Mathematical and Numerical Optimization, 3341.454 E. Ryu Fall 2020

Additional Problems for Homework 4

Problem 1: *Heuristic suboptimal solution for Boolean LP*. This exercise builds on exercises 4.15 and 5.13 in *Convex Optimization*, which involve the Boolean LP

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax \preceq b\\ & x_i \in \{0,1\}, \quad i=1,\ldots,n, \end{array}$

with optimal value p^* . Let x^{rlx} be a solution of the LP relaxation

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax \leq b\\ & 0 \leq x \leq 1. \end{array}$$

so $L = c^T x^{\text{rlx}}$ is a lower bound on p^* . The relaxed solution x^{rlx} can also be used to guess a Boolean point \hat{x} , by rounding its entries, based on a threshold $t \in [0, 1]$:

$$\hat{x}_i = \begin{cases} 1 & x_i^{\text{rlx}} \ge t \\ 0 & \text{otherwise,} \end{cases}$$

for i = 1, ..., n. Evidently \hat{x} is Boolean (i.e., , has entries in $\{0, 1\}$). If it is feasible for the Boolean LP, i.e., , if $A\hat{x} \leq b$, then it can be considered a guess at a good, if not optimal, point for the Boolean LP. Its objective value, $U = c^T \hat{x}$, is an upper bound on p^* . If U and L are close, then \hat{x} is nearly optimal; specifically, \hat{x} cannot be more than (U - L)-suboptimal for the Boolean LP.

This rounding need not work; indeed, it can happen that for all threshold values, \hat{x} is infeasible. But for some problem instances, it can work well.

Of course, there are many variations on this simple scheme for (possibly) constructing a feasible, good point from x^{rlx} .

Finally, we get to the problem. Generate problem data using one of the following.

import numpy as np
np.random.seed(0)
(m, n) = (300, 100)
A = np.random.rand(m, n)
b = A@np.ones((n, 1))/2
c = -np.random.rand(n, 1)

You can think of x_i as a job we either accept or decline, and $-c_i$ as the (positive) revenue we generate if we accept job i. We can think of $Ax \leq b$ as a set of limits on m resources. A_{ij} , which is positive, is the amount of resource i consumed if we accept job j; b_i , which is positive, is the amount of resource i available.

Find a solution of the relaxed LP and examine its entries. Note the associated lower bound L. Carry out threshold rounding for (say) 100 values of t, uniformly spaced over [0, 1]. For each value of t, note the objective value $c^T \hat{x}$ and the maximum constraint violation $\max_i (A\hat{x} - b)_i$. Plot the objective value and the maximum violation versus t. Be sure to indicate on the plot the values of t for which \hat{x} is feasible, and those for which it is not.

Find a value of t for which \hat{x} is feasible, and gives minimum objective value, and note the associated upper bound U. Give the gap U - L between the upper bound on p^* and the lower bound on p^* .