Conclusion

Ernest K. Ryu
Seoul National University

Mathematical and Numerical Optimization
Fall 2020

Last edited: 12/10/2020



Conclusion

The goal of this class was to present a unified analysis of convex
optimization algorithms through the abstraction of monotone operators.

Optimization is useful. (It is applied math.) However, | personally think
this subject also has a certain beauty, and | wanted to share it with you.

There are a few additional topics, 4 chapters, we were unable to cover.
The following slides briefly summarize them.



Asynchronous coordinate update methods

Asynchronous coordinate-update fixed-point iteration (AC-FPI):

// p agents run the while loop asynchronously
// x is a vector stored in shared memory
WHILE (not converged) {

1. Select i from Uniform{1,2,...,m}

2. Read x

3. Compute s[i] = etax*S[i](x)

4. Exclusively read x[i] and

write x[i] = x[i] - s[il]

}

Exclusive access through atomic operations or mutex.

With T =1 — 6S, mathematically model algorithm as:
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Under suitable assumptions, converges almost surely to a solution.



ADMM-type methods

Consider the primal problem
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subject to Ax + By = ¢,

generated by the Lagrangian
L(z,y,u) = fi(z) + f2(z) + 91(y) + 92(y) + (u, Az + By — c).

Function-linearized proximal alternating direction method of multipliers
(FLiP-ADMM):
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where p >0, ¢ >0, P € RP*P and P = 0, and Q € R9*? and @ > 0.
Converges under suitable conditions.



Stochastic optimization

Consider
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Stochastic forward-backward method (SFB):
$k+1 S -Uak]B(]I — akAi(k))xk,

where ay, > 0 and i(k) € {1,..., N} independently uniformly at random.
The famous stochastic gradient descent (SGD) is an instance of SFB.

Under suitable assumptions, converges almost surely to a solution.



Acceleration: Accelerated gradient method

Consider

minimize f(x),

where f is convex and L-smooth. The method
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where 20 = 40, is Nesterov's accelerated gradient method (AGM).

Theorem 1.
Assume the convex, L-smooth function f has a minimizer x*. Then
AGM converges with the rate
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Acceleration: Accelerated proximal point

Consider

find 0¢€ Az,
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where A is maximal monotone. The method
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where y¥ = 29, is the accelerated proximal point method (APPM).

Theorem 2.
Assume the maximal monotone operator A has a zero x*. Then APPM
converges with the rate
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