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Conclusion

The goal of this class was to present a unified analysis of convex
optimization algorithms through the abstraction of monotone operators.

Optimization is useful. (It is applied math.) However, I personally think
this subject also has a certain beauty, and I wanted to share it with you.

There are a few additional topics, 4 chapters, we were unable to cover.
The following slides briefly summarize them.
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Asynchronous coordinate update methods

Asynchronous coordinate-update fixed-point iteration (AC-FPI):

// p agents run the while loop asynchronously

// x is a vector stored in shared memory

WHILE (not converged) {

1. Select i from Uniform {1,2,...,m}

2. Read x

3. Compute s[i] = eta*S[i](x)

4. Exclusively read x[i] and

write x[i] = x[i] - s[i]

}

Exclusive access through atomic operations or mutex.

With � = �− θ�, mathematically model algorithm as:

xk+1 = xk − η�i(k)xk−d(k)

Under suitable assumptions, converges almost surely to a solution.
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ADMM-type methods

Consider the primal problem

minimize
x∈Rp, y∈Rq

f1(x) + f2(x) + g1(y) + g2(y)

subject to Ax+By = c,

generated by the Lagrangian

L(x, y, u) = f1(x) + f2(x) + g1(y) + g2(y) + 〈u,Ax+By − c〉.

Function-linearized proximal alternating direction method of multipliers
(FLiP-ADMM):

xk+1 ∈ argmin
x∈Rp

{
f1(x) + 〈∇f2(xk) +Aᵀuk, x〉+

ρ

2
‖Ax+Byk − c‖2 +

1

2
‖x− xk‖2P

}
yk+1 ∈ argmin

y∈Rq

{
g1(y) + 〈∇g2(yk) +Bᵀuk, y〉+

ρ

2
‖Axk+1 +By − c‖2 +

1

2
‖y − yk‖2Q

}
uk+1 = uk + ϕρ(Axk+1 +Byk+1 − c),

where ρ > 0, ϕ > 0, P ∈ Rp×p and P � 0, and Q ∈ Rq×q and Q � 0.
Converges under suitable conditions.
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Stochastic optimization

Consider

find
x∈Rn

0 ∈

(
1

N

N∑
i=1

�i +�

)
x.

Stochastic forward-backward method (SFB):

xk+1 ∈ �αk�(�− αk�i(k))x
k,

where αk > 0 and i(k) ∈ {1, . . . , N} independently uniformly at random.

The famous stochastic gradient descent (SGD) is an instance of SFB.

Under suitable assumptions, converges almost surely to a solution.
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Acceleration: Accelerated gradient method

Consider

minimize
x∈Rn

f(x),

where f is convex and L-smooth. The method

xk+1 = yk − 1

L
∇f(yk)

yk+1 = xk+1 +
k − 1

k + 2
(xk+1 − xk),

where x0 = y0, is Nesterov’s accelerated gradient method (AGM).

Theorem 1.
Assume the convex, L-smooth function f has a minimizer x?. Then
AGM converges with the rate

f(xk)− f(x?) ≤ 2L‖x0 − x?‖2

k2
.
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Acceleration: Accelerated proximal point

Consider

find
x∈Rn

0 ∈ �x,

where � is maximal monotone. The method

yk+1 = ��x
k

xk+1 = yk+1 +
k

k + 2
(yk+1 − yk)− k

k + 2
(yk − xk−1),

where y0 = x0, is the accelerated proximal point method (APPM).

Theorem 2.
Assume the maximal monotone operator � has a zero x?. Then APPM
converges with the rate

‖xk−1 − ��x
k−1‖2 ≤ ‖x

0 − x?‖2

k2
.
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