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Main idea

Use monotone operators and base splitting schemes to derive and analyze
a wide variety of classical and modern algorithms in a unified and

streamlined manner:
(i) pose the problem at hand as a monotone inclusion problem
(ii) use one of the base splitting schemes to encode the solution as a
fixed point of a related operator
(iii) find the solution with a fixed-point iteration.
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Set-valued operator

T: R™ = R" is a set-valued operator on R™ if T maps a point in R” to
a (possibly empty) subset of R™.

Other names: point-to-set mapping, set-valued mapping, multi-valued
function, correspondence. For simplicity, write Tz = T(x).

If Tx is a singleton or empty for all z, then T is a function or is
single-valued with domain {x | T(z) # 0} and write Tz = y (although
Tz = {y} would be strictly correct).

Graph of an operator:
GraT = {(z,u) |u € Tz} CR" x R".

We will often not distinguish T and GraT and write T when we really
mean GraT.
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Operator definitions

Domain and range of T:
domT = {x | Tz # 0}, rangeT = {y |y € Tz, z € R"}

Image of C' C R™ under T: T(C) = UcecT(c)

Composition of operators:
To Sz =TSz =T(S$(x))

Sum of operators:
(T+S)x =T(x) + S(x)

Equivalent definitions that use the graph:

TS = {(I’Z) | Jy (l‘,y) €S, (y,Z) ET}
T+S={(z,y+2)|(x,y) €T, (z,2) €S}
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Operator definitions

Identity and zero operators:
I={(@ )|z e€R"} 0={(z,0)]zcR"}

SoT+0=T, TI=T, and IT =T.

T is L-Lipschitz if
[Tz —Ty| < Lllz —yl|  Va,y € domT.

(This definition generalizes the Lipschitz continuity to functions with
domain R™ to operators without full domain.)

If T is L-Lipschitz, it is single-valued; if Tx is not a singleton, then we
have a contradiction by setting y = x.

Set-valued operators



Operator Inverse

The inverse operator of T:

T ={(y,2) | (z,y) € T}

T~ is always well defined (T~! need not be single-valued).

o
GraT GraT!

P
(T-1)~! =T and domT~! = rangeT

T~ is not an inverse in the usual sense since T~!'T # T possible.



Zero

If 0 € T(z), = is a zero of T.

Zero set of an operator T:

ZerT = {z|0 € Tx} =T *(0)

Many interesting problems can be posed as finding zeros of an operator.

Set-valued operators



Subdifferential

When f is convex:
» Of is a set-valued operator
> argmin f = Zer 0 f
» when f is differentiable, write V f instead of 0f

Set-valued operators



Subdifferential of conjugate

When f is CCP,
@f) "t =of

Proof.

u € df(x) 0€df(x)—u

x € argmin { f(z) — uTz}

—f(@) +uTe = f*(u)
f@)+ [ (u) =uTe
@) + f(u) = uTe
x € 0f"(u)

te e O

The last step takes the whole argument backwards.

Set-valued operators
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Subdifferential of conjugate

g(y) = f*(ATy), where f is CCP and R(AT) Nridom f* # (),

u€dgly) < ueAdf*(ATy)

u= Az, z € df*(ATy)

u= Az, 0f(x) > ATy
u=Ax,0€0f(x) — ATy

u= Az, z € argmin{f(z) — (y, Az)}

(O

Find element of dg by solving a minimization problem.

Set-valued operators
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Monotone operators

Monotone operators
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Monotone operators

T is monotone if

(u—v,z—y) >0 Y (z,u), (y,v) € T.

Equivalently and more concisely, T is monotone if

(Te — Ty,z —y) >0 Va,yeR™

Monotone operators 13



Maximal monotone operators

T is maximal monotone if #1 monotone $ such that GraT C Gra$
properly.

le., if T is monotone but not maximal, then 3 (z,u) ¢ T such that
TU {(x,u)} is monotone.

Maximality is a technical but fundamental detail.

Monotone operators 14



Monotone operator example

Heaviside step function

u(m):{ 0 forz<0

1 forx>0
is monotone but not maximal. Operator
{0} forz<O
Ux)=< [0,1] forz=0
{1} forxz >0

is maximal monotone.

Grau GraU

4

Monotone operators
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Monotonicity of subdifferentials

If fis convex and proper, then df is monotone.
If fis CCP, then Of is maximal monotone.

Proof of monotonicity. Add

f) = f@) +0f(x),y—x),  fl@) = fy) +{0f(y),z—y)

to get
(0f(x) = 0f(y),x —y) = 0.

Maximality proved later in §10

[subdiff. CCP] C [maximal monotone]

strict inclusion



Stronger monotonicity properties

A : R™ = R" is p-strongly monotone or p-coercive if @ > 0 and
(u—ve—y) > pllz—yl*  V(z,u),(yv) €A
A is strongly monotone if it is p-strongly monotone for some 1 € (0, 00).
A is B-cocoercive or S-inverse strongly monotone if 8 > 0
(u—v,z—y) > Bllu—v|? Y (z,u), (y,v) € A.

We say A is cocoercive if it is S-cocoercive for some 3 € (0, 00).

Cocoercivity and strong monotonicity are dual:
[A is B-cocoercive] < [A™1 is B-strongly monotone]

Strongly monotone and cocoercive operators are monotone.

Monotone operators
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Stronger monotonicity properties

When A is S-cocoercive, Cauchy-Schwartz tells us
(1/B)lz —yll = [|Ax — Ayl|  Va,y e R™

i.e., Ais (1/8)-Lipschitz. Cocoercive operators are single-valued.

Converse is not true.

Alz,y) = {_01 (ﬂ m N {—yw]

is maximal monotone and Lipschitz, but not cocoercive since
(Ax — Ay,x — y) = 0.
More concisely express p-strong monotonicity as

and, when A is a priori known or assumed to be single-valued, express
[B-cocoercivity as

(Az — Ay, x — y) 25|\Ax7Ay||2 Va,y € R".



Stronger monotonicity properties: Maximality

A is maximal p-s.m. if 3 p-s.m. B such that Gra A C GraIB properly.

A is maximal S-coco. if 3 S-coco. B such that Gra A C GraB properly.

[Maximal coco.] and [maximal s.m.] are dual:
[A is maximal 3-coco.] < [A~! is maximal S-s.m.].

If A cocoercive, [A maximal] < [dom A = R"]. (We prove this in §10.)
Therefore, “A: R™ — R™ is S-cocoercive” implicitly asserts
dom A = R™ and maximality of A.

Monotone operators
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Stronger monotonicity properties: CCP functions

Assume f is CCP. Then
» [f is p-strongly convex] < [0f is p-strongly monotone]
» [f is L-smooth] < [0f is L-Lipschitz | < [9f is (1/L)-cocoercive]
» [f is p-strongly convex] < [f* is (1/u)-smooth]

For Of, Lipschitz = cocoercive.
For monotone operators, Lipschitz # cocoercive.

Monotone operators
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Stronger monotonicity properties examples

Operator on R is monotone if its graph is a nondecreasing curve in R2.
Vertical portions, then multi-valued. Continuous with no end points, then
maximal. Slope > p, then p-strongly monotone. Slope < L, then
L-Lipschitz. Lipschitz and cocoercivity coincide.

Not monotone Monotone but Maximal
not maximal monotone and
single-valued

—

Maximal Strongly Lipschitz but not
monotone and monotone but strongly
multi-valued not Lipschitz monotone




Operations preserving monotonicity

» T (maximal) monotone, then $(z) = y + aT(z + 2z) (maximal)
monotone for any a > 0 and y, z € R"™.

» T (maximal) monotone, then T~! (maximal) monotone.
» T and § monotone, T 4+ § monotone.

» T and S maximal monotone and dom T Nintdom $ # @, then T + §
maximal monotone.

» T: R"™ = R™ monotone and M € R"*™, then MTTM monotone.
» T maximal and R(M) Nintdom T # (), then MTTM maximal.

Proofs of maximality in §10.

Monotone operators
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Operations preserving monotonicity: Concatenation

If R: R* = R™ and $: R™ = R™, then T: R"™ — R+
T(z,y) = {(u,v) |u € Ra, v € Sy}

the concatenation of R and §, is (maximal) monotone if R and S are.

Use notation
R Rz
T= |:S:| 9 T(l‘,y) - |:Sy:| .

Monotone operators 23



Operations preserving stronger monotonicity properties

T is p-s.m., then aT is (au)-s.m. for o > 0.
T is p-s.m. and $ monotone, then T + § is p-s.m.

T: R® =3 R™is p-s.m., and M € R™*™ has rank m, then MTTM is
(1023 (M))-5.m.

T: R™ — R™ is L-Lipschitz and M € R™*™ then MTTM is
(Lo2,,.(M))-Lipschitz.

max

Monotone operators
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Example: Affine operators

Affine operator T(z) = Ax + b:
» [T maximal monotone] < [A + AT = 0]
> [T=V/ffor CCP f] < [A= AT and A = 0]
» T is Amin(A + AT)/2-strongly monotone if Apin(A+ AT) >0
and opax(A)-Lipschitz .

Monotone operators 25



Example: Continuous operators

T: R™ = R" is continuous if
dom T = R™, T is single-valued, and T is continuous as a function.

A continuous monotone operator T: R™ — R” is maximal.

Maximality is only in question with discontinuous or set-valued operators.

Monotone operators 26



Example: Differentiable operators

We say an operator is differentiable if it is continuous and differentiable.

For differentiable T: R™ — R™,
» [T monotone] < [DT(z) + DT(z)T = 0, Vz]
» [T p-s.m.] & [DT(z)+ DT(z)T = 2ul, Vx]
» [T L-Lipschitz] < [omax(DT(z)) < L, V]

Continuously differentiable monotone T,
[T =V for CCP f] & [DT(x) symmetric Vx|
(When n = 3, thisis V x T = 0 condition of electromagnetic potentials.)

Monotone operators
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Example: Saddle subdifferential

For convex concave L: R x R™ — R U {£o0},
saddle subdifferential operator OL: R™ x R™ == R™ x R™:

oo = [ 28 ]

Zer OL is the set of saddle points of L, i.e.,
[0 € OL(a*,u*)] < [(x*,u*) is a saddle point of L]

For most well-behaved (“closed proper”) convex-concave saddle
functions, their saddle subdifferentials are maximal monotone.
We avoid this notion and instead verify the maximality of saddle
subdifferentials on a case-by-case basis.

Monotone operators 28



Example: KKT operator

Consider
minimize fo(x)
subject to fi(z) <0, i=1,...,m
hi(x) =0, i=1,...,p,
fos-. fm are CCP and hy, ..., hy are affine. Lagrangian
L(z, \v) = +ZAfz +sz i(@) = day (V)

is convex-concave. Consider the Karush—-Kuhn-Tucker (KKT) operator
O L(z, A\, v)
T(Ia >‘7 V) = _IF($> + ]NRT ()‘) )
—H(z)
where
fi(z) ha ()
Fo)=| : |, H@=|
fm (@) hy()

Monotone operators

29



Example: KKT operator

0Lz, A\, v) O, L(z, \, v
T(z,\,v) = |—F(z) + Nrp(A) | = [Or(=L(z,\,v))
—]H(:E) au(_L(x7)‘7V)>

T is a special case of the saddle subdifferential, so monotone.

Arguments based on total duality tell us:
[0 € T(z*, A*,v*)] & [z* primal sol., (A*,v*) dual sol., strong duality]

Monotone operators
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Monotone inclusion problem

Monotone inclusion problem:

find 0¢€ Ax,
reER™

where A is monotone.

Many interesting problems can be formulated this way.

Monotone operators
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Nonexpansive and averaged operators
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Nonexpansive and contractive operators

T is nonexpansive if
[Tz —Ty|| < |lz—y|  Va,y€domT,

i.e., 1-Lipschitz. T is a contraction if L-Lipschitz with L < 1.

Mapping a pair of points by a contraction reduces their distance;
mapping by a nonexpansive operator does not increase their distance.

Properties:
» If T and S nonexpansive, then TS nonexpansive.
» If T or $ furthermore contractive, then TS contractive.

» If T and $ nonexpansive, then 6T + (1 — 6)S with 6 € [0, 1]
nonexpansive.

» If T is furthermore contractive and 6 € (0,1], then 6T + (1 — 0)$
contractive.

Nonexpansive and averaged operators
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Averaged operators

For 8 € (0,1), T is f-averaged if T = (1 — 6)I + 0S for nonexpansive S.
Operator is averaged if 6-averaged for some 6 € (0,1). Operator is firmly
nonexpansive if (1/2)-averaged.

T and S are averaged, composition TS is averaged. (Proof later in §13.)

Averagedness is the basis for convergence of many splitting methods.

Nonexpansive and averaged operators 34



Averaged operators

Contractive Averaged Nonexpansive

[llustration of classes of contractive, averaged, and nonexpansive
operators. The figure illustrates the relationship contractive C averaged
C nonexpansive. The precise meaning of these figures will be defined in

§13.

Nonexpansive and averaged operators
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Fixed-point iteration
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Fixed points

x is a fixed point of T if x = Tz.

FixT = {2z |2 =Tz} = (I-T)"'(0)

Fix T can contain nothing (e.g. Tx =  + 1) or many points (e.g.
Tz = |x]).

Fixed-point iteration
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Fixed points

When T: R™ — R™ is nonexpansive, Fix T is closed and convex.

Proof. Fix T is closed since T — I is continuous.
Suppose z, y € FixT, 6 € [0,1], and z = 0z + (1 — §)y € FixT. Since
T is nonexpansive,

Tz — 2| <[z -2 = 1 -0y — =,

Similarly,
[Tz —yl| < Olly — zl|.

So the triangle inequality
|z —yl| < [Tz — || + [Tz -y

holds with equality and Tz is on the line segment between = and y.
From || Tz — y|| = 8|y — z||, we conclude Tz =60z + (1 - 0)y=2. O

Fixed-point iteration
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Fixed-point iteration

The fixed-point iteration (FPI) is
zF 1l = Tk

for k=0,1,..., where 2° € R" is some starting point and T: R" — R".

The FPI is used to find a fixed point of T. Clearly, the algorithm stays at
a fixed point if it starts at a fixed point.

Two steps of using FPI: (i) find a suitable operator whose fixed points
are solutions to a monotone inclusion problem of interest. (ii) show that
the iteration converges to a fixed point.

In general, FPI need not converge. We provide two guarantees.

Fixed-point iteration
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FPI with contractive operators

If T: R™ — R™ is a contraction with L < 1, then FPI is a contraction
mapping algorithm. For z* € Fix T,

lz* —a*|| < L2t —a*] < - < L¥la® - 2]

Basis of classic Banach fixed-point theorem. When T is a contraction,
convergence is simple.

In many optimization setups, however, a contraction is too much to ask
for. We need convergence under weaker assumptions.

Fixed-point iteration
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FPI with averaged operators

If T: R™ — R™ is averaged, FPI is called an averaged or the
Krasnosel'ski-Mann iteration.

Theorem 1.
Assume T: R™ — R" is §-averaged with 6 € (0,1) and FixT # 0. Then
xF 1 = Txk with any starting point z° € R™ converges to one fixed
point, i.e.,

zF = 2
for some x* € FixT. The quantities dist(z*, Fix T), ||«**! — 2*||, and
|2* — a*|| for any 2* € Fix T are monotonically nonincreasing with k.

Finally, we have
dist(z*, Fix T) — 0

and

”karl - ka2 <

4 200 s
<S mdlst (SC 7]I—“IXVI[‘).
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Discussion of Theorem 1

When T is nonexpansive but not averaged, we can use (1 — 0)I + 6T
with 6 € (0,1) since Fix T = Fix ((1 — )1 + 6T).

For example, T: R2 — R2

—-0.5 0
Tx—[ 0 1}x

is (3/4)-averaged with FixT = {(0,2) | z € R}.

Fix T

FPI with respect to T converges to one fixed point, which depends on
the staring put z°.



Proof outline of Theorem 1

Assume nonnegative sequences VO, V1, ... and S°, S, ... satisfy
Vk+1 < Vk o Sk

Consequences: (i) V¥ is monotonically nonincreasing (although V* — 0
possible) (i) S¥ — 0. To see why, sum both sides from 0 to k to get

k
Zsz S VO _ Vk+l S VO.
=0

Taking k — oo gives us
0 .
ZSZ <V% < 0.
i=0

S0, 8t ... is summable. By summability, S¥ — 0. V¥ is a the Lyapunov
function and S* the summable term. This is the summability argument.

Fixed-point iteration
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Proof of Theorem 1

Stage 1. Note the identity

11 = 0)a + 0y [|* = (1 = O) |« + OllylI* — 01 — O)l|l= — y]*.

T = (1—-6)I+6S, where $ is N.E. Then

Ik+

For any z* € Fix T,

ka—i-l _ .T*HQ

V= To* = (1 - 0)2* + 682",

= (1= 0)[la* —a*|* +0||S(z") —"||* — 6(1 - O)[IS (z") — ||
< (1= 0)llz" — 2”||* + 02" — 2> — 6(1 - 0)||S(a") — 2*||?
= [l —a*|* — (1 - 0)||S (") — 2% (1)
=Vk =Sk
Fixed-point iteration 44



Proof of Theorem 1

Now establish the monotonic decreases. Core inequality (1) tells us
b+t — ) < flab — o
Minimize both sides with respect to x* € Fix T:
dist(z*+1 Fix T) < dist(z*, Fix T).

This is called Fejér monotonicity.

Fixed-point residual: T(z*) — 2% = 281 — 2% We view || T(z*) — 2¥||
as a measure of optimality for FPI. Since T is nonexpansive,

2" = 2| = [Ta* — T | < |2 — 271

Fixed-point iteration
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Proof of Theorem 1

Sum (1) from 0 to k

k
1-06 ) )
2" — 2*||? < [|2° — 2¥|® - 5 > |ITa? — 27|
=0

Reorganize

b 0 0
DT — )P < glla® —a*|* = gl — o]
7=0
Monotonicity of [|zF+1 — ||

k
) ) 0
(k4 D"+ —a|? < g a7 =27 < g5 lle® — 271
Conclude 0
k+1 k12 0
x — T <—m——— |
|| < G7pa=s!

Minimizing the right-hand side with respect to 2* € FixT

— x|

”karl o ka2 <

> mdlst2 (1'0, Fix T)



Convergence proof of Theorem 1

Stage 2. Now show z¥ — z* for some 2* € Fix T with the steps:
(i) =¥ has an accumulation point (ii) this accumulation point is a
solution (iii) this is the only accumulation point.

(i) Consider any * € FixT. Then (1) tells us that z°, 2!, ... lie within
the compact set {x| ||z — &*|| < [|2° — Z*||}, and 2%, 2, ... has an
accumulation point z*.

(i) Accumulation point z* satisfies T(z*) — 2* = 0, as T(2*) — 2% — 0
and T — T is continuous, i.e., 2* € FixT.

(iii) Apply (1) to this accumulation point z* € Fix T to conclude
|z* — 2*|| monotonically decreases to 0, i.e., the entire sequence
converges to z*.

Fixed-point iteration 47



Termination criterion

|z¥*1 — 2*|| < & can be used as a termination criterion.

Specific setups may have specific and better termination criteria.

We avoid the discussion of termination criterion for simplicity.

Fixed-point iteration 48



Methods: Gradient descent

Consider

mixneiﬁﬁize f(x),

where f is CCP and differentiable.
[z € argminf] & [z = (I — aVf)(z) for any nonzero o € R]

The FPI
Pt =2k — oV f(2h)

is gradient method or gradient descent, and « is the step size.

Fixed-point iteration
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Methods: Gradient descent

Assume f is L-smooth. By cocoercivity,
(X = (2/L)Vf)z = @~ (2/L)V fyll?

—llo =3l - § (o= 0 V1) = VIW) - LIVF@) - V16)1?)
< |lz —ylI*.
Therefore, T — oV f is averaged for « € (0,2/L) since
I-aVf=(1-0)I+601-(2/L)Vf),
where 0 = aL/2 < 1.

2% — 2* if a solution exists with rate
IV f (") = O(1/k),
for any a € (0,2/L).

If f is strongly convex, FPI is a contraction.
Fixed-point iteration
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Methods: Forward step method

Consider

fge. 0=F@),

where F: R™ — R".
[x € ZerF] < [z € Fix (I — ofF) for any nonzero a € R]

The FPI

ghtl = gF — a]FJ;k,

is the forward step method.

x® — 2% if F is 3-cocoercive, a € (0,24), and Fix[F # (.
Contraction for small a > 0 if F is strongly monotone and Lipschitz.
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Methods: Dual ascent

Consider primal-dual problem pair

M eRn f@) maximize —f*(—ATu) —bTu
subject to Az = b, uelR

and its associated Lagrangian

L(z,u) = f(z) + (u, Az — b).

Gradient method on g(u) = f*(—ATu) + bTu, the FPl on I — aVyg

k1 — argmin L(z, u®)

x

uF T = o 4 (APt —b)

T

Uzawa method or dual ascent. (Vg characterized in page 11.)
Fixed-point iteration 52



Methods: Dual ascent

If fis u-strongly convex, then
Vg(u) = —AVf*(—=ATu) + b

is Lipschitz with parameters o2, (A)/u.

If f is u-strongly convex, total duality holds, and 0 < o < 2u/02, (A),
then z¥ — 2* and u* — u*.

Fixed-point iteration 53



Resolvents

Resolvents
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Resolvent and reflected resolvent

Resolvent A:
Ja=O+A)""

Reflected resolvent of A:
Ra =2Jp -1

also called Cayley operator or reflection operator.
Often use J,a and Roa with a > 0.

If A is maximal monotone, Ry is a nonexpansive (single-valued) with
domRp = R"™, and Jp is a (1/2)-averaged with domJp = R™.

Resolvents

55



Nonexpansiveness of R, and Ju

Proof of nonexpansiveness and averagedness.

Proof. Assume (z,u), (y,v) € Ja. Then

z € u+ Au, y € v+ Av.
By monotonicity of A,

(x—u)=(y—v)u—v) 20
and

12u = 2) = (2v = y)|” = 2 =yl - 4K(z —w) = (y — v),u —v)
< [lz = yl*.

So Rp is NE and Ja = (1/2)I+ (1/2)Ra is (1/2)-averaged. O
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Domain of Ry and Ja

Minty surjectivity theorem: dom Jao = R™ when A is maximal monotone.

This result is easy to intuitively see in 1D but is non-trivial in higher
dimensions. We prove this in §10.

Resolvents
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Zero set of a maximal monotone operator

Zer A is a closed convex set when A is maximal monotone

Proof. Zer A = FixJ, since

leAr & zex+Axr < Jpx=rcx.

Since Jp is nonexpansive, FixJo = Zer A is a closed convex set.

Note that proof relies on maximality through domJ, = R™.

Resolvents
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Example: Monotone linear operator

Let A be a monotone linear operator represented by a symmetric matrix.

Then, A has eigenvalues in [0,00) and J4 = (I + A)~! has eigenvalues
in (0,1].

Rp=2Jp —I=T—-A)(I+A)"'=T+A)I-A),

is the Cayley transform of A and has eigenvalues in (—1,1].

Resolvents 59



Example: Complex number as operator on R? = C

Identify z € C with a linear operator from C to C defined by
multiplication, i.e., z: T — zx.

Equip complex numbers with inner product (z,y) = Reay.

~

{z| Rez > 0} t 497 Rez 20}

1
T o

z € C is monotone if and only if Re 2 > 0. Resolvent (1 + z)~! for
monotone z is in disk with center 1/2 and radius 1/2 excluding origin.

Resolvents
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Resolvent of subdifferential

For CCP f and a > 0,
Jaor = Proxay.

Proof.
z=I+adf) H(z) & 2z+adf(z)>x

& 0eo. (af(z) + %Hz _ x||2)

1
&z = argmin {af(z) + §||z - $||2}

& z=Proxqf(x)
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Resolvent of subdifferential of conjugate

If g(u) = f*(ATu), f CCP, and ridom f* N R(AT) # 0, then

z € argmin, { f(z) — (u, Az) + | Az||*}

v = PI‘OXag(U) g v=1u— caAzx.

Proof.

v = (I+adg) ™" (u)

v+ aAdf*(ATv) 5 u

v+ adr =u, x € Of*(ATv)
v=u—adz, 0f(x) > ATv
v=u—adz, 0f(z) > AT(u — aAzx)

r e

v=u— oAz, x € argmin{f(x) — (u, Ax) + %||Ax||2} .
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Projection is a resolvent

If C C R"™ is nonempty closed convex, then
pty

‘]I]NC = PI‘OX(;C = Hc.

The resolvent generalizes the projection operator in this sense.

Resolvents 63



KKT operator for linearly constrained problems

Consider the Lagrangian
L(x,u) = f(.’E) + <U,A(E - b>
which generates the primal problem

minimize f(x)

subject to Ax =b.
We can compute its resolvent with

y = argmin, {Lq(z,u) + 5|z — z[|*}

J]aaL(ﬂfaU) = (yav) A v :u+a(Ay—b),

where L, is the augmented Lagrangian

Lo (z,u) = f(z) + (u, Az — b) + %HA:C — b2

Resolvents
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KKT operator for linearly constrained problems

Proof. For any a > 0,

(y,v) =Joor(z,u) <& [ﬂ c {g] Ta {3f§)yz—z;4w]

S

o [l Laa TEL

Left-multiply invertible matrix

to get

N [a: 3/1%} ca [ﬁf(y) aATb] . [1+a2ATA 0} m

b —aA I

First line is independent of v, so we can compute y first and then v.
(This is the Gaussian elimination technique of §3.4.)
Resolvents
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KKT operator for linearly constrained problems

Reorganize to get

0€df(y)+ ATu— aAT(Ay —b) + (1/a)(y — x)
v=u+a(Ay —b),

and conclude
. o 2 1 2
y = argmin f(z)+<u,Az—b>+§||Az—b|| —i—%Hz—xH

v=u+ a(Ay —b).
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Resolvent identities

Let A maximal monotone and « > 0.

If B(z) = A(x) + ¢,
Top(u) = Jon(u — at).

If B(z) = Az —t),

Top(u) = Jon(u —t) + t.

If B(z) = —A(t — z),

JIQ]B(U) =1— ]IQA(t — u)

Resolvents
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Inverse resolvent identity

Inverse resolvent identity:
Joia(z)+a Ty (az) =2,

for maximal monotone A and « > 0.

When a =1,
Ja+Ja-1 =1
Moreau identity: a special case, for CCP f

Prox,-17(z) + o~ 'Proxa - (ax) = .

Consequence: Prox,; and Prox,¢- require same computational cost.
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Reflected resolvent identities

If A is maximal monotone and single-valued and « > 0,

Roa = (I — aA) (I + aA)™t.

Proof.

Raa =2(I+0A)™" —1
=21+ af)” — (14 aA) I +aA)”!
= (I— aA)(T+ aA)~",

2nd line by Exercise 2.1.
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Reflected resolvent identities

If A is maximal monotone (but not necessarily single-valued) and « > 0,

IRQA(I[ + OéA) =1-aA.

Proof. For x € dom A,
Roa(I+ aA)(z) = 21+ aA) T+ aA)(z) — (I + aA)(x)

— 21(2) — (1+ aA)(x)
= (I- ah)(x)

2nd line by Exercise 2.1. For x ¢ dom A, both sides are empty. O

Resolvents
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Proximal point method

Proximal point method
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Proximal point method

Consider
find 0¢€ Ax

rzeER™

where A is maximal monotone. Equivalent to finding « € FixJ,a.

The FPI
zF = JIaA(xk)

is the proximal point method (PPM) or proximal minimization.

PPM converges to a solution if one exists, since J,a is averaged.

Proximal point method
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Methods of multipliers

Consider the primal-dual problem pair
MeRn - 1) maximize —f*(—ATu) —bTu
subject to Ax =b, uerR™

generated by the Lagrangian L(z,u) = f(z) + (u, Az — b).

Augmented Lagrangian:

Lo (z,u) = f(z) + (u, Az — b) + %HAQ: A
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Method of multipliers

Assume R(AT) Nridom f* # (). Write g(u) = f*(—ATu) + bTu.

The FPI uf 1 = J,0, (uF)
* € argmin L, (2, u®)

uF T = uF 4 Akt —b)

is the method of multipliers. (Prox,, calculation in pages 62 and 67.)

If a dual solution exists and a > 0, then u* — u*.

Proximal point method
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Proximal method of multipliers

The FPI (zF+1 wf*1) = T o1 (2%, u¥)

1
2F*1 = argmin {La(x, ub) + — |z — xk|2}
x 20&
uF Tt = uF 4 (AT —b)
is the proximal method of multipliers. (J,o1 calculation in page 64.)

If total duality holds and o > 0, then z* — z* and uF — u*.

Proximal point method
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Operator splitting

Operator splitting: split a monotone inclusion problem into smaller
simpler components.

Specifically, transform monotone inclusion problems x € Zer (A + B) or
x € Zer (A + B + C) into fixed-point equations constructed from A, B,
C, and their resolvents.

Unified approach: formulate optimization problem as monotone inclusion
problem, apply a splitting scheme, and use the FPI.

Operator splitting
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Forward-backward splitting

Consider
f.ierkdn 0€ (A +B),

where A and B maximal monotone, A single-valued.

For o« > 0,

0e(A+B)z & 0e€(I+aB)z—(I—ah)x
< I+ aB)x>(I—-aA)x
& =l - af)z.

So [z € Zer (A+ B)] & [z € FixJopg(I — aA)].

Jop(I— aA) is forward-backward splitting (FBS).

Operator splitting
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Forward-backward splitting

Assume A is -cocoercive and « € (0,20).

Forward step T — aA and backward step (I + aB)~! are averaged.

So the composition J,p(I — aA) is averaged.

FPI with FBS
2* = T g (2F — aAzh)

converges if a € (0,23) and Zer (A + B) # (.

Operator splitting
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Backward-forward splitting

Similar splitting with permuted order:

0e(A+B)z < (I+aB)z>(I-aA)x
& z=0-aA)z, z€ (I+aB)x
& z=(I-aA)x,Jpz =2
& z={-aA)Tpz, Japz =2

So [z € Zer (A+ B)] & [z € Fix (I — aA)Jop, © = Jap2].

(I — aA)J o is backward-forward splitting (BFS).

Operator splitting
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Backward-forward splitting

FPI with BFS

k+1 k

= JIQ]BZ
k+1 ank-‘rl

T

=g

converges if a € (0,20) and Zer (A + B) # (.

BFS is FBS with the order permuted. BFS is more natural to work with
in some setups considered in §5 and §6.
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Peaceman—Rachford splitting

Consider
fier[wRdn 0€(A+B)x,

where A and B maximal monotone.

For o > 0, (2nd step uses identity of page 70)

0e€(A+B)x 0€e I+ aA)z— (I—aB)x

0€ I+ aA)x — Ryp(I+ aB)x

0€ (I+aA)r —Rypz, z € (I+aB)x
Ropz € I+ aA)Jypz, ©=1J,8%
JoaRogz =Jogz, ©=J,52
20oaRaBz — 2 =Ropz, ©=J,82
20oaRaBz —Rogz =2, © =082

toeso OO

RoaRogz =2, 2 =J,82.

So [z € Zer (A+ B)] & [z € FixRoaRap, = = Jop2].

R,aR,p is Peaceman—Rachford splitting (PRS).



Peaceman—Rachford splitting

R,aR,p merely nonexpansive. FPI with PRS
2P = R aRLB (Zk)

may not converge.

Operator splitting
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Douglas—Rachford splitting

Average to ensure convergence.

FPI with 31+ $R,aRqg, Douglas-Rachford splitting (DRS), is

Ik+1/2 _ .Ua]B(Zk)
xk-‘rl — JIaA(2xk+1/2 _ Zk))

SRl Lk kL k12

converges for any a > 0 if Zer (A + B) # 0.

Operator splitting
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Davis—Yin splitting

Consider
find 0€(A+B+0Q)z,

IGR’!L
where A, B, C maximal monotone, C single-valued.
For a > 0,

0e(A+B+QC)z & (1/2)1+(1/2)Tz=2, = =1T,pz,
T = ]RQA(RQJB — O[C.]IQ]B) — aCJIa]B.

Davis—Yin splitting (DYS)

1 1
Q]I + 5']1w =1—-Jup +Joa(Rap — aClyp)
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Davis—Yin splitting

If C is B-cocoercive and « € (0,20), then (1/2)I+ (1/2)T is averaged.
We prove this in §13.

FPI with DYS

aF T2 = Jop (2F)

xk—‘rl — JIQA(Zxk‘-‘rl/Q _ Zk _ aka‘-‘rl/Q)

SR kg gkl k12

converges for a € (0,20) if Zer (A + B + C) # 0.

DYS reduces to:
» BFS when A =0
» FBS when B=0
» DRS when C =0
» PPM when A=C=0



Splitting for convex optimization

In §3, we combine the base splittings (FBS, DRS, DYS) with various
techniques to derive many methods.

For now, we directly apply the base splittings to convex optimization.

Operator splitting
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Proximal gradient method

Consider
minimize  f(x) + g(),

TER™

where f, g CCP and f differentiable.
[x € argmin(f + g)] < [z € Zer (Vf + Jg)]

FPI with FBS
2* T = Prox,, (2% — aV f(2*))

is the proximal gradient method. If solution exists, f is L-smooth, and
a € (0,2/L), then z*F — z*.

Operator splitting
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Proximal gradient method

Equivalent to

1 = angnin { £(a4) + (V). = )+ 90) + o = ¥ |

x

which uses a first-order approximation of f about z*.

When g = é¢
2F T =T (2F — aVf(zh))

is the projected gradient method.

Operator splitting
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DRS for convex optimization

Primal-dual problem pair

migcnei@ze f(z)+ g(x) m?jguglile —f*(—u) — g*(u)

generated by

where f, g CCP.

Primal problem equivalent to

find 0¢€ (0f + 0g)x

reER™

when total duality holds. (Proof a few slides later.)

Operator splitting
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DRS for convex optimization

FPI with DRS:

22 = Prox,, (%)

zhtl = Proxaf(2zk+1/2 — 2k
S S SE e S VE

If total duality holds and o > 0, then z* — 2* and xF+1/2 — 2*.
In §9, we furthermore show z* — 2* = 2* + au*.

DRS requires f and g to be CCP and « € (0, c0).
Prox-grad requires f to be L-smooth and o € (0,2/L).

DRS useful when evaluating Prox,s and Prox,4 are easy.
Prox-grad useful when evaluating V f and Prox,4 are easy.
PPM useful when evaluating Prox,(¢44) is easy.



Example: LASSO and ISTA

Consider A € R™*™ b€ R™, A > 0 and the LASSO problem
L 1 2
minimize —| Az — b||* + A||z1.
zER™ 2
FPI with DRS
Y2 = (I + aATA) 7L (2* 4 aATD)

:L’k+1 _ S(2$k+1/2 _ zk;a)\)

k+1 k+1 k+1/2
— ,

z =4z
converges for any a > 0. FPI with FBS (prox-grad)
P = S(a* — aAT(Az® —b);a))

is the Iterative Shrinkage-Thresholding Algorithm (ISTA). This converges
for 0 < o < 2/Amax(ATA). (S(w; k) = Prox,.|, (z)c.f. §1.)

DRS uses the matrix inverse (I + aATA)~!, which can be prohibitively
expensive to compute when m and n are large. FBS is the more
computationally effective splitting for large-scale LASSO problems.



DYS for convex optimization

Primal-dual problem pair
minei&ize f@) + g(z) + h(z) maxei[glize —(f+h)*(—u) — g*(u)

generated by the Lagrangian
L(z,u) = f(x) + M) + (z,u) — " (u).
FPI with DYS:
22 = Prox,, (%)

2P = Prox, s (22F 112 — 2k — aVh(zF1/2))

SR Gk gkl k12

If total duality holds, h is L-smooth, and a € (0,2/L), then ak — o>
and zFt1/2 - 2* In §9, we furthermore show z¥ — z* = z* + au*.

Operator splitting



Necessity and sufficiency of total duality

Role of total duality in splitting methods:

argmin(f+g) = Zer (0f+9g) #0 < total duality holds between (2)

Therefore,
mineiur&ize fl@)+g9(z) o ﬁernlg 0€ (0f +0g)(x)

when total duality holds.

Operator splitting



Necessity and sufficiency of total duality

Proof. First, assume that total duality holds. Then 2* € argmin(f + g)
if and only if (x*,u*) is a saddle point of

L(z,u) = f(z) + (z,u) — g"(u)
for some u* € R™, and

(z*,u*) is a saddle point of L < 0 € JL(z*,u")

< 0€9;L(z",u*), 0 € 0, (—L)(x*,u*)
& —ur e df(xr), ut € dg(x*)

& 0€ (0f +0g)(x).

We conclude argmin(f + g) = Zer (Of + 0g) # 0.

Next, assume argmin(f + g) = Zer (0f + 0g) # 0. Then any

x* € argmin(f + g) satisfies 0 € (Of + Jg)(z*). By a similar chain of
arguments, (z*,u*) is a saddle point of L for some u* € R™, and we
conclude total duality holds. O



Discussion: Fixed-point encoding

Fixed-point encoding establishes a correspondence between solutions of a
monotone inclusion problem and fixed points of a related operator.

PPM, FBS, BFS, DRS, DYS are fixed-point encodings.
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Discussion: Why resolvent?

Splittings use resolvents or direct evaluations of single-valued operators.
Why not use other operators such as (I — aA)~1?

» Computational convenience; evaluating something like (I — adf)~*
is often difficult.

» Single-valued operators are algorithmically actionable; we can
compute and store a vector but not a set in R™ on a computer.
Multi-valued operators are useful mathematically.

Single-valued operators are useful algorithmically.

Operator splitting
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Discussion: Role of maximality

2F+1 = Ta* becomes undefined if 2¥ ¢ domT. In Theorem 1, we
implicitly assumed dom T = R™, satisfied with resolvents of maximal
monotone operators. (Theoretical necessity.)

In practice, for non-maximal monotone operators (e.g. subgradient
operator of a nonconvex function) we cannot efficiently compute the
resolvent. (Practical necessity.)

Operator splitting
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Discussion: Computational efficiency

Base splitting methods are useful when the subroutines are efficient to
compute. The DRS iteration

1. 1
k1 — [ 214+ ZR,aR k
z (2 + 2 aA a]B)Z

always converges, but it is most useful when R, and R,p are efficient.

For a given an optimization problem, there is more than one method.
Trick: find a method using computationally efficient split components.

Operator splitting
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Example: Consensus technique
Consider .
mimnei%ljze ;gi(x)
where g1, ..., gmn are CCP. Equivalent to

m
minimize Zgl(ml)
i=1

xeRn™M
subject to x € C,

where x = (x1,...,Z,,) and
C={(z1,...,xm)|x1 =" =2}
is the consensus set. Equivalent to
dg1(1)
x.fei”r{]gm 0e : + Neg(x),
Ogm (zm)

assuming (), int dom g; # 0.
Operator splitting
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Example: Consensus technique

Projection onto the consensus set is simple averaging:

1 m
lex =X = (7,7, ...,7), —Z
m —
DRS
E+1 _ —k _ _k _
;T = Proxag, (22° — z) fori=1,...,m,
B N

converges for any o > 0, if (-, int dom g; # ) and a solution exists.
This method is well-suited for parallel distributed computing.
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Example: Forward-Douglas—Rachford

Consider
m

minimize Z(fl(l") + gi(x)),

rER™ <
=1

where g1,..., 9, are CCP and fy,..., f,, are L-smooth.
With the consensus technique, equivalent to

xERnM

minimize zm:fz(xz) + igz(mz)
i=1 i=1

subject to x € C.

DYS

2Pt = Prox,,, (228 — 2F — aV fi(Z)) fori=1,...,m,

2 = gF P gk

is generalized forward-backward or forward-Douglas—Rachford. Converges
if total duality holds, (", intdom g; # 0, and a € (0,2/L).
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Variable metric methods

The Euclidean norm played a special role:
. 1 2
Prox¢(zo) = argmin ¢ f(x) + §Hx —x9]|% ¢,
is defined with || - || and Theorem 1 is stated in terms of || - ||.

Variable metric methods generalize with the M-norm, defined as
|z||3; = 2T Mz for M > 0.

Why? (i) A good choice of M can act as a preconditioner and reduce the
number of iterations needed. (i) Sometimes A has structure and a well
chosen M cancels terms to make (M + A)~! easy to evaluate. (c.f. §3)

Disclaimer: despite the name, the generalization only works with
M-norms, which are induced by the inner product (x,y)y = 2T My, but
not other metrics, such as the ¢'-norm.
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Variable metric PPM

If A maximal monotone and M > 0, then M~1/2AM~1/2 maximal
monotone and the PPM

yk+1 _ (]I+ M71/2AM71/2)71yk

converges.

Change of variables =¥ = M~1/2y* give

(]I+M—l/2AM—1/2)yk+l 5 yk
I+ M~TA)2 ! 5 2F

and
k+1 = ]IM—lAﬁEk

= (M + A)" ' Mz*,

xT

variable metric PPM. 2* inherit convergence from y/*.
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Variable metric FBS

Let A and B be maximal monotone and let A be single-valued.

FBS with M~Y/2AM~1/2 and M~Y2BM~1/2, after change of variables,

2 = (M +B) Y (M — A)z*
=Ty g — M 1A)z",

is variable metric FBS.

Converges if 1 — M~Y2AM~1/2 is averaged.
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Proximal interpretation

When A =V f and B = Jg, then

Tuy(1 = M9 f)o = angin { () + (V5(0), ) + 5 = ol |
zER4

Interpretation: Variable metric FBS is prox-grad with the norm || - ||as.

If A is 3-cocoercive, then M~1/2AM~1/2is (8/|| M~ ||)-cocoercive.
So variable metric FBS converges if || M| < 28.
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Averagedness with respect to || - |5/

Assume M = 0. T is nonexpansive in || - ||as if
ITe =Tyl < o — gl Vz,y € domT.

For 8 € (0,1), T is 6-averaged in || - ||z if T= (1 — 60)I + 0S for some $
that is nonexpansive in || - ||as.

[M~Y2TM~/2 nonexp. (in || - ||)] & [M~'T nonexp. in || - ||a]
Because

IMV2TM 20 — MYRPTM Y22 < |2 — g2
is equivalent to
IMTE — MYTg)3, < |12 — 313
with the change of variables M ~'/22 = & and M /2y = .
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