∂L(x, u) =

[
∇h(x)
b

]
︸ ︷︷ ︸
=ℍ(x,u)

+

[
0 Aᵀ

−A 0

] [
x
u

]
+

[
∂f(x)

0

]
︸ ︷︷ ︸

=�(x,u)

.
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Proximal method of multipliers

with function linearization

FPI with (� + α�)−1(�− αℍ):[
I αAᵀ

−αA I

] [
xk+1

uk+1

]
+

[
α∂f(xk+1)

0

]
3
[
xk − α∇h(xk)

uk − αb

]

Left-multiply with invertible matrix[
I −αAᵀ

0 I

]
,

which corresponds to Gaussian elimination:[
I + α2AᵀA 0
−αA I

] [
xk+1

uk+1

]
+

[
α∂f(xk+1)

0

]
3
[
xk − α∇h(xk)− αAᵀ(uk − αb)

uk − αb

]
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Proximal method of multipliers

with function linearization

Compute xk+1 first and then compute uk+1:

xk+1 = argmin
x

{
f(x) + 〈∇h(xk), x〉+ 〈uk, Ax− b〉+

α

2
‖Ax− b‖2

+
1

2α
‖x− xk‖2

}
uk+1 = uk + α(Axk+1 − b)

This is proximal method of multipliers with function linearization.

If total duality holds, h is L-smooth, and α ∈ (0, 2/L), then xk → x?

and uk → u?.
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PAPC/PDFP2O

Consider primal problem

minimize
x∈Rn

h(x) + g(Ax)

where h is differentiable, and the Lagrangian

L(x, u) = h(x) + 〈u,Ax〉 − g∗(u).

Apply variable metric FBS to ∂L and use Gaussian elimination technique.
Split

∂L(x, u) =

[
∇h(x)

0

]
︸ ︷︷ ︸
=ℍ(x,u)

+

[
0 Aᵀ

−A 0

] [
x
u

]
+

[
0

∂g∗(u)

]
︸ ︷︷ ︸

=�(x,u)

and use

M =

[
(1/α)I 0

0 (1/β)I − αAAᵀ

]
,

which satisfies M � 0 if αβλmax(AᵀA) < 1.
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PAPC/PDFP2O

FPI with (M + �)−1(M −ℍ) is described by[
(1/α)I Aᵀ

−A (1/β)I − αAAᵀ

] [
xk+1

uk+1

]
+

[
0

∂g∗(uk+1)

]
3
[

(1/α)xk −∇h(xk)
(1/β)uk − αAAᵀuk

]
.

Left-multiply the system with the invertible matrix[
I 0
αA I

]
,

which corresponds to Gaussian elimination, and get[
(1/α)I Aᵀ

0 (1/β)I

] [
xk+1

uk+1

]
+

[
0

∂g∗(uk+1)

]
3
[

(1/α)xk −∇h(xk)
Axk − αA∇h(xk) + (1/β)uk − αAAᵀuk

]
.
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PAPC/PDFP2O

Compute uk+1 first and then compute xk+1:

uk+1 = Proxβg∗
(
uk + βA(xk − αAᵀuk − α∇h(xk))

)
xk+1 = xk − αAᵀuk+1 − α∇h(xk)

This is proximal alternating predictor corrector (PAPC) or primal-dual
fixed point algorithm based on proximity operator (PDFP2O).

If total duality holds, h is L-smooth, α > 0, β > 0, αβλmax(AᵀA) < 1,
and α < 2/L, then xk → x? and uk → u?.
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Example: Isotonic regression

Isotonic constraint requires entries of regressor to be nondecreasing.

Isotonic regresion with the Huber loss is

minimize
x∈Rn

`(Ax− b)
subject to xi+1 − xi ≥ 0 for i = 1, . . . , n− 1

where A ∈ Rm×n, b ∈ Rm, and

`(y) =

m∑
i=1

h(yi), h(r) =

{
r2 for |r| ≤ 1
2|r| − 1 for |r| > 1.

What method can we use?
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Example: Isotonic regression

The problem is equivalent to

minimize
x∈Rn

proximable︷ ︸︸ ︷∑
i=1,3,...,n−1

δR+
(xi+1 − xi) +

proximable︷ ︸︸ ︷∑
i=2,4,...,n−2

δR+
(xi+1 − xi) +

differentiable︷ ︸︸ ︷
`(Ax− b)

We can use DYS.
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Example: Isotonic regression

The problem is equivalent to

minimize
x∈Rn

`(Ax− b) + δ
R

(n−1)
+

(Dx),

where

D =


−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

. . .
...

0 0 0 · · · −1 1

 ∈ R(n−1)×n.

We can use PAPC.
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Linearization technique

Linearization technique: use a proximal term to cancel out a
computationally inconvenient quadratic term.

In the update

xk+1 = argmin
x∈Rn

{
f(x) +

α

2
‖Ax− b‖2 +

1

2
‖x− xk‖2M

}
.

If f is proximable, choose M = 1
β I − αA

ᵀA (with 1
β > αλmax(AᵀA)):

f(x)+
α

2
‖Ax− b‖2 +

1

2
‖x− xk‖2M

= f(x)− α〈Ax, b〉 − xᵀMxk +
α

2
xᵀAᵀAx+

1

2
xᵀMx+ constant

= f(x) + α〈Axk − b, Ax〉 − 1

β
〈xk, x〉+

1

2β
‖x‖2 + constant

= f(x) + α〈Axk − b, Ax〉+
1

2β
‖x− xk‖2 + constant

= f(x) +
1

2β

∥∥x− (xk − αβAᵀ(Axk − b)
)∥∥2 + constant



Linearization technique

and we have

xk+1 = Proxβf
(
xk − αβAᵀ(Axk − b)

)

Carefully choose M of the “proximal term” ‖x− xk‖2M to cancel out the
quadratic term xᵀAᵀAx originating from ‖Ax− b‖2.

This is as if we linearized the quadratic term

α

2
‖Ax− b‖2 ≈ α〈Ax,Axk − b〉+ constant

and added (2β)−1‖x− xk‖2 to ensure convergence.
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Linearized method of multipliers

Consider
minimize
x∈Rn

f(x)

subject to Ax = b.

Let M � 0 and K = α−1/2M−1/2. Re-parameterize with x = Ky:

minimize
y∈Rn

f(Ky)

subject to AKy = b.

Proximal method of multipliers with re-parameterized problem:

yk+1 = argmin
y

{
f(Ky) + 〈uk, AKy〉+

α

2
‖AKy − b‖2 +

1

2α
‖y − yk‖2

}
uk+1 = uk + α(AKyk+1 − b)
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Linearized method of multipliers

Substitute back x = Ky:

xk+1 = argmin
x

{
f(x) + 〈uk, Ax〉+

α

2
‖Ax− b‖2 +

1

2
‖x− xk‖2M

}
uk+1 = uk + α(Axk+1 − b).

Let M = (1/β)I − αAᵀA, where αβλmax(AᵀA) < 1 so that M � 0:

xk+1 = argmin
x

{
f(x) + 〈uk + α(Axk − b), Ax〉+

1

2β
‖x− xk‖2

}
uk+1 = uk + α(Axk+1 − b)
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Linearized method of multipliers

Finally:

xk+1 = Proxβf
(
xk − βAᵀ(uk + α(Axk − b))

)
uk+1 = uk + α(Axk+1 − b)

This is linearized method of multipliers.

If total duality holds, α > 0, β > 0, and αβλmax(AᵀA) < 1, then
xk → x? and uk → u?.

When Proxβf is easy to evaluate, but argminx{f(x) + 1
2‖Ax− b‖

2} is
not, the linearized method of multipliers is useful.
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BCV technique

In the linearization technique, the proximal term (1/2)‖x− xk‖2M must
come from somewhere.

The BCV technique creates proximal terms.

(BCV = Bertsekas, O’Connor, and Vandenberghe)
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PDHG

Consider
minimize
x∈Rn

f(x) + g(Ax)

Use BCV technique to get equivalent problem

minimize
x∈Rn, x̃∈Rm

f(x) + δ{0}(x̃)︸ ︷︷ ︸
=f̃(x,x̃)

+ g(Ax+M1/2x̃)︸ ︷︷ ︸
=g̃(x,x̃)

,

for any M � 0.
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PDHG

Consider DRS

(zk+1, z̃k+1) =

(
1

2
� +

1

2
ℝα∂g̃ℝα∂f̃

)
(zk, z̃k).

The identity

v = Proxαh(B·)(u) ⇔ x ∈ argminx
{
h∗(x)− 〈u,Bᵀx〉+ α

2 ‖B
ᵀx‖2

}
v = u− αBᵀx,

becomes

Proxαg̃(x, x̃) = (y, ỹ)

⇔ u ∈ argmin
u

{
g∗(u)−

〈[
x
x̃

]
,

[
Aᵀ

M1/2

]
u

〉
+
α

2

∥∥∥∥[ Aᵀ

M1/2

]
u

∥∥∥∥2
}

y = x− αAᵀu

ỹ = x̃− αM−1/2u

under the regularity condition ri dom g ∩R([AM1/2]) 6= ∅.



PDHG

The FPI:

xk+1/2 = argmin
x

{
f(x) +

1

2α
‖x− zk‖2

}
x̃k+1/2 = 0

uk+1 = argmin
u

{
g∗(u)− 〈A(2xk+1/2 − zk)−M1/2z̃k, u〉

+
α

2

(
‖Aᵀu‖2 + ‖M1/2u‖2

)}
xk+1 = 2xk+1/2 − zk − αAᵀuk+1

x̃k+1 = −z̃k − αM1/2uk+1

zk+1 = xk+1/2 − αAᵀuk+1

z̃k+1 = −αM1/2uk+1
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PDHG

Simplify further:

xk+1/2 = argmin
x

{
f(x) +

1

2α
‖x− (xk−1/2 − αAᵀuk)‖2

}
uk+1 = argmin

u

{
g∗(u)− 〈A(2xk+1/2 − xk−1/2), u〉+

α

2
‖u− uk‖2(AAᵀ+M)

}

Linearize with M = 1
βαI −AA

ᵀ, with αβλmax(AᵀA) ≤ 1 so M � 0:

xk+1/2 = Proxαf (xk−1/2 − αAᵀuk)

uk+1 = Proxβg∗(u
k + βA(2xk+1/2 − xk−1/2)).

If total duality, regularity condition ri dom g ∩R([AM1/2]) 6= ∅, α > 0,
β > 0, and αβλmax(AᵀA) ≤ 1 hold, then xk+1/2 → x?.
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Convergence analysis: PDHG

The Lagrangian

L̃(x, x̃, µ, µ̃) = g(Ax+M−1/2x̃) + 〈x, µ〉+ 〈x̃, µ̃〉 − f∗(µ)

generates the stated equivalent primal problem and the dual problem

maximize
µ∈Rn, µ̃∈Rm

−
([

Aᵀ

M1/2

]
B g∗

)
(−µ,−µ̃)− f∗(µ)

If the original primal-dual problems of page 28 has solutions x? and u?

for which strong duality holds, then the equivalent problems have
solutions (x?, 0) and (−Aᵀu?,−M1/2u?) for which strong duality holds.
I.e., [total duality original problem] ⇒ [total duality equivalent problem]

So DRS converges under the stated assumptions.
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PD3O

Consider
minimize
x∈Rn

f(x) + h(x) + g(Ax)

Use BCV technique to get the equivalent problem

minimize
x∈Rn, x̃∈Rm

f(x) + δ{0}(x̃)︸ ︷︷ ︸
=f̃(x,x̃)

+ g(Ax+M1/2x̃)︸ ︷︷ ︸
=g̃(x,x̃)

+ h(x)︸︷︷︸
=h̃(x,x̃)

The DYS FPI

(zk+1, z̃k+1) = (�− �α∂f̃ + �α∂g̃(ℝα∂f̃ − α∇h̃�α∂f̃ ))(zk, z̃k)

with M = (βα)−1I −AAᵀ:

xk+1 = Proxαf
(
xk − αAᵀuk − α∇h(xk)

)
uk+1 = Proxβg∗

(
uk + βA

(
2xk+1 − xk + α∇h(xk)− α∇h(xk+1)

))
.

This is primal-dual three-operator splitting (PD3O).



Condat–Vũ vs. PD3O

Condat–Vũ and PD3O solve

minimize
x∈Rn

f(x) + h(x) + g(Ax).

Condat–Vũ generalizes PDHG. PD3O generalizes PAPC and PDHG.

Condat–Vũ:

xk+1 = Proxαf (xk − αAᵀuk − α∇h(xk))

uk+1 = Proxβg∗(u
k + βA(2xk+1 − xk))

PD3O:

xk+1 = Proxαf
(
xk − αAᵀuk − α∇h(xk)

)
uk+1 = Proxβg∗

(
uk + βA

(
2xk+1 − xk + α∇h(xk)− α∇h(xk+1)

))
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Condat–Vũ vs. PD3O

Convergence criterion slightly differ.

Condat–Vũ:
αβλmax(AᵀA) + αL/2 < 1

PD3O:
αβλmax(AᵀA) ≤ 1 and αL/2 < 1

Roughly speaking, PD3O can use stepsizes twice as large. This can lead
to PD3O being twice as fast.
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Proximal ADMM

Consider
minimize
x∈Rp, y∈Rq

f(x) + g(y)

subject to Ax+By = c.

Let M � 0, N � 0, P = α−1/2M1/2, and Q = α−1/2N1/2.

Use dual form of the BCV technique to get equivalent problem

minimize
x∈Rp, y∈Rq

x̃∈Rq, ỹ∈Rp

f(x) + g(y)

subject to

A 0
P 0
0 I

[x
x̃

]
+

B 0
0 I
Q 0

[y
ỹ

]
=

c0
0

 .
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Proximal ADMM

Apply ADMM:

xk+1 ∈ argmin
x∈Rp

{
Lα(x, yk, uk) + 〈ũk1 , Px〉+

α

2
‖Px+ ỹk‖2

}
x̃k+1 = argmin

x̃∈Rq

{
〈ũk2 , x̃〉+

α

2
‖x̃+Qyk‖2

}
= −Qyk − (1/α)ũk2

yk+1 ∈ argmin
y∈Rq

{
Lα(xk+1, y, uk) + 〈ũk2 , Qy〉+

α

2
‖x̃k+1 +Qy‖2

}
ỹk+1 = argmin

ỹ∈Rp

{
〈ũk1 , ỹ〉+

α

2
‖Pxk+1 + ỹ‖2

}
= −Pxk+1 − (1/α)ũk1

uk+1 = uk + α(Axk+1 +Byk+1 − c)
ũk+1
1 = ũk1 + α(Pxk+1 + ỹk+1) = 0

ũk+1
2 = ũk2 + α(x̃k+1 +Qyk+1) = αQ(yk+1 − yk)
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Proximal ADMM

Simplify:

xk+1 ∈ argmin
x

{
Lα(x, yk, uk) +

1

2
‖x− xk‖2M

}
yk+1 ∈ argmin

y

{
Lα(xk+1, y, uk) +

1

2
‖y − yk‖2N

}
uk+1 = uk + α(Axk+1 +Byk+1 − c)

This is proximal ADMM.

If total duality, M � 0, N � 0, (R(Aᵀ) +R(M)) ∩ ri dom f∗ 6= ∅,
(R(Bᵀ) +R(N)) ∩ ri dom g∗ 6= ∅, and α > 0 hold, then uk → u?,
Axk → Ax?, Mxk →Mx?, Byk → By?, and Nyk → Ny?.
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Linearized ADMM

Consider
minimize
x∈Rp, y∈Rq

f(x) + g(y)

subject to Ax+By = c.

Proximal ADMM with M = 1
β I − αA

ᵀA and N = 1
γ I − αB

ᵀB:

xk+1 = argmin
x

{
f(x) + 〈uk, Ax〉+ α〈Ax,Axk +Byk − c〉+

1

2β
‖x− xk‖2

}
yk+1 = argmin

y

{
g(y) + 〈uk, By〉+ α〈By,Axk+1 +Byk − c〉+

1

2γ
‖y − yk‖2

}
uk+1 = uk + α(Axk+1 +Byk+1 − c)
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Linearized ADMM

Simplify:

xk+1 = Proxβf
(
xk − βAᵀ(uk + α(Axk +Byk − c))

)
yk+1 = Proxγg

(
yk − γBᵀ(uk + α(Axk+1 +Byk − c))

)
uk+1 = uk + α(Axk+1 +Byk+1 − c)

This is linearized ADMM.

If total duality holds, α > 0, β > 0, γ > 0, αβλmax(AᵀA) ≤ 1, and
αγλmax(BᵀB) ≤ 1 then xk → x?, yk → y?, and uk → u?.
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PDHG

Consider
minimize
y∈Rm, x∈Rn

g(y) + f(x)

subject to −Iy +Ax = 0

which is equivalent to the problem of page 28.

Linearized ADMM:

yk+1 = Proxβg
(
yk + β(uk − α(yk −Axk))

)
xk+1 = Proxγf

(
xk − γAᵀ(uk − α(yk+1 −Axk))

)
uk+1 = uk − α(yk+1 −Axk+1)

Let β = 1/α and use Moreau identity:

yk+1 = (1/α)uk +Axk − (1/α) Proxαg∗
(
uk + αAxk

)︸ ︷︷ ︸
=µk+1

xk+1 = Proxγf
(
xk − γAᵀµk+1

)
uk+1 = µk+1 + αA(xk+1 − xk)



PDHG

Recover PDHG:

µk+1 = Proxαg∗
(
µk + αA(2xk − xk−1)

)
xk+1 = Proxγf

(
xk − γAᵀµk+1

)
If total duality, α > 0, γ > 0, αγλmax(AᵀA) ≤ 1 hold, then µk → u?

and xk → x?.
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Conclusion

We analyzed convergence of a wide range of splitting methods.

At a detailed level, the many techniques are not obvious and require
many lines of calculations. At a high level, the approach is to reduce all
methods to an FPI and apply Theorem 1.

Given an optimization problem, which method do we choose?
In practice, a given problem usually has at most a few methods that
apply conveniently. A good rule of thumb is to first consider methods
with a low per-iteration cost.
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