Additional Problems for Homework 4

Problem 1: Heuristic suboptimal solution for Boolean LP. This exercise builds on exercises 4.15 and 5.13 in Convex Optimization, which involve the Boolean LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \preceq b \\
& x_{i} \in\{0,1\}, \quad i=1, \ldots, n
\end{array}
$$

with optimal value p^{\star}. Let x^{rlx} be a solution of the LP relaxation

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \preceq b \\
& 0 \preceq x \preceq \mathbf{1}
\end{array}
$$

so $L=c^{T} x^{\mathrm{rlx}}$ is a lower bound on p^{\star}. The relaxed solution x^{rlx} can also be used to guess a Boolean point \hat{x}, by rounding its entries, based on a threshold $t \in[0,1]$:

$$
\hat{x}_{i}= \begin{cases}1 & x_{i}^{\mathrm{rlx}} \geq t \\ 0 & \text { otherwise }\end{cases}
$$

for $i=1, \ldots, n$. Evidently \hat{x} is Boolean (i.e., , has entries in $\{0,1\}$). If it is feasible for the Boolean LP, i.e., , if $A \hat{x} \preceq b$, then it can be considered a guess at a good, if not optimal, point for the Boolean LP. Its objective value, $U=c^{T} \hat{x}$, is an upper bound on p^{\star}. If U and L are close, then \hat{x} is nearly optimal; specifically, \hat{x} cannot be more than $(U-L)$-suboptimal for the Boolean LP.

This rounding need not work; indeed, it can happen that for all threshold values, \hat{x} is infeasible. But for some problem instances, it can work well.
Of course, there are many variations on this simple scheme for (possibly) constructing a feasible, good point from x^{rlx}.
Finally, we get to the problem. Generate problem data using one of the following.

```
import numpy as np
np.random.seed(0)
(m, n) = (300, 100)
A = np.random.rand(m, n)
b = A@np.ones((n, 1))/2
c = -np.random.rand(n, 1)
```

You can think of x_{i} as a job we either accept or decline, and $-c_{i}$ as the (positive) revenue we generate if we accept job i. We can think of $A x \preceq b$ as a set of limits on m resources. $A_{i j}$, which is positive, is the amount of resource i consumed if we accept job $j ; b_{i}$, which is positive, is the amount of resource i available.
Find a solution of the relaxed LP and examine its entries. Note the associated lower bound L. Carry out threshold rounding for (say) 100 values of t, uniformly spaced over $[0,1]$. For each
value of t, note the objective value $c^{T} \hat{x}$ and the maximum constraint violation $\max _{i}(A \hat{x}-b)_{i}$. Plot the objective value and the maximum violation versus t. Be sure to indicate on the plot the values of t for which \hat{x} is feasible, and those for which it is not.
Find a value of t for which \hat{x} is feasible, and gives minimum objective value, and note the associated upper bound U. Give the gap $U-L$ between the upper bound on p^{\star} and the lower bound on p^{\star}.

