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Attouch—Théra duality and splitting methods

We present Attouch—Théra duality, which is analogous to, but simpler
than, convex duality, and explore its connection to base splitting methods.
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Fenchel duality

Fenchel duality: primal

minimize f(z) + g(x),
IGRTL

and dual
maxiuggize —f*(—u) — g*(u)
ueR”

generated by
L(z,u) = f(z) + (z,u) — g"(u).

Total duality is subtle.
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One Interpretation of Fenchel duality

For simplicity, assume total duality and f, g, f*, and g* differentiable.

Primal is to find point = such that Vf and Vg at z sum to 0:

find  0=Vf(z) + Vy(@),

Dual is to find gradient u such that V f produces —u and Vg produces u
at the same point:

find (Vf)"}(—u) = (Vg)~(u)

ueR™

This is one of the many viewpoints of convex duality.
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Attouch—Théra duality

Consider
find 0¢€ (A + B)x,

reER™

where A and B are maximal monotone.
Define A=Y (u) = —A~!(—u).
Attouch—Théra dual monotone inclusion problem is

find 0€ (A=Y + B u.
ueR™
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Attouch—Théra duality

Attouch—Théra duality is, in a sense, easier than Fenchel duality since
Zer(A+B)#0) < Zer(A Y +B™ Y #£0,
i.e., a primal solution exists if and only if a dual solution exists.
Proof.
Jz[0e (A+B)z] < 3Fz,u[-u€ Az, u € Bz]
& dz,u [—m ceA Yy, z e ]Bflu]
& Ju[0e (AY+B .

(No notion of strong duality, since no function values.)
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Attouch—Théra vs. Fenchel duality

Attouch—Théra generalized Fenchel duality in the following sense:

O(proper convex function) C monotone operators

However, Attouch—Théra fails to capture the subtleties of Fenchel duality.

In Fenchel duality, strong duality may fail, a primal solution may exist
while a dual solution does not, or vice versa. No analogous pathologies in
Attouch—Théra duality.
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Dual solutions as certificates

It is desirable for a method to produce both primal and dual solutions as
the dual solution can certify correctness of the primal solution.

If a primal-dual solution (z*,u*) satisfying
—u* € Az* and u* € Bz* (1)

is provided, verifying (1) certifies correctness of the solutions.

If only a primal solution z* is provided, we must verify 0 € Ax* + Bz*.
How do we compute the Minkowski sum Axz* + Bx*?

Attouch—Théra duality
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Duality in splitting methods

Duality in splitting methods
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FBS

The FPI with FBS

gF Y2 = ok — qA®

L = J o tl/?

often not considered a primal-dual method. We can make it primal-dual:

gFH2 = gk — Az
uk‘+1/2 — —Axk
xk-‘rl — Jla]Bxk-‘rl/Q

uk+1 _ a71($k+1/2 . :Ek+1).

Note uF*t1 € Bz*+1. If 2% — 2*, then

WFHY2 or ) uF T S wt € Zer (AT +BTY).

Duality in splitting methods
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Characterization of fixed points of DRS

With Attouch—Théra dual, characterize fixed points of PRS and DRS:

Fix (RaaRap) C Zer (A + B) + aZer (A=Y + B~ 1)

Proof.

2z =RoaRop2

=

t e o0

=

24 20on(2op — )z — 20 apz = 2, £ = Jop2

Joa(x —ou) =z, z=z+ au, u € Bx
r—au=zx+au p€Axr, z=x+au, u € Bx
w=-—-u, 4 € Ar,u € Bx, z =z + au

—u € Ax, u € Bz, z =2+ au

—ueAz,ucBx, -z € A %, € B u, 2=+ au
0c(A+B)r,0c (A Y +B Hu, 2 =z + au.

Last step is not an equivalence, so characterization with C, not =.
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Primal-dual DRS

We can make the FPI with DRS more explicitly primal-dual:
aF /2 = Jop(2F)

uk+1/2 — l(zk _ $k+1/2)
(0%

Z,Ic+1 — -UaA(21'k+1/2 _ Zk)
1

uk L — 7(xk+1 _gktl/2 auk+1/2)
«

SRl — Lk + [ S VA

Note u*t1/2 € BzF+1/2, —y*+1 ¢ AzF+1. If Zer (A + B) # (), then

P2 g R 4% € Zer (A + B)

WP o uF T St ut € Zer (A9 +BTY)

2P 2+ au”.
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Self-dual property of DRS

PRS and DRS are self-dual:

RaRp = Rp-oRp-1

Follows from Jp-¢ = 1+ Ja(—1) and Jg-1 =1 — Jp:

(20p-0 — 1)(20g-1 — 1) = (205 (=T) + I)(I — 2T)
(207 (—1) + I)(—T)(20p — I)
= (2T — I)(20p — 1)

Duality in splitting methods
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Self-dual property of DRS

When a =1, DRS is:
xk+1/2 — JI]B(Zk)
WFFYZ = Iy (2F) = ok k12
l‘k+1 — JA(ka-‘rl/Q _ Zk)
WY = T o (2uF V2 Ry = gk kL2 k)2

SRHL ok kL RL/2 ok g kL k)2

Nicely reveals the symmetry. (Algorithmically no need to use both the x
and u.) When « # 1, similar but less elegant self-dual form.

(This self-dual property explains why the infimal postcomposition
technique and the dualization technique yield the same ADMM.)
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DYS
For
ﬁerﬁ(i 0e(A+B+CQ)x,

where A, B, and C are maximal monotone and C is single-valued,
Attouch—Théra dual is

ﬁerulg 0€((A+C)"2+B Hu.

Fixed points of DYS:

Fix (I[ - JlaIB + ]IQA(]RO(]B - OéC]Ia]B))
CZer(A+B+C)+aZer (A+C)"Y+B™1).

Duality in splitting methods
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Primal-dual DYS
We can make the FPI with DYS more explicitly primal-dual:

xk+1/2 - -“a]B(Zk)

uk+l/2 — 1 (Zk _ .’Ek+1/2)

(07

L g (2052 ok gk tl/?)

X

1
k+1 _ 7(l,k+1 _ k12

a
SEHL kg gkl k12

u k+1/2)

+ au

Note uft1/2 € Bak+t1/2, —yk+l ¢ Agk+l 4 CoF /2. If 28 — 2*, then

P2 xR a0 2% € Zer (A+ B +C)

—u*, uPTl S, wf € Zer(A+C)TY4+BTY)

2+ aut.

uFr1/2

DYS is not self-dual as it uses an evaluation of C, a primal operation.
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