Duality in Splitting Methods

Ernest K. Ryu
Seoul National University

Mathematical and Numerical Optimization
Fall 2020

Last edited: 11/20/2020

Attouch-Théra duality and splitting methods

We present Attouch-Théra duality, which is analogous to, but simpler than, convex duality, and explore its connection to base splitting methods.

Outline

Fenchel duality

Attouch-Théra duality

Duality in splitting methods

Fenchel duality

Fenchel duality: primal

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x)+g(x),
$$

and dual

$$
\underset{u \in \mathbb{R}^{n}}{\operatorname{maximize}}-f^{*}(-u)-g^{*}(u)
$$

generated by

$$
\mathbf{L}(x, u)=f(x)+\langle x, u\rangle-g^{*}(u) .
$$

Total duality is subtle.

One Interpretation of Fenchel duality

For simplicity, assume total duality and f, g, f^{*}, and g^{*} differentiable.

Primal is to find point x such that ∇f and ∇g at x sum to 0 :

$$
\operatorname{find}_{x \in \mathbb{R}^{n}} \quad 0=\nabla f(x)+\nabla g(x)
$$

Dual is to find gradient u such that ∇f produces $-u$ and ∇g produces u at the same point:

$$
\operatorname{find}_{u \in \mathbb{R}^{n}}(\nabla f)^{-1}(-u)=(\nabla g)^{-1}(u)
$$

This is one of the many viewpoints of convex duality.

Outline

Fenchel duality

Attouch-Théra duality

Duality in splitting methods

Attouch-Théra duality

Consider

$$
\operatorname{find}_{x \in \mathbb{R}^{n}} \quad 0 \in(\mathbb{A}+\mathbb{B}) x
$$

where \mathbb{A} and \mathbb{B} are maximal monotone.

Define $\mathbb{A}^{-\otimes}(u)=-\mathbb{A}^{-1}(-u)$.

Attouch-Théra dual monotone inclusion problem is

$$
\operatorname{find}_{u \in \mathbb{R}^{n}} \quad 0 \in\left(\mathbb{A}^{-\mathbb{Q}}+\mathbb{B}^{-1}\right) u
$$

Attouch-Théra duality

Attouch-Théra duality is, in a sense, easier than Fenchel duality since

$$
\operatorname{Zer}(\mathbb{A}+\mathbb{B}) \neq \emptyset \quad \Leftrightarrow \quad \operatorname{Zer}\left(\mathbb{A}^{-\varnothing}+\mathbb{B}^{-1}\right) \neq \emptyset
$$

i.e., a primal solution exists if and only if a dual solution exists.

Proof.

$$
\begin{aligned}
\exists x[0 \in(\mathbb{A}+\mathbb{B}) x] & \Leftrightarrow \exists x, u[-u \in \mathbb{A} x, u \in \mathbb{B} x] \\
& \Leftrightarrow \exists x, u\left[-x \in \mathbb{A}^{-\oplus} u, x \in \mathbb{B}^{-1} u\right] \\
& \Leftrightarrow \exists u\left[0 \in\left(\mathbb{A}^{-\otimes}+\mathbb{B}^{-1}\right) u\right] .
\end{aligned}
$$

(No notion of strong duality, since no function values.)

Attouch-Théra vs. Fenchel duality

Attouch-Théra generalized Fenchel duality in the following sense:

$$
\partial(\text { proper convex function }) \subset \text { monotone operators }
$$

However, Attouch-Théra fails to capture the subtleties of Fenchel duality.

In Fenchel duality, strong duality may fail, a primal solution may exist while a dual solution does not, or vice versa. No analogous pathologies in Attouch-Théra duality.

Dual solutions as certificates

It is desirable for a method to produce both primal and dual solutions as the dual solution can certify correctness of the primal solution.

If a primal-dual solution $\left(x^{\star}, u^{\star}\right)$ satisfying

$$
\begin{equation*}
-u^{\star} \in A x^{\star} \text { and } u^{\star} \in B x^{\star} \tag{1}
\end{equation*}
$$

is provided, verifying (1) certifies correctness of the solutions.

If only a primal solution x^{\star} is provided, we must verify $0 \in A x^{\star}+B x^{\star}$. How do we compute the Minkowski sum $A x^{\star}+B x^{\star}$?

Outline

Fenchel duality

Attouch-Théra duality

Duality in splitting methods

Duality in splitting methods

FBS

The FPI with FBS

$$
\begin{aligned}
x^{k+1 / 2} & =x^{k}-\alpha \mathbb{A} x^{k} \\
x^{k+1} & =\mathbf{J}_{\alpha \mathbb{B}} x^{k+1 / 2}
\end{aligned}
$$

often not considered a primal-dual method. We can make it primal-dual:

$$
\begin{aligned}
x^{k+1 / 2} & =x^{k}-\alpha \mathbb{A} x^{k} \\
u^{k+1 / 2} & =-\mathbb{A} x^{k} \\
x^{k+1} & =\mathbb{J}_{\alpha \mathbf{B}} x^{k+1 / 2} \\
u^{k+1} & =\alpha^{-1}\left(x^{k+1 / 2}-x^{k+1}\right)
\end{aligned}
$$

Note $u^{k+1} \in \mathbb{B} x^{k+1}$. If $x^{k} \rightarrow x^{\star}$, then

$$
u^{k+1 / 2} \rightarrow u^{\star}, \quad u^{k+1} \rightarrow u^{\star}, \quad u^{\star} \in \operatorname{Zer}\left(\mathbb{A}^{-\otimes}+\mathbb{B}^{-1}\right)
$$

Characterization of fixed points of DRS

With Attouch-Théra dual, characterize fixed points of PRS and DRS:

$$
\operatorname{Fix}\left(\mathbb{R}_{\alpha \mathbb{A}} \mathbb{R}_{\alpha \mathbf{B}}\right) \subseteq \operatorname{Zer}(\mathbb{A}+\mathbb{B})+\alpha \operatorname{Zer}\left(\mathbb{A}^{-\oplus}+\mathbb{B}^{-1}\right)
$$

Proof.

$$
\begin{aligned}
z=\mathbb{R}_{\alpha \mathbf{A}} & \mathbb{R}_{\alpha \mathbb{B}} z \\
& \Leftrightarrow \quad z+2 \mathbb{J}_{\alpha \mathbf{A}}\left(2 \mathbf{J}_{\alpha \mathbb{B}}-I\right) z-2 \mathbf{J}_{\alpha \mathbb{B}} z=z, x=\mathbf{J}_{\alpha \mathbb{B}} z \\
& \Leftrightarrow \quad \mathbf{J}_{\alpha \mathbf{A}}(x-\alpha u)=x, z=x+\alpha u, u \in \mathbb{B} x \\
& \Leftrightarrow \quad x-\alpha u=x+\alpha \mu, \mu \in \mathbb{A} x, z=x+\alpha u, u \in \mathbb{B} x \\
& \Leftrightarrow \quad \mu=-u, \mu \in \mathbb{A} x, u \in \mathbb{B} x, z=x+\alpha u \\
& \Leftrightarrow \quad-u \in \mathbb{A} x, u \in \mathbb{B} x, z=x+\alpha u \\
& \Leftrightarrow \quad-u \in \mathbb{A} x, u \in \mathbb{B} x,-x \in \mathbb{A}^{-\otimes} u, x \in \mathbb{B}^{-1} u, z=x+\alpha u \\
& \Rightarrow \quad 0 \in(\mathbb{A}+\mathbb{B}) x, 0 \in\left(\mathbb{A}^{-\otimes}+\mathbb{B}^{-1}\right) u, z=x+\alpha u
\end{aligned}
$$

Last step is not an equivalence, so characterization with \subseteq, not $=$.

Primal-dual DRS

We can make the FPI with DRS more explicitly primal-dual:

$$
\begin{aligned}
x^{k+1 / 2} & =\mathbf{J}_{\alpha \mathbf{B}}\left(z^{k}\right) \\
u^{k+1 / 2} & =\frac{1}{\alpha}\left(z^{k}-x^{k+1 / 2}\right) \\
x^{k+1} & =\mathbf{J}_{\alpha \mathbf{A}}\left(2 x^{k+1 / 2}-z^{k}\right) \\
u^{k+1} & =\frac{1}{\alpha}\left(x^{k+1}-x^{k+1 / 2}+\alpha u^{k+1 / 2}\right) \\
z^{k+1} & =z^{k}+x^{k+1}-x^{k+1 / 2} .
\end{aligned}
$$

Note $u^{k+1 / 2} \in \mathbb{B} x^{k+1 / 2},-u^{k+1} \in \mathbb{A} x^{k+1}$. If $\operatorname{Zer}(\mathbb{A}+\mathbb{B}) \neq \emptyset$, then

$$
\begin{aligned}
& x^{k+1 / 2} \rightarrow x^{\star}, \quad x^{k+1} \rightarrow x^{\star}, \quad x^{\star} \in \operatorname{Zer}(\mathbb{A}+\mathbb{B}) \\
& u^{k+1 / 2} \rightarrow u^{\star}, \quad u^{k+1} \rightarrow u^{\star}, \quad u^{\star} \in \operatorname{Zer}\left(\mathbb{A}^{-®}+\mathbb{B}^{-1}\right) \\
& z^{k} \rightarrow x^{\star}+\alpha u^{\star} .
\end{aligned}
$$

Self-dual property of DRS

PRS and DRS are self-dual:

$$
\mathbb{R}_{\mathrm{A}} \mathbb{R}_{\mathrm{B}}=\mathbb{R}_{\mathrm{A}^{-\odot}} \mathbb{R}_{\mathbb{B}^{-1}}
$$

Follows from $\mathbf{J}_{\mathbf{A}^{-} \oplus}=\mathbb{I}+\mathbf{J}_{\mathbf{A}}(-\mathbb{I})$ and $\mathbb{J}_{\mathbb{B}^{-1}}=\mathbb{I}-\mathbb{J}_{\mathbf{B}}$:

$$
\begin{aligned}
\left(2 \mathbf{J}_{\mathrm{A}^{-} \oplus}-\mathbb{I}\right)\left(2 \mathbf{J}_{\mathbb{B}^{-1}}-\mathbb{I}\right) & =\left(2 \mathbf{J}_{\mathrm{A}}(-\mathbb{I})+\mathbb{I}\right)\left(\mathbb{I}-2 \mathbf{J}_{\mathbb{B}}\right) \\
& =\left(2 \mathbf{J}_{\mathrm{A}}(-\mathbb{I})+\mathbb{I}\right)(-\mathbb{I})\left(2 \mathbf{J}_{\mathbb{B}}-\mathbb{I}\right) \\
& =\left(2 \mathbf{J}_{\mathrm{A}}-\mathbb{I}\right)\left(2 \mathbf{J}_{\mathbb{B}}-\mathbb{I}\right)
\end{aligned}
$$

Self-dual property of DRS

When $\alpha=1$, DRS is:

$$
\begin{aligned}
x^{k+1 / 2} & =\mathbf{J}_{\mathbb{B}}\left(z^{k}\right) \\
u^{k+1 / 2} & =\mathbf{J}_{\mathbb{B}^{-1}}\left(z^{k}\right)=z^{k}-x^{k+1 / 2} \\
x^{k+1} & =\mathbf{J}_{\mathbb{A}}\left(2 x^{k+1 / 2}-z^{k}\right) \\
u^{k+1} & =\mathbf{J}_{\mathbf{A}^{-}-\otimes}\left(2 u^{k+1 / 2}-z^{k}\right)=x^{k+1}-x^{k+1 / 2}+u^{k+1 / 2} \\
z^{k+1} & =z^{k}+x^{k+1}-x^{k+1 / 2}=z^{k}+u^{k+1}-u^{k+1 / 2}
\end{aligned}
$$

Nicely reveals the symmetry. (Algorithmically no need to use both the x and u.) When $\alpha \neq 1$, similar but less elegant self-dual form.
(This self-dual property explains why the infimal postcomposition technique and the dualization technique yield the same ADMM.)

DYS

For

$$
\operatorname{find}_{x \in \mathbb{R}^{n}} \quad 0 \in(\mathbb{A}+\mathbb{B}+\mathbb{C}) x
$$

where \mathbb{A}, \mathbb{B}, and \mathbb{C} are maximal monotone and \mathbb{C} is single-valued, Attouch-Théra dual is

$$
\operatorname{find}_{u \in \mathbb{R}^{n}} \quad 0 \in\left((\mathbb{A}+\mathbb{C})^{-®}+\mathbb{B}^{-1}\right) u
$$

Fixed points of DYS:
$\operatorname{Fix}\left(\mathbb{I}-\mathbb{J}_{\alpha \mathbb{B}}+\mathbb{J}_{\alpha \mathbf{A}}\left(\mathbb{R}_{\alpha \mathbb{B}}-\alpha \mathbb{C J}_{\alpha \mathbb{B}}\right)\right)$

$$
\subseteq \operatorname{Zer}(\mathbb{A}+\mathbb{B}+\mathbb{C})+\alpha \operatorname{Zer}\left((\mathbb{A}+\mathbb{C})^{-\mathbb{Q}}+\mathbb{B}^{-1}\right)
$$

Primal-dual DYS

We can make the FPI with DYS more explicitly primal-dual:

$$
\begin{aligned}
x^{k+1 / 2} & =\mathbb{J}_{\alpha \mathbf{B}}\left(z^{k}\right) \\
u^{k+1 / 2} & =\frac{1}{\alpha}\left(z^{k}-x^{k+1 / 2}\right) \\
x^{k+1} & =\mathbb{J}_{\alpha A}\left(2 x^{k+1 / 2}-z^{k}-\alpha \mathbb{C} x^{k+1 / 2}\right) \\
u^{k+1} & =\frac{1}{\alpha}\left(x^{k+1}-x^{k+1 / 2}+\alpha u^{k+1 / 2}\right) \\
z^{k+1} & =z^{k}+x^{k+1}-x^{k+1 / 2}
\end{aligned}
$$

Note $u^{k+1 / 2} \in \mathbb{B} x^{k+1 / 2},-u^{k+1} \in \mathbb{A} x^{k+1}+\mathbb{C} x^{k+1 / 2}$. If $z^{k} \rightarrow z^{\star}$, then

$$
\begin{gathered}
x^{k+1 / 2} \rightarrow x^{\star}, \quad x^{k+1} \rightarrow x^{\star}, \quad x^{\star} \in \operatorname{Zer}(\mathbb{A}+\mathbb{B}+\mathbb{C}) \\
u^{k+1 / 2} \rightarrow u^{\star}, \quad u^{k+1} \rightarrow u^{\star}, \quad u^{\star} \in \operatorname{Zer}\left((\mathbb{A}+\mathbb{C})^{-\mathbb{Q}}+\mathbb{B}^{-1}\right) \\
z^{k} \rightarrow x^{\star}+\alpha u^{\star}
\end{gathered}
$$

DYS is not self-dual as it uses an evaluation of \mathbb{C}, a primal operation.

