
Monotone Operators and Base Splitting Schemes

Ernest K. Ryu

Mathematical and Numerical Optimization
Fall 2021



Main idea

Use monotone operators and base splitting schemes to derive and analyze
a wide variety of classical and modern algorithms in a unified and
streamlined manner:

(i) pose the problem at hand as a monotone inclusion problem

(ii) use one of the base splitting schemes to encode the solution as a
fixed point of a related operator

(iii) find the solution with a fixed-point iteration.

2



Outline

Set-valued operators

Monotone operators

Nonexpansive and averaged operators

Fixed-point iteration

Resolvents

Proximal point method

Operator splitting

Variable metric methods

Set-valued operators 3



Set-valued operator

� : Rn ⇒ Rn is a set-valued operator on Rn if � maps a point in Rn to
a (possibly empty) subset of Rn.

Other names: point-to-set mapping, set-valued mapping, multi-valued
function, correspondence. For simplicity, write �x = �(x).

If �x is a singleton or empty for all x, then � is a function or is
single-valued with domain {x | �(x) 6= ∅} and write �x = y (although
�x = {y} would be strictly correct).

Graph of an operator:

Gra� = {(x, u) |u ∈ �x} ⊆ Rn ×Rn.

We will often not distinguish � and Gra� and write � when we really
mean Gra�.

Set-valued operators 4



Operator definitions

Domain and range of �:

dom� = {x | �x 6= ∅}, range� = {y | y ∈ �x, x ∈ Rn}

Image of C ⊆ Rn under �: �(C) = ∪c∈C�(c)

Composition of operators:

� ◦ �x = ��x = �(�(x))

Sum of operators:
(� + �)x = �(x) + �(x)

Equivalent definitions that use the graph:

�� = {(x, z) | ∃ y (x, y) ∈ �, (y, z) ∈ �}
� + � = {(x, y + z) | (x, y) ∈ �, (x, z) ∈ �}

Set-valued operators 5



Operator definitions

Identity and zero operators:

� = {(x, x) |x ∈ Rn} 0 = {(x, 0) |x ∈ Rn}

So � + 0 = �, �� = �, and �� = �.

� is L-Lipschitz if

‖�x− �y‖ ≤ L‖x− y‖ ∀x, y ∈ dom�.

(This definition generalizes the Lipschitz continuity to functions with
domain Rn to operators without full domain.)

If � is L-Lipschitz, it is single-valued; if �x is not a singleton, then we
have a contradiction by setting y = x.

Set-valued operators 6



Operator Inverse

The inverse operator of �:

�−1 = {(y, x) | (x, y) ∈ �}

�−1 is always well defined (�−1 need not be single-valued).

Gra� Gra�−1

(�−1)−1 = � and dom�−1 = range�

�−1 is not an inverse in the usual sense since �−1� 6= � possible.



Zero

If 0 ∈ �(x), x is a zero of �.

Zero set of an operator �:

Zer� = {x | 0 ∈ �x} = �−1(0)

Many interesting problems can be posed as finding zeros of an operator.

Set-valued operators 8



Subdifferential

When f is convex:

I ∂f is a set-valued operator

I argmin f = Zer ∂f

I when f is differentiable, write ∇f instead of ∂f

Set-valued operators 9



Subdifferential of conjugate

When f is CCP,
(∂f)−1 = ∂f∗

Proof.

u ∈ ∂f(x) ⇔ 0 ∈ ∂f(x)− u
⇔ x ∈ argmin

z
{f(z)− uᵀz}

⇔ −f(x) + uᵀx = f∗(u)

⇔ f(x) + f∗(u) = uᵀx

⇔ f∗∗(x) + f∗(u) = uᵀx

⇔ x ∈ ∂f∗(u)

The last step takes the whole argument backwards.

Set-valued operators 10



Subdifferential of conjugate

g(y) = f∗(Aᵀy), where f is CCP and R(Aᵀ) ∩ ri dom f∗ 6= ∅,

u ∈ ∂g(y) ⇔ u ∈ A∂f∗(Aᵀy)

⇔ u = Ax, x ∈ ∂f∗(Aᵀy)

⇔ u = Ax, ∂f(x) 3 Aᵀy

⇔ u = Ax, 0 ∈ ∂f(x)−Aᵀy

⇔ u = Ax, x ∈ argmin
z
{f(z)− 〈y,Az〉}

Find element of ∂g by solving a minimization problem.

Set-valued operators 11



Outline

Set-valued operators

Monotone operators

Nonexpansive and averaged operators

Fixed-point iteration

Resolvents

Proximal point method

Operator splitting

Variable metric methods

Monotone operators 12



Monotone operators

� is monotone if

〈u− v, x− y〉 ≥ 0 ∀ (x, u), (y, v) ∈ �.

Equivalently and more concisely, � is monotone if

〈�x− �y, x− y〉 ≥ 0 ∀x, y ∈ Rn.

Monotone operators 13



Maximal monotone operators

� is maximal monotone if @ monotone � such that Gra� ⊂ Gra�
properly.

I.e., if � is monotone but not maximal, then ∃ (x, u) /∈ � such that
� ∪ {(x, u)} is monotone.

Maximality is a technical but fundamental detail.

Monotone operators 14



Monotone operator example

Heaviside step function

u(x) =

{
0 for x ≤ 0
1 for x > 0

is monotone but not maximal. Operator

U(x) =

 {0} for x < 0
[0, 1] for x = 0
{1} for x > 0

is maximal monotone.

Grau GraU

Monotone operators 15



Monotonicity of subdifferentials

If f is convex and proper, then ∂f is monotone.
If f is CCP, then ∂f is maximal monotone.

Proof of monotonicity. Add

f(y) ≥ f(x) + 〈∂f(x), y − x〉, f(x) ≥ f(y) + 〈∂f(y), x− y〉

to get
〈∂f(x)− ∂f(y), x− y〉 ≥ 0.

Maximality proved later in §10

[subdiff. CCP] ⊂ [maximal monotone]

strict inclusion



Stronger monotonicity properties

� : Rn ⇒ Rn is µ-strongly monotone or µ-coercive if µ > 0 and

〈u− v, x− y〉 ≥ µ‖x− y‖2 ∀ (x, u), (y, v) ∈ �.

� is strongly monotone if it is µ-strongly monotone for some µ ∈ (0,∞).

� is β-cocoercive or β-inverse strongly monotone if β > 0

〈u− v, x− y〉 ≥ β‖u− v‖2 ∀ (x, u), (y, v) ∈ �.

We say � is cocoercive if it is β-cocoercive for some β ∈ (0,∞).

Cocoercivity and strong monotonicity are dual:
[� is β-cocoercive] ⇔ [�−1 is β-strongly monotone]

Strongly monotone and cocoercive operators are monotone.

Monotone operators 17



Stronger monotonicity properties

When � is β-cocoercive, Cauchy-Schwartz tells us

(1/β)‖x− y‖ ≥ ‖�x−�y‖ ∀x, y ∈ Rn.

i.e., � is (1/β)-Lipschitz. Cocoercive operators are single-valued.

Converse is not true.

�(x, y) =

[
0 1
−1 0

] [
x
y

]
=

[
y
−x

]
is maximal monotone and Lipschitz, but not cocoercive since
〈�x−�y, x− y〉 = 0.

More concisely express µ-strong monotonicity as

〈�x−�y, x− y〉 ≥ µ‖x− y‖2 ∀x, y ∈ Rn,

and, when � is a priori known or assumed to be single-valued, express
β-cocoercivity as

〈�x−�y, x− y〉 ≥ β‖�x−�y‖2 ∀x, y ∈ Rn.



Stronger monotonicity properties: Maximality

� is maximal µ-s.m. if @ µ-s.m. � such that Gra� ⊂ Gra� properly.
� is maximal β-coco. if @ β-coco. � such that Gra� ⊂ Gra� properly.

[Maximal coco.] and [maximal s.m.] are dual:
[� is maximal β-coco.] ⇔ [�−1 is maximal β-s.m.].

If � cocoercive, [� maximal] ⇔ [dom� = Rn]. (We prove this in §10.)
Therefore, “� : Rn → Rn is β-cocoercive” implicitly asserts
dom� = Rn and maximality of �.

Monotone operators 19



Stronger monotonicity properties: CCP functions

Assume f is CCP. Then

I [f is µ-strongly convex] ⇔ [∂f is µ-strongly monotone]

I [f is L-smooth] ⇔ [∂f is L-Lipschitz ] ⇔ [∂f is (1/L)-cocoercive]

I [f is µ-strongly convex] ⇔ [f∗ is (1/µ)-smooth]

For ∂f , Lipschitz = cocoercive.
For monotone operators, Lipschitz 6= cocoercive.

Monotone operators 20



Stronger monotonicity properties examples

Operator on R is monotone if its graph is a nondecreasing curve in R2.
Vertical portions, then multi-valued. Continuous with no end points, then
maximal. Slope ≥ µ, then µ-strongly monotone. Slope ≤ L, then
L-Lipschitz. Lipschitz and cocoercivity coincide.

Not monotone Monotone but
not maximal

Maximal
monotone and
single-valued

Maximal
monotone and
multi-valued

Strongly
monotone but
not Lipschitz

Lipschitz but not
strongly

monotone



Operations preserving monotonicity

I � (maximal) monotone, then �(x) = y + α�(x+ z) (maximal)
monotone for any α > 0 and y, z ∈ Rn.

I � (maximal) monotone, then �−1 (maximal) monotone.

I � and � monotone, � + � monotone.

I � and � maximal monotone and dom� ∩ int dom� 6= ∅, then � + �

maximal monotone.

I � : Rn ⇒ Rn monotone and M ∈ Rn×m, then Mᵀ�M monotone.

I � maximal and R(M) ∩ int dom� 6= ∅, then Mᵀ�M maximal.

Proofs of maximality in §10.

Monotone operators 22



Operations preserving monotonicity: Concatenation

If ℝ : Rn ⇒ Rn and � : Rm ⇒ Rm, then � : Rn+m ⇒ Rn+m

�(x, y) = {(u, v) |u ∈ ℝx, v ∈ �y}

the concatenation of ℝ and �, is (maximal) monotone if ℝ and � are.
Use notation

� =

[
ℝ

�

]
, �(x, y) =

[
ℝx
�y

]
.

Monotone operators 23



Operations preserving stronger monotonicity properties

� is µ-s.m., then α� is (αµ)-s.m. for α > 0.

� is µ-s.m. and � monotone, then � + � is µ-s.m.

� : Rn ⇒ Rn is µ-s.m., and M ∈ Rn×m has rank m, then Mᵀ�M is
(µσ2

min(M))-s.m.

� : Rn → Rn is L-Lipschitz and M ∈ Rn×m, then Mᵀ�M is
(Lσ2

max(M))-Lipschitz.

Monotone operators 24



Example: Affine operators

Affine operator �(x) = Ax+ b:

I [� maximal monotone] ⇔ [A+Aᵀ � 0]

I [� = ∇f for CCP f ] ⇔ [A = Aᵀ and A � 0]

I � is λmin(A+Aᵀ)/2-strongly monotone if λmin(A+Aᵀ) > 0
and σmax(A)-Lipschitz .

Monotone operators 25



Example: Continuous operators

� : Rn ⇒ Rn is continuous if
dom� = Rn, � is single-valued, and � is continuous as a function.

A continuous monotone operator � : Rn → Rn is maximal.

Maximality is only in question with discontinuous or set-valued operators.

Monotone operators 26



Example: Differentiable operators

We say an operator is differentiable if it is continuous and differentiable.

For differentiable � : Rn → Rn,

I [� monotone] ⇔ [D�(x) +D�(x)ᵀ � 0, ∀x]

I [� µ-s.m.] ⇔ [D�(x) +D�(x)ᵀ � 2µI, ∀x]

I [� L-Lipschitz] ⇔ [σmax(D�(x)) ≤ L, ∀x]

Continuously differentiable monotone �,
[� = ∇f for CCP f ] ⇔ [D�(x) symmetric ∀x]
(When n = 3, this is ∇×� = 0 condition of electromagnetic potentials.)

Monotone operators 27



Example: Saddle subdifferential

For convex concave L : Rn ×Rm → R ∪ {±∞},
saddle subdifferential operator ∂L : Rn ×Rm ⇒ Rn ×Rm:

∂L(x, u) =

[
∂xL(x, u)

∂u(−L(x, u))

]

Zer ∂L is the set of saddle points of L, i.e.,
[0 ∈ ∂L(x?, u?)] ⇔ [(x?, u?) is a saddle point of L]

For most well-behaved (“closed proper”) convex-concave saddle
functions, their saddle subdifferentials are maximal monotone.
We avoid this notion and instead verify the maximality of saddle
subdifferentials on a case-by-case basis.

Monotone operators 28



Example: KKT operator

Consider
minimize

x
f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m
hi(x) = 0, i = 1, . . . , p,

f0, . . . , fm are CCP and h1, . . . , hp are affine. Lagrangian

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)− δRm
+

(λ)

is convex-concave. Consider the Karush–Kuhn–Tucker (KKT) operator

�(x, λ, ν) =

 ∂xL(x, λ, ν)
−�(x) + ℕRm

+
(λ)

−ℍ(x)

 ,
where

�(x) =

 f1(x)
...

fm(x)

 , ℍ(x) =

h1(x)
...

hp(x)

 .
Monotone operators 29



Example: KKT operator

�(x, λ, ν) =

 ∂xL(x, λ, ν)
−�(x) + ℕRm

+
(λ)

−ℍ(x)

 =

 ∂xL(x, λ, ν)
∂λ(−L(x, λ, ν))
∂ν(−L(x, λ, ν))


� is a special case of the saddle subdifferential, so monotone.

Arguments based on total duality tell us:
[0 ∈ �(x?, λ?, ν?)] ⇔ [x? primal sol., (λ?, ν?) dual sol., strong duality]

Monotone operators 30



Monotone inclusion problem

Monotone inclusion problem:

find
x∈Rn

0 ∈ �x,

where � is monotone.

Many interesting problems can be formulated this way.

Monotone operators 31



Outline

Set-valued operators

Monotone operators

Nonexpansive and averaged operators

Fixed-point iteration

Resolvents

Proximal point method

Operator splitting

Variable metric methods

Nonexpansive and averaged operators 32



Nonexpansive and contractive operators

� is nonexpansive if

‖�x− �y‖ ≤ ‖x− y‖ ∀x, y ∈ dom�,

i.e., 1-Lipschitz. � is a contraction if L-Lipschitz with L < 1.

Mapping a pair of points by a contraction reduces their distance;
mapping by a nonexpansive operator does not increase their distance.

Properties:

I If � and � nonexpansive, then �� nonexpansive.

I If � or � furthermore contractive, then �� contractive.

I If � and � nonexpansive, then θ� + (1− θ)� with θ ∈ [0, 1]
nonexpansive.

I If � is furthermore contractive and θ ∈ (0, 1], then θ� + (1− θ)�
contractive.

Nonexpansive and averaged operators 33



Averaged operators

For θ ∈ (0, 1), � is θ-averaged if � = (1− θ)� + θ� for nonexpansive �.
Operator is averaged if θ-averaged for some θ ∈ (0, 1). Operator is firmly
nonexpansive if (1/2)-averaged.

� and � are averaged, composition �� is averaged. (Proof later in §13.)

Averagedness is the basis for convergence of many splitting methods.

Nonexpansive and averaged operators 34



Averaged operators

1L

Contractive

⊂
θ

Averaged

⊂
1

Nonexpansive

Illustration of classes of contractive, averaged, and nonexpansive
operators. The figure illustrates the relationship contractive ⊂ averaged
⊂ nonexpansive. The precise meaning of these figures will be defined in
§13.

Nonexpansive and averaged operators 35



Outline

Set-valued operators

Monotone operators

Nonexpansive and averaged operators

Fixed-point iteration

Resolvents

Proximal point method

Operator splitting

Variable metric methods

Fixed-point iteration 36



Fixed points

x is a fixed point of � if x = �x.

Fix� = {x | x = �x} = (�− �)−1(0)

Fix� can contain nothing (e.g. �x = x+ 1) or many points (e.g.
�x = |x|).

Fixed-point iteration 37



Fixed points

When � : Rn → Rn is nonexpansive, Fix� is closed and convex.

Proof. Fix� is closed since �− � is continuous.
Suppose x, y ∈ Fix�, θ ∈ [0, 1], and z = θx+ (1− θ)y ∈ Fix�. Since
� is nonexpansive,

‖�z − x‖ ≤ ‖z − x‖ = (1− θ)‖y − x‖,

Similarly,
‖�z − y‖ ≤ θ‖y − x‖.

So the triangle inequality

‖x− y‖ ≤ ‖�z − x‖+ ‖�z − y‖

holds with equality and �z is on the line segment between x and y.
From ‖�z − y‖ = θ‖y − x‖, we conclude �z = θx+ (1− θ)y = z.

Fixed-point iteration 38



Fixed-point iteration

The fixed-point iteration (FPI) is

xk+1 = �xk

for k = 0, 1, . . . , where x0 ∈ Rn is some starting point and � : Rn → Rn.

The FPI is used to find a fixed point of �. Clearly, the algorithm stays at
a fixed point if it starts at a fixed point.

Two steps of using FPI: (i) find a suitable operator whose fixed points
are solutions to a monotone inclusion problem of interest. (ii) show that
the iteration converges to a fixed point.

In general, FPI need not converge. We provide two guarantees.

Fixed-point iteration 39



FPI with contractive operators

If � : Rn → Rn is a contraction with L < 1, then FPI is a contraction
mapping algorithm. For x? ∈ Fix�,

‖xk − x?‖ ≤ L‖xk−1 − x?‖ ≤ · · · ≤ Lk‖x0 − x?‖.

Basis of classic Banach fixed-point theorem. When � is a contraction,
convergence is simple.

In many optimization setups, however, a contraction is too much to ask
for. We need convergence under weaker assumptions.

Fixed-point iteration 40



FPI with averaged operators

If � : Rn → Rn is averaged, FPI is called an averaged or the
Krasnosel’skĭı–Mann iteration.

Theorem 1.
Assume � : Rn → Rn is θ-averaged with θ ∈ (0, 1) and Fix� 6= ∅. Then
xk+1 = �xk with any starting point x0 ∈ Rn converges to one fixed
point, i.e.,

xk → x?

for some x? ∈ Fix�. The quantities dist(xk,Fix�), ‖xk+1 − xk‖, and
‖xk − x?‖ for any x? ∈ Fix� are monotonically nonincreasing with k.
Finally, we have

dist(xk,Fix�)→ 0

and

‖xk+1 − xk‖2 ≤ θ

(k + 1)(1− θ)
dist2(x0,Fix�).

Fixed-point iteration 41



Discussion of Theorem 1

When � is nonexpansive but not averaged, we can use (1− θ)� + θ�
with θ ∈ (0, 1) since Fix� = Fix ((1− θ)� + θ�).

For example, � : R2 → R2

�x =

[
−0.5 0

0 1

]
x

is (3/4)-averaged with Fix� = {(0, z) | z ∈ R}.

Fix�

x0x1 x2x3

FPI with respect to � converges to one fixed point, which depends on
the staring put x0.



Proof outline of Theorem 1

Assume nonnegative sequences V 0, V 1, . . . and S0, S1, . . . satisfy

V k+1 ≤ V k − Sk.

Consequences: (i) V k is monotonically nonincreasing (although V k 9 0
possible) (ii) Sk → 0. To see why, sum both sides from 0 to k to get

k∑
i=0

Si ≤ V 0 − V k+1 ≤ V 0.

Taking k →∞ gives us

∞∑
i=0

Si ≤ V 0 <∞.

S0, S1, . . . is summable. By summability, Sk → 0. V k is a the Lyapunov
function and Sk the summable term. This is the summability argument.

Fixed-point iteration 43



Proof of Theorem 1

Stage 1. Note the identity

‖(1− θ)x+ θy‖2 = (1− θ)‖x‖2 + θ‖y‖2 − θ(1− θ)‖x− y‖2.

� = (1− θ)� + θ�, where � is N.E. Then

xk+1 = �xk = (1− θ)xk + θ�xk.

For any x? ∈ Fix�,

‖xk+1 − x?‖2

= (1− θ)‖xk − x?‖2 + θ‖�(xk)− x?‖2 − θ(1− θ)‖�(xk)− xk‖2

≤ (1− θ)‖xk − x?‖2 + θ‖xk − x?‖2 − θ(1− θ)‖�(xk)− xk‖2

= ‖xk − x?‖2︸ ︷︷ ︸
=V k

− θ(1− θ)‖�(xk)− xk‖2︸ ︷︷ ︸
=Sk

. (1)

Fixed-point iteration 44



Proof of Theorem 1

Now establish the monotonic decreases. Core inequality (1) tells us

‖xk+1 − x?‖ ≤ ‖xk − x?‖.

Minimize both sides with respect to x? ∈ Fix�:

dist(xk+1,Fix�) ≤ dist(xk,Fix�).

This is called Fejér monotonicity.

Fixed-point residual: �(xk)− xk = xk+1 − xk. We view ‖�(xk)− xk‖
as a measure of optimality for FPI. Since � is nonexpansive,

‖xk+1 − xk‖ = ‖�xk − �xk−1‖ ≤ ‖xk − xk−1‖.

Fixed-point iteration 45



Proof of Theorem 1

Sum (1) from 0 to k

‖xk+1 − x?‖2 ≤ ‖x0 − x?‖2 − 1− θ
θ

k∑
j=0

‖�xj − xj‖2

Reorganize

k∑
j=0

‖�xj − xj‖2 ≤ θ

1− θ
‖x0 − x?‖2 − θ

1− θ
‖xk+1 − x?‖2

Monotonicity of ‖xk+1 − xk‖

(k + 1)‖xk+1 − xk‖2 ≤
k∑
j=0

‖xj+1 − xj‖2 ≤ θ

1− θ
‖x0 − x?‖2

Conclude

‖xk+1 − xk‖2 ≤ θ

(k + 1)(1− θ)
‖x0 − x?‖2.

Minimizing the right-hand side with respect to x? ∈ Fix�

‖xk+1 − xk‖2 ≤ θ

(k + 1)(1− θ)
dist2(x0,Fix�).



Convergence proof of Theorem 1

Stage 2. Now show xk → x? for some x? ∈ Fix� with the steps:
(i) xk has an accumulation point (ii) this accumulation point is a
solution (iii) this is the only accumulation point.

(i) Consider any x̃? ∈ Fix�. Then (1) tells us that x0, x1, . . . lie within
the compact set {x | ‖x− x̃?‖ ≤ ‖x0 − x̃?‖}, and x0, x1, . . . has an
accumulation point x?.

(ii) Accumulation point x? satisfies �(x?)− x? = 0, as �(xk)− xk → 0
and �− � is continuous, i.e., x? ∈ Fix�.

(iii) Apply (1) to this accumulation point x? ∈ Fix� to conclude
‖xk − x?‖ monotonically decreases to 0, i.e., the entire sequence
converges to x?.

Fixed-point iteration 47



Termination criterion

‖xk+1 − xk‖ < ε can be used as a termination criterion.
Specific setups may have specific and better termination criteria.

We avoid the discussion of termination criterion for simplicity.

Fixed-point iteration 48



Methods: Gradient descent

Consider
minimize
x∈Rn

f(x),

where f is CCP and differentiable.

[x ∈ argminf ] ⇔ [x = (�− α∇f)(x) for any nonzero α ∈ R]

The FPI
xk+1 = xk − α∇f(xk)

is gradient method or gradient descent, and α is the step size.

Fixed-point iteration 49



Methods: Gradient descent

Assume f is L-smooth. By cocoercivity,

‖(�− (2/L)∇f)x− (�− (2/L)∇f)y‖2

= ‖x− y‖2 − 4

L

(
〈x− y,∇f(x)−∇f(y)〉 − 1

L
‖∇f(x)−∇f(y)‖2

)
≤ ‖x− y‖2.

Therefore, �− α∇f is averaged for α ∈ (0, 2/L) since

�− α∇f = (1− θ)� + θ(�− (2/L)∇f),

where θ = αL/2 < 1.

xk → x? if a solution exists with rate

‖∇f(xk)‖2 = O(1/k),

for any α ∈ (0, 2/L).

If f is strongly convex, FPI is a contraction.
Fixed-point iteration 50



Methods: Forward step method

Consider
find
x∈Rn

0 = �(x),

where � : Rn → Rn.

[x ∈ Zer�] ⇔ [x ∈ Fix (�− α�) for any nonzero α ∈ R]

The FPI
xk+1 = xk − α�xk,

is the forward step method.

xk → x? if � is β-cocoercive, α ∈ (0, 2β), and Fix� 6= ∅.
Contraction for small α > 0 if � is strongly monotone and Lipschitz.

Fixed-point iteration 51



Methods: Dual ascent

Consider primal-dual problem pair

minimize
x∈Rn

f(x)

subject to Ax = b,
maximize
u∈Rm

−f∗(−Aᵀu)− bᵀu

and its associated Lagrangian

L(x, u) = f(x) + 〈u,Ax− b〉.

Gradient method on g(u) = f∗(−Aᵀu) + bᵀu, the FPI on �− α∇g

xk+1 = argmin
x

L(x, uk)

uk+1 = uk + α(Axk+1 − b)

Uzawa method or dual ascent. (∇g characterized in page 11.)

Fixed-point iteration 52



Methods: Dual ascent

If f is µ-strongly convex, then

∇g(u) = −A∇f∗(−Aᵀu) + b

is Lipschitz with parameters σ2
max(A)/µ.

If f is µ-strongly convex, total duality holds, and 0 < α < 2µ/σ2
max(A),

then xk → x? and uk → u?.

Fixed-point iteration 53



Outline

Set-valued operators

Monotone operators

Nonexpansive and averaged operators

Fixed-point iteration

Resolvents

Proximal point method

Operator splitting

Variable metric methods

Resolvents 54



Resolvent and reflected resolvent

Resolvent �:
�� = (� + �)−1

Reflected resolvent of �:

ℝ� = 2�� − �

also called Cayley operator or reflection operator.
Often use �α� and ℝα� with α > 0.

If � is maximal monotone, ℝ� is a nonexpansive (single-valued) with
domℝ� = Rn, and �� is a (1/2)-averaged with dom �� = Rn.

Resolvents 55



Nonexpansiveness of ℝ� and ��

Proof of nonexpansiveness and averagedness.

Proof. Assume (x, u), (y, v) ∈ ��. Then

x ∈ u+ �u, y ∈ v + �v.

By monotonicity of �,

〈(x− u)− (y − v), u− v〉 ≥ 0

and

‖(2u− x)− (2v − y)‖2 = ‖x− y‖2 − 4〈(x− u)− (y − v), u− v〉
≤ ‖x− y‖2.

So ℝ� is NE and �� = (1/2)� + (1/2)ℝ� is (1/2)-averaged.

Resolvents 56



Domain of ℝ� and ��

Minty surjectivity theorem: dom �� = Rn when � is maximal monotone.

This result is easy to intuitively see in 1D but is non-trivial in higher
dimensions. We prove this in §10.

Resolvents 57



Zero set of a maximal monotone operator

Zer� is a closed convex set when � is maximal monotone

Proof. Zer� = Fix �� since

0 ∈ �x ⇔ x ∈ x+ �x ⇔ ��x = x.

Since �� is nonexpansive, Fix �� = Zer� is a closed convex set.

Note that proof relies on maximality through dom �� = Rn.

Resolvents 58



Example: Monotone linear operator

Let � be a monotone linear operator represented by a symmetric matrix.

Then, � has eigenvalues in [0,∞) and �� = (� + �)−1 has eigenvalues
in (0, 1].

ℝ� = 2�� − � = (�−�)(� + �)−1 = (� + �)−1(�−�),

is the Cayley transform of � and has eigenvalues in (−1, 1].

Resolvents 59



Example: Complex number as operator on R2 ∼= C

Identify z ∈ C with a linear operator from C to C defined by
multiplication, i.e., z : x 7→ zx.

Equip complex numbers with inner product 〈x, y〉 = Rexy.

{z | Re z ≥ 0}
{

(1 + z)−1 | Re z ≥ 0
}

1

z ∈ C is monotone if and only if Re z ≥ 0. Resolvent (1 + z)−1 for
monotone z is in disk with center 1/2 and radius 1/2 excluding origin.

Resolvents 60



Resolvent of subdifferential

For CCP f and α > 0,
�α∂f = Proxαf .

Proof.

z = (I + α∂f)−1(x) ⇔ z + α∂f(z) 3 x

⇔ 0 ∈ ∂z
(
αf(z) +

1

2
‖z − x‖2

)
⇔ z = argmin

z

{
αf(z) +

1

2
‖z − x‖2

}
⇔ z = Proxαf (x)

Resolvents 61



Resolvent of subdifferential of conjugate

If g(u) = f∗(Aᵀu), f CCP, and ri dom f∗ ∩R(Aᵀ) 6= ∅, then

v = Proxαg(u) ⇔ x ∈ argminx
{
f(x)− 〈u,Ax〉+ α

2 ‖Ax‖
2
}

v = u− αAx.

Proof.

v = (I+α∂g)−1(u)

⇔ v + αA∂f∗(Aᵀv) 3 u
⇔ v + αAx = u, x ∈ ∂f∗(Aᵀv)

⇔ v = u− αAx, ∂f(x) 3 Aᵀv

⇔ v = u− αAx, ∂f(x) 3 Aᵀ(u− αAx)

⇔ v = u− αAx, x ∈ argmin
x

{
f(x)− 〈u,Ax〉+

α

2
‖Ax‖2

}
.

Resolvents 62



Projection is a resolvent

If C ⊂ Rn is nonempty closed convex, then

�ℕC
= ProxδC = ΠC .

The resolvent generalizes the projection operator in this sense.

Resolvents 63



KKT operator for linearly constrained problems

Consider the Lagrangian

L(x, u) = f(x) + 〈u,Ax− b〉

which generates the primal problem

minimize
x∈Rn

f(x)

subject to Ax = b.

We can compute its resolvent with

�α∂L(x, u) = (y, v) ⇔ y = argminz
{
Lα(z, u) + 1

2α‖z − x‖
2
}

v = u+ α(Ay − b),

where Lα is the augmented Lagrangian

Lα(x, u) = f(x) + 〈u,Ax− b〉+
α

2
‖Ax− b‖2.

Resolvents 64



KKT operator for linearly constrained problems

Proof. For any α > 0,

(y, v) = �α∂L(x, u) ⇔
[
x
u

]
∈
[
y
v

]
+ α

[
∂f(y) +Aᵀv
b−Ay

]
⇔

[
x
u

]
∈ α

[
∂f(y)
b

]
+

[
I αAᵀ

−αA I

] [
y
v

]
.

Left-multiply invertible matrix [
I −αAᵀ

0 I

]
to get

⇔
[
x− αAᵀu

u

]
∈ α

[
∂f(y)− αAᵀb

b

]
+

[
I + α2AᵀA 0
−αA I

] [
y
v

]
.

First line is independent of v, so we can compute y first and then v.
(This is the Gaussian elimination technique of §3.4.)

Resolvents 65



KKT operator for linearly constrained problems

Reorganize to get

0 ∈ ∂f(y) +Aᵀu− αAᵀ(Ay − b) + (1/α)(y − x)

v = u+ α(Ay − b),

and conclude

y = argmin
z

{
f(z) + 〈u,Az − b〉+

α

2
‖Az − b‖2 +

1

2α
‖z − x‖2

}
v = u+ α(Ay − b).

Resolvents 66



Resolvent identities

Let � maximal monotone and α > 0.

If �(x) = �(x) + t,
�α�(u) = �α�(u− αt).

If �(x) = �(x− t),

�α�(u) = �α�(u− t) + t.

If �(x) = −�(t− x),

�α�(u) = t− �α�(t− u).

Resolvents 67



Inverse resolvent identity

Inverse resolvent identity:

�α−1�(x) + α−1�α�−1(αx) = x,

for maximal monotone � and α > 0.

When α = 1,
�� + ��−1 = �.

Moreau identity: a special case, for CCP f

Proxα−1f (x) + α−1Proxαf∗(αx) = x.

Consequence: Proxαf and Proxαf∗ require same computational cost.

Resolvents 68



Reflected resolvent identities

If � is maximal monotone and single-valued and α > 0,

ℝα� = (�− α�)(� + α�)−1.

Proof.

ℝα� = 2(� + α�)−1 − �

= 2(� + α�)−1 − (� + α�)(� + α�)−1

= (�− α�)(� + α�)−1.

2nd line by Exercise 2.1.

Resolvents 69



Reflected resolvent identities

If � is maximal monotone (but not necessarily single-valued) and α > 0,

ℝα�(� + α�) = �− α�.

Proof. For x ∈ dom�,

ℝα�(� + α�)(x) = 2(� + α�)−1(� + α�)(x)− (� + α�)(x)

= 2�(x)− (� + α�)(x)

= (�− α�)(x)

2nd line by Exercise 2.1. For x /∈ dom�, both sides are empty.

Resolvents 70



Outline

Set-valued operators

Monotone operators

Nonexpansive and averaged operators

Fixed-point iteration

Resolvents

Proximal point method

Operator splitting

Variable metric methods

Proximal point method 71



Proximal point method

Consider
find
x∈Rn

0 ∈ �x

where � is maximal monotone. Equivalent to finding x ∈ Fix �α�.

The FPI
xk+1 = �α�(xk)

is the proximal point method (PPM) or proximal minimization.

PPM converges to a solution if one exists, since �α� is averaged.

Proximal point method 72



Methods of multipliers

Consider the primal-dual problem pair

minimize
x∈Rn

f(x)

subject to Ax = b,
maximize
u∈Rm

−f∗(−Aᵀu)− bᵀu

generated by the Lagrangian L(x, u) = f(x) + 〈u,Ax− b〉.

Augmented Lagrangian:

Lα(x, u) = f(x) + 〈u,Ax− b〉+
α

2
‖Ax− b‖2.

Proximal point method 73



Method of multipliers

Assume R(Aᵀ) ∩ ri dom f∗ 6= ∅. Write g(u) = f∗(−Aᵀu) + bᵀu.

The FPI uk+1 = �α∂g(u
k)

xk+1 ∈ argmin
x

Lα(x, uk)

uk+1 = uk + α(Axk+1 − b)

is the method of multipliers. (Proxαg calculation in pages 62 and 67.)

If a dual solution exists and α > 0, then uk → u?.

Proximal point method 74



Proximal method of multipliers

The FPI (xk+1, uk+1) = �α∂L(xk, uk)

xk+1 = argmin
x

{
Lα(x, uk) +

1

2α
‖x− xk‖2

}
uk+1 = uk + α(Axk+1 − b)

is the proximal method of multipliers. (�α∂L calculation in page 64.)

If total duality holds and α > 0, then xk → x? and uk → u?.

Proximal point method 75



Outline

Set-valued operators

Monotone operators

Nonexpansive and averaged operators

Fixed-point iteration

Resolvents

Proximal point method

Operator splitting

Variable metric methods

Operator splitting 76



Operator splitting

Operator splitting: split a monotone inclusion problem into smaller
simpler components.

Specifically, transform monotone inclusion problems x ∈ Zer (� + �) or
x ∈ Zer (� + � + ℂ) into fixed-point equations constructed from �, �,
ℂ, and their resolvents.

Unified approach: formulate optimization problem as monotone inclusion
problem, apply a splitting scheme, and use the FPI.

Operator splitting 77



Forward-backward splitting

Consider
find
x∈Rn

0 ∈ (� + �),

where � and � maximal monotone, � single-valued.

For α > 0,

0 ∈ (� + �)x ⇔ 0 ∈ (� + α�)x− (�− α�)x

⇔ (� + α�)x 3 (�− α�)x

⇔ x = �α�(�− α�)x.

So [x ∈ Zer (� + �)] ⇔ [x ∈ Fix �α�(�− α�)].

�α�(�− α�) is forward-backward splitting (FBS).

Operator splitting 78



Forward-backward splitting

Assume � is β-cocoercive and α ∈ (0, 2β).

Forward step �− α� and backward step (� + α�)−1 are averaged.
So the composition �α�(�− α�) is averaged.

FPI with FBS
xk+1 = �α�(xk − α�xk)

converges if α ∈ (0, 2β) and Zer (� + �) 6= ∅.

Operator splitting 79



Backward-forward splitting

Similar splitting with permuted order:

0 ∈ (� + �)x ⇔ (� + α�)x 3 (�− α�)x

⇔ z = (�− α�)x, z ∈ (� + α�)x

⇔ z = (�− α�)x, �α�z = x

⇔ z = (�− α�)�α�z, �α�z = x

So [x ∈ Zer (� + �)] ⇔ [z ∈ Fix (�− α�)�α�, x = �α�z].

(�− α�)�α� is backward-forward splitting (BFS).

Operator splitting 80



Backward-forward splitting

FPI with BFS

xk+1 = �α�z
k

zk+1 = xk+1 − α�xk+1

converges if α ∈ (0, 2β) and Zer (� + �) 6= ∅.

BFS is FBS with the order permuted. BFS is more natural to work with
in some setups considered in §5 and §6.

Operator splitting 81



Peaceman–Rachford splitting

Consider
find
x∈Rn

0 ∈ (� + �)x,

where � and � maximal monotone.

For α > 0, (2nd step uses identity of page 70)

0 ∈ (� + �)x ⇔ 0 ∈ (� + α�)x− (�− α�)x

⇔ 0 ∈ (� + α�)x−ℝα�(� + α�)x

⇔ 0 ∈ (� + α�)x−ℝα�z, z ∈ (� + α�)x

⇔ ℝα�z ∈ (� + α�)�α�z, x = �α�z

⇔ �α�ℝα�z = �α�z, x = �α�z

⇔ 2�α�ℝα�z − z = ℝα�z, x = �α�z

⇔ 2�α�ℝα�z −ℝα�z = z, x = �α�z

⇔ ℝα�ℝα�z = z, x = �α�z.

So [x ∈ Zer (� + �)] ⇔ [z ∈ Fixℝα�ℝα�, x = �α�z].

ℝα�ℝα� is Peaceman–Rachford splitting (PRS).



Peaceman–Rachford splitting

ℝα�ℝα� merely nonexpansive. FPI with PRS

zk+1 = ℝα�ℝα�(zk)

may not converge.

Operator splitting 83



Douglas–Rachford splitting

Average to ensure convergence.

FPI with 1
2� + 1

2ℝα�ℝα�, Douglas–Rachford splitting (DRS), is

xk+1/2 = �α�(zk)

xk+1 = �α�(2xk+1/2 − zk)

zk+1 = zk + xk+1 − xk+1/2

converges for any α > 0 if Zer (� + �) 6= ∅.

Operator splitting 84



Davis–Yin splitting

Consider
find
x∈Rn

0 ∈ (� + � + ℂ)x,

where �, �, ℂ maximal monotone, ℂ single-valued.

For α > 0,

0 ∈ (� + � + ℂ)x ⇔ (1/2)� + (1/2)�z = z, x = �α�z,

� = ℝα�(ℝα� − αℂ�α�)− αℂ�α�.

Davis–Yin splitting (DYS)

1

2
� +

1

2
� = �− �α� + �α�(ℝα� − αℂ�α�)

Operator splitting 85



Davis–Yin splitting

If ℂ is β-cocoercive and α ∈ (0, 2β), then (1/2)� + (1/2)� is averaged.
We prove this in §13.

FPI with DYS

xk+1/2 = �α�(zk)

xk+1 = �α�(2xk+1/2 − zk − αℂxk+1/2)

zk+1 = zk + xk+1 − xk+1/2

converges for α ∈ (0, 2β) if Zer (� + � + ℂ) 6= ∅.

DYS reduces to:

I BFS when � = 0

I FBS when � = 0

I DRS when ℂ = 0

I PPM when � = ℂ = 0



Splitting for convex optimization

In §3, we combine the base splittings (FBS, DRS, DYS) with various
techniques to derive many methods.

For now, we directly apply the base splittings to convex optimization.

Operator splitting 87



Proximal gradient method

Consider
minimize
x∈Rn

f(x) + g(x),

where f , g CCP and f differentiable.
[x ∈ argmin(f + g)] ⇔ [x ∈ Zer (∇f + ∂g)]

FPI with FBS
xk+1 = Proxαg(x

k − α∇f(xk))

is the proximal gradient method. If solution exists, f is L-smooth, and
α ∈ (0, 2/L), then xk → x?.

Operator splitting 88



Proximal gradient method

Equivalent to

xk+1 = argmin
x

{
f(xk) + 〈∇f(xk), x− xk〉+ g(x) +

1

2α
‖x− xk‖22

}
,

which uses a first-order approximation of f about xk.

When g = δC
xk+1 = ΠC(xk − α∇f(xk))

is the projected gradient method.

Operator splitting 89



DRS for convex optimization

Primal-dual problem pair

minimize
x∈Rn

f(x) + g(x) maximize
u∈Rn

−f∗(−u)− g∗(u) (2)

generated by
L(x, u) = f(x) + 〈x, u〉 − g∗(u),

where f , g CCP.

Primal problem equivalent to

find
x∈Rn

0 ∈ (∂f + ∂g)x

when total duality holds. (Proof a few slides later.)

Operator splitting 90



DRS for convex optimization

FPI with DRS:

xk+1/2 = Proxαg(z
k)

xk+1 = Proxαf (2xk+1/2 − zk)

zk+1 = zk + xk+1 − xk+1/2

If total duality holds and α > 0, then xk → x? and xk+1/2 → x?.
In §9, we furthermore show zk → z? = x? + αu?.

DRS requires f and g to be CCP and α ∈ (0,∞).
Prox-grad requires f to be L-smooth and α ∈ (0, 2/L).

DRS useful when evaluating Proxαf and Proxαg are easy.
Prox-grad useful when evaluating ∇f and Proxαg are easy.
PPM useful when evaluating Proxα(f+g) is easy.



Example: LASSO and ISTA

Consider A ∈ Rm×n, b ∈ Rm, λ > 0 and the LASSO problem

minimize
x∈Rn

1

2
‖Ax− b‖2 + λ‖x‖1.

FPI with DRS
xk+1/2 = (I + αAᵀA)−1(zk + αAᵀb)

xk+1 = S(2xk+1/2 − zk;αλ)

zk+1 = zk + xk+1 − xk+1/2,

converges for any α > 0. FPI with FBS (prox-grad)

xk+1 = S(xk − αAᵀ(Axk − b);αλ)

is the Iterative Shrinkage-Thresholding Algorithm (ISTA). This converges
for 0 < α < 2/λmax(AᵀA). (S(x;κ) = Proxκ‖·‖1(x)c.f. §1.)

DRS uses the matrix inverse (I + αAᵀA)−1, which can be prohibitively
expensive to compute when m and n are large. FBS is the more
computationally effective splitting for large-scale LASSO problems.



DYS for convex optimization

Primal-dual problem pair

minimize
x∈Rn

f(x) + g(x) + h(x) maximize
u∈Rn

−(f + h)∗(−u)− g∗(u)

generated by the Lagrangian

L(x, u) = f(x) + h(x) + 〈x, u〉 − g∗(u).

FPI with DYS:

xk+1/2 = Proxαg(z
k)

xk+1 = Proxαf (2xk+1/2 − zk − α∇h(xk+1/2))

zk+1 = zk + xk+1 − xk+1/2

If total duality holds, h is L-smooth, and α ∈ (0, 2/L), then xk → x?

and xk+1/2 → x?. In §9, we furthermore show zk → z? = x? + αu?.

Operator splitting 93



Necessity and sufficiency of total duality

Role of total duality in splitting methods:

argmin(f+g) = Zer (∂f+∂g) 6= ∅ ⇔ total duality holds between (2)

Therefore,

minimize
x∈Rn

f(x) + g(x) ⇔ find
x∈Rn

0 ∈ (∂f + ∂g)(x)

when total duality holds.

Operator splitting 94



Necessity and sufficiency of total duality

Proof. First, assume that total duality holds. Then x? ∈ argmin(f + g)
if and only if (x?, u?) is a saddle point of

L(x, u) = f(x) + 〈x, u〉 − g∗(u)

for some u? ∈ Rn, and

(x?, u?) is a saddle point of L ⇔ 0 ∈ ∂L(x?, u?)

⇔ 0 ∈ ∂xL(x?, u?), 0 ∈ ∂u(−L)(x?, u?)

⇔ − u? ∈ ∂f(x?), u? ∈ ∂g(x?)

⇔ 0 ∈ (∂f + ∂g)(x?).

We conclude argmin(f + g) = Zer (∂f + ∂g) 6= ∅.

Next, assume argmin(f + g) = Zer (∂f + ∂g) 6= ∅. Then any
x? ∈ argmin(f + g) satisfies 0 ∈ (∂f + ∂g)(x?). By a similar chain of
arguments, (x?, u?) is a saddle point of L for some u? ∈ Rn, and we
conclude total duality holds.



Discussion: Fixed-point encoding

Fixed-point encoding establishes a correspondence between solutions of a
monotone inclusion problem and fixed points of a related operator.

PPM, FBS, BFS, DRS, DYS are fixed-point encodings.

Operator splitting 96



Discussion: Why resolvent?

Splittings use resolvents or direct evaluations of single-valued operators.
Why not use other operators such as (�− α�)−1?

I Computational convenience; evaluating something like (�− α∂f)−1

is often difficult.

I Single-valued operators are algorithmically actionable; we can
compute and store a vector but not a set in Rn on a computer.
Multi-valued operators are useful mathematically.
Single-valued operators are useful algorithmically.

Operator splitting 97



Discussion: Role of maximality

xk+1 = �xk becomes undefined if xk /∈ dom�. In Theorem 1, we
implicitly assumed dom� = Rn, satisfied with resolvents of maximal
monotone operators. (Theoretical necessity.)

In practice, for non-maximal monotone operators (e.g. subgradient
operator of a nonconvex function) we cannot efficiently compute the
resolvent. (Practical necessity.)

Operator splitting 98



Discussion: Computational efficiency

Base splitting methods are useful when the subroutines are efficient to
compute. The DRS iteration

zk+1 =

(
1

2
� +

1

2
ℝα�ℝα�

)
zk

always converges, but it is most useful when ℝα� and ℝα� are efficient.

For a given an optimization problem, there is more than one method.
Trick: find a method using computationally efficient split components.

Operator splitting 99



Example: Consensus technique

Consider

minimize
x∈Rn

m∑
i=1

gi(x)

where g1, . . . , gm are CCP. Equivalent to

minimize
x∈Rnm

m∑
i=1

gi(xi)

subject to x ∈ C,

where x = (x1, . . . , xm) and

C = {(x1, . . . , xm) |x1 = · · · = xm}
is the consensus set. Equivalent to

find
x∈Rnm

0 ∈

 ∂g1(x1)
...

∂gm(xm)

+ ℕC(x),

assuming
⋂m
i=1 int dom gi 6= ∅.

Operator splitting 100



Example: Consensus technique

Projection onto the consensus set is simple averaging:

ΠCx = x = (x, x, . . . , x), x =
1

m

m∑
i=1

xi.

DRS

xk+1
i = Proxαgi(2z

k − zki ) for i = 1, . . . ,m,

zk+1 = zk + xk+1 − zk

converges for any α > 0, if
⋂m
i=1 int dom gi 6= ∅ and a solution exists.

This method is well-suited for parallel distributed computing.

Operator splitting 101



Example: Forward-Douglas–Rachford

Consider

minimize
x∈Rn

m∑
i=1

(fi(x) + gi(x)),

where g1, . . . , gm are CCP and f1, . . . , fm are L-smooth.
With the consensus technique, equivalent to

minimize
x∈Rnm

m∑
i=1

fi(xi) +

m∑
i=1

gi(xi)

subject to x ∈ C.

DYS

xk+1
i = Proxαgi(2z

k − zki − α∇fi(zk)) for i = 1, . . . ,m,

zk+1 = zk + xk+1 − zk,

is generalized forward-backward or forward-Douglas–Rachford. Converges
if total duality holds,

⋂m
i=1 int dom gi 6= ∅, and α ∈ (0, 2/L).

Operator splitting 102



Outline

Set-valued operators

Monotone operators

Nonexpansive and averaged operators

Fixed-point iteration

Resolvents

Proximal point method

Operator splitting

Variable metric methods

Variable metric methods 103



Variable metric methods

The Euclidean norm played a special role:

Proxf (x0) = argmin
x

{
f(x) +

1

2
‖x− x0‖2

}
,

is defined with ‖ · ‖ and Theorem 1 is stated in terms of ‖ · ‖.

Variable metric methods generalize with the M -norm, defined as
‖x‖2M = xᵀMx for M � 0.

Why? (i) A good choice of M can act as a preconditioner and reduce the
number of iterations needed. (ii) Sometimes � has structure and a well
chosen M cancels terms to make (M + �)−1 easy to evaluate. (c.f. §3)

Disclaimer: despite the name, the generalization only works with
M -norms, which are induced by the inner product 〈x, y〉M = xᵀMy, but
not other metrics, such as the `1-norm.

Variable metric methods 104



Variable metric PPM

If � maximal monotone and M � 0, then M−1/2�M−1/2 maximal
monotone and the PPM

yk+1 = (� +M−1/2�M−1/2)−1yk

converges.

Change of variables xk = M−1/2yk give

(� +M−1/2�M−1/2)yk+1 3 yk

(� +M−1�)xk+1 3 xk

and

xk+1 = �M−1�x
k

= (M + �)−1Mxk,

variable metric PPM. xk inherit convergence from yk.
Variable metric methods 105



Variable metric FBS

Let � and � be maximal monotone and let � be single-valued.

FBS with M−1/2�M−1/2 and M−1/2�M−1/2, after change of variables,

xk+1 = (M + �)−1(M −�)xk

= �M−1�(�−M−1�)xk.

is variable metric FBS.

Converges if �−M−1/2�M−1/2 is averaged.

Variable metric methods 106



Proximal interpretation

When � = ∇f and � = ∂g, then

�M−1∂g(�−M−1∇f)x = argmin
z∈Rd

{
g(z) + 〈∇f(x), z〉+

1

2
‖z − x‖2M

}
.

Interpretation: Variable metric FBS is prox-grad with the norm ‖ · ‖M .

If � is β-cocoercive, then M−1/2�M−1/2 is (β/‖M−1‖)-cocoercive.
So variable metric FBS converges if ‖M−1‖ < 2β.

Variable metric methods 107



Averagedness with respect to ‖ · ‖M

Assume M � 0. � is nonexpansive in ‖ · ‖M if

‖�x− �y‖M ≤ ‖x− y‖M ∀x, y ∈ dom�.

For θ ∈ (0, 1), � is θ-averaged in ‖ · ‖M if � = (1− θ)� + θ� for some �

that is nonexpansive in ‖ · ‖M .

[M−1/2�M−1/2 nonexp. (in ‖ · ‖)] ⇔ [M−1� nonexp. in ‖ · ‖M ]
Because

‖M−1/2�M−1/2x−M−1/2�M−1/2y‖2 ≤ ‖x− y‖2

is equivalent to

‖M−1�x̃−M−1�ỹ‖2M ≤ ‖x̃− ỹ‖2M

with the change of variables M−1/2x = x̃ and M−1/2y = ỹ.

Variable metric methods 108


	Set-valued operators
	Monotone operators
	Nonexpansive and averaged operators
	Fixed-point iteration
	Resolvents
	Proximal point method
	Operator splitting
	Variable metric methods

