Convex Optimization — Boyd & Vandenberghe (Modified by E. K. Ryu)

5. Duality

Lagrange dual problem
weak and strong duality
geometric interpretation
optimality conditions
examples

generalized inequalities



Lagrangian
standard form problem (not necessarily convex)

minimize  fo(x)
subject to  f;(z) <

variable z € R", domain D, optimal value p*

Lagrangian: L : R” x R™ x R”P - R, with dom L =D x R™ x R?,

Lz, \,v) —|—Z)\ fi(x -|—sz'hi($)
i=1

e weighted sum of objective and constraint functions
e )\; is Lagrange multiplier associated with f;(z) <0

e 1; is Lagrange multiplier associated with h;(z) = 0
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Lagrange dual function

Lagrange dual function: ¢ : R x RP — R,

g\, v) = inf L(z,\,v)

x€D
= Inf (fo(x) + ) Nifile)+ ) Vihi(flf)>
i=1 i=1

g is concave, can be —oo for some A, v

*

lower bound property: if A > 0, then g(\,v) <p

proof: if T is feasible and A > 0, then

fol#) = L(E,\,v) > inf L(z, \,v) = g(\,»)
xre

minimizing over all feasible = gives p* > g(\,v)
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Least-norm solution of linear equations

minimize zlx

subject to Ax =1b
dual function
e Lagrangianis L(z,v) = 212z + v1(Az — b)

e to minimize L over x, set gradient equal to zero:

Vol(z,v) =22+ A'v=0 =— z=—(1/2)A"v

e plug in in L to obtain g:
1
g(v) = L((-1/2)ATv,v) = —ZI/TAATV — bl
a concave function of v

lower bound property: p* > —(1/4)vT AATY — blv for all v
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Standard form LP

minimize ¢!z

subjectto Ar=b, x>0
dual function
e Lagrangian is
Lz, \v) = cao+vi(Az—-b) - o
= b+ (c+ATv—N'x
e [ is affine in z, hence

by ATy —AN+c¢=0
— 00 otherwise

g\, v) =1inf L(z,\,v) = {
g is linear on affine domain {(\,v) | AYv — XA+ ¢ = 0}, hence concave

lower bound property: p* > —blv if ATv4+¢>0

Duality 5-5



Equality constrained norm minimization
minimize |||
subject to Ax =1b

dual function

vlv  ||ATY]. <1

_ T T N _
9(v) —12f(\\x|\ v Az +biv) { —o0  otherwise

where ||v||. = sup,,j<; " v is dual norm of || - |

proof: follows from inf,(||z|| — y'z) = 0 if ||y||« < 1, —oc otherwise
o if ||lyll« <1, then ||z|| — y'2z > 0 for all 2, with equality if z =0

o if [|y|l. > 1, choose = = tu where [Ju]] < 1, uly = ||y||. > 1:
|zl =y = t(llu] = [[yll.) = —c0 ast — o0

lower bound property: p* > bl if |ATv]], <1
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Two-way partitioning

minimize I Wzx
subjectto z?=1, i=1,...,n

e a nonconvex problem; feasible set contains 2" discrete points

e interpretation: partition {1,...,n} in two sets; W;, is cost of assigning
i, j to the same set; —W,; is cost of assigning to different sets

dual function

g(v) = inf(z? Wz + Z vi(z? — 1)) = infa? (W + diag(v))z — 1'v

x

B ~11Tv W +diag(v) = 0
- —00 otherwise

lower bound property: p* > —11v if W + diag(v) = 0
example: v = —Apin(W)1 gives bound p* > nAnin(W)
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Lagrange dual and conjugate function

minimize  fo(x)
subjectto Ax <b, Czx=d

dual function

g(\, V) inf (fo(z)+ (A" X+ C"v) 'z —b"N—d"v)

rxedom fj

= —fi(=ATN=CTv)—bvI'X—d'v

e recall definition of conjugate f*(y) = SUp,cqom s (' = — f())

e simplifies derivation of dual if conjugate of f is known

example: entropy maximization

n

mn
= E x;log x;, edi™
i=1

1=1
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The dual problem

Lagrange dual problem

maximize g(\,v)
subjectto A >0

e finds best lower bound on p*, obtained from Lagrange dual function
e a convex optimization problem; optimal value denoted d*
e )\, v are dual feasible if A = 0, (A\,) € dom g

e often simplified by making implicit constraint (A, ) € dom g explicit

example: standard form LP and its dual (page 5-5)

minimize clx maximize —blv
subject to Az =0b subject to ATv 4+ ¢ >0
x>0
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Weak and strong duality
weak duality: d* < p*
e always holds (for convex and nonconvex problems)

e can be used to find nontrivial lower bounds for difficult problems

for example, solving the SDP

maximize —17v
subject to W + diag(v) = 0

gives a lower bound for the two-way partitioning problem on page 57
strong duality: d* = p*
e does not hold in general

e (usually) holds for convex problems

e conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Slater’s constraint qualification

strong duality holds for a convex problem
minimize

fo(z)
subject to  fi(x) <0, i=1,...,m
Ax =0

if it is strictly feasible, 7.e.,

dzr € int D : filz) <0, i=1,...,m, Ax =D

e also guarantees that the dual optimum is attained (if p* > —o0)

e can be sharpened: e.g., can replace int D with relint D (interior

relative to affine hull); linear inequalities do not need to hold with strict
inequality, . . .

e there exist many other types of constraint qualifications
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Inequality form LP

primal problem

minimize clzx

subject to Ax <b

dual function

g(\) = inf ((c + AT )T g — bT)\) —

x

TN ATA+¢=0
— 00 otherwise

dual problem
maximize —b1 )\
subjectto ATA4+c¢=0, A>0

e from Slater’'s condition: p* = d* it Ax < b for some ¥

e in fact, p* = d* except when primal and dual are infeasible
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Quadratic program

primal problem (assume P € S” )
minimize 2! Px
subject to Az <b

dual function

g(A) = inf (azTPa; + )\T(Ax _ b)) —

X

—%ATAP”ATA — b\

dual problem
maximize —(1/HNTAP7TATN — b1\
subject to A >0

e from Slater’s condition: p* = d* if Ax < b for some ¥

e in fact, p* = d* always
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Geometric interpretation

for simplicity, consider problem with one constraint fi(x) <0

interpretation of dual function:

o) = inf (t+Xu).  where G={(i(2).fol@) | € D)

e \u+t=g(\)is (non-vertical) supporting hyperplane to G
e hyperplane intersects t-axis at t = g(\)
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epigraph variation: same interpretation if G is replaced with

A= {(u,t) | fi(x) <wu, fo(xr) <t for some x € D}
t

A

w4+t = g()\)\p
g(N)

strong duality

e holds if there is a non-vertical supporting hyperplane to A at (0, p*)

e for convex problem, A is convex, hence has supp. hyperplane at (0, p*)

~

e Slater’s condition: if there exist (u,t) € A with @ < 0, then supporting
hyperplanes at (0, p*) must be non-vertical
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Complementary slackness

*

assume strong duality holds, x* is primal optimal, (A*, v*) is dual optimal

inf (fo<x> RHORDS v:hi<:c>>

< fol@) D) N filat) + > vihi(a?)
1=1 1=1
< fo(z")

fo(z") = g(A*,v7)

hence, the two inequalities hold with equality
e x* minimizes L(xz, \*,v*)

o \'fi(x*) =0fori=1,...,m (known as complementary slackness):

N> 0= fi(z*) =0,  filz") <0= \ =0
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable f;, h;):

1. primal constraints: f;(z) <0,i=1,...,m, hi(x) =0,1=1,...,p
2. dual constraints: A = 0
3. complementary slackness: \;fi(z) =0,1=1,...,m

4. gradient of Lagrangian with respect to x vanishes:

V fo(z +§:AVﬂ +§:%Vh

from page 5-16: if strong duality holds and x, A, v are optimal, then they
must satisfy the KK'T conditions
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KKT conditions for convex problem

~

if x, A, U satisfy KKT for a convex problem, then they are optimal:

e from complementary slackness: fo(2) = L(Z, A, )

~

hence, fo() = g(A, )

if Slater’s condition is satisfied:

x is optimal if and only if there exist A, v that satisfy KKT conditions

e recall that Slater implies strong duality, and dual optimum is attained

e generalizes optimality condition V fy(x) = 0 for unconstrained problem
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example: water-filling (assume «; > 0)

minimize  — Z?:1 log(z; + ;)
subjectto >0, 1lz=1

x Is optimal iff x > O, 172 = 1, and there exist A € R", v € R such that

1

A O, )\zxz — O,
T; + Qy

+ XN =V

o ifv<l/a;: \j=0and z; =1/v — o
o ifv>1/a;: \y=v—1/a; and z; =0

e determine v from 172z =>"" max{0,1/v —a;} =1

interpretation

e n patches; level of patch 7 is at height o; Lo
14
|

e flood area with unit amount of water

e resulting level is 1/v*
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Duality and problem reformulations

e equivalent formulations of a problem can lead to very different duals

e reformulating the primal problem can be useful when the dual is difficult
to derive, or uninteresting

common reformulations

e introduce new variables and equality constraints
e make explicit constraints implicit or vice-versa

e transform objective or constraint functions

e.g., replace fo(x) by ¢(fo(x)) with ¢ convex, increasing
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Introducing new variables and equality constraints

minimize  fo(Ax + b)

e dual function is constant: g = inf, L(xz) = inf, fo(Ax + b) = p*

e we have strong duality, but dual is quite useless

reformulated problem and its dual

minimize  fo(y) maximize blv — fE(v)
subject to Ax +b—y =0 subject to A'v =0

dual function follows from
g(v) = inf(fo(y) —v'y+v' Az +0'v)
T,y

_ {—fé"(y)+bTV Aty =0

—00 otherwise
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norm approximation problem: minimize ||Ax — b

minimize  ||y||
subjectto y=Ax —b

can look up conjugate of || - ||, or derive dual directly

g(v) = f(|lyll+ vy — v Az +b7v)
x7y

[ Vot (] +0Ty) ATy =0
o —00 otherwise

B vlv Altv =0, |v|,<1
—0o0 otherwise

(see page 5—4)

dual of norm approximation problem

maximize blv
subject to ATv =0, |v].<1
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Implicit constraints

LP with box constraints: primal and dual problem

minimize c¢l'x maximize —blv — 1T ;1 — 17\,
subject to Ax =0b subjectto c+ ATV 4+ X =Xy =0
-1=<z=x1 A =0, A2=0

reformulation with box constraints made implicit

e —1<2=<1
00 otherwise

minimize  fo(z) = {
subject to Az =1b
dual function
glv) = _1i<n£<1(cT:z: + v (Az — b))
= —blv—||ATv + |

dual problem: maximize —b'v — ||ATv + ¢||;
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Problems with generalized inequalities

minimize  fo(x)
subject to  fi(z) <k, 0, i=1,...,m
hz():(), izl,...,p

<k, Is generalized inequality on R”i

definitions are parallel to scalar case:

e Lagrange multiplier for f;(x) <k, 0 is vector \; € R¥

e Lagrangian L: R" x R" x ... x R x R? — R, is defined as

L(:E, ALy s Am, V) — fO(aj) + Z )‘szz(x) + Z Vihi(x)
1=1 1=1

e dual function g : R* x -+ x R*™ x R? — R, is defined as

g(A1, .oy A, v) = inf L(x, A1, , A, V)

xeD
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lower bound property: if \; = 0, then g A1,y A, V) < p*

proof: if T is feasible and A EK; 0, then

SR

fo(z) > fo(i’f)+z>\ffi(f)+ZVihi(f)

> inf L(xz, A1, ..., Am, V)

xeD
= g()\l,...,)\m,l/)
minimizing over all feasible & gives p* > g(A1,..., A\, V)
dual problem
maximize  g(A1,..., Am, V)
subject to  \; ~ K 0, 2=1,....m

e weak duality: p* > d* always

e strong duality: p* = d* for convex problem with constraint qualification
(for example, Slater’s: primal problem is strictly feasible)
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Semidefinite program

primal SDP (F;, G € S%)
minimize ¢’z
subjectto x1F1+---+x,F, G
e Lagrange multiplier is matrix Z € S*
e Lagrangian L(z,Z) =cla +tr (Z(z1F1 + -+ + 2, F, — Q))

e dual function

9(Z) = igf[’(% Z) = { — 00 otherwise

dual SDP

maximize —tr(GZ2)
subjectto Z >0, tr(F;Z)+c¢ =0, i=1,....n

—tr(GZ) tr(FiZ)+c¢; =0, i=1,...

, N

p* = d* if primal SDP is strictly feasible (3 with 21 F} + - - - 4+ 2, F,, < G)
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