
Parallel Computing

Ernest K. Ryu

Mathematical and Numerical Optimization
Fall 2021



Computational complexity and parallel computing

Briefly discuss computational complexity and parallel computing.

Useful for approximately analyzing run time of algorithms.

2



Outline

Computational complexity via flop count

Parallel computing

Computational complexity via flop count 3



Floating-point operations

A floating-point operation (flop) is a single arithmetic operation on a
computer such as addition, subtraction, multiplication, and division.

For simplicity, we also count a non-elementary function such as exp(x),
log(x), or

√
x as a single flop.

For example,

∥x∥ =
√
x2
1 + · · ·+ x2

n

for x ∈ Rn costs 2n = O (n) flops to compute.
(n multiplications, n− 1 additions, and 1 square root.)

Computational complexity via flop count 4



Floating-point operations

▶ Ax costs O (mn) flops, where A ∈ Rm×n and x ∈ Rn.

▶ AB costs O (mnp) flops, where A ∈ Rm×n and B ∈ Rn×p.

▶ For ABx, use A(Bx), costing O (mn+ np), instead of (AB)x,
costing O (mnp), where A ∈ Rm×n, B ∈ Rn×p, and x ∈ Rp.

▶ A−1 costs O
(
n3
)
, where A ∈ Rn×n.

CPUs compute roughly 109 flops per second. Useful estimate in
predicting run time and bottleneck of algorithms. But this is a very rough
estimate; expect a 10-fold or even a 100-fold inaccuracy.

Computational complexity via flop count 5



Algorithm vs. method

Algorithm and method both refer to a specification of how to compute a
quantity of interest.

Difference:

▶ method is a higher-level description expressed in mathematical
equations

▶ algorithm is a more literal step-by-step procedure unambiguously
describing the steps the computer takes

Although this distinction is not precise, it is useful.

If an algorithm carries out the idea described by a method, we say the
algorithm implements the method.

Computational complexity via flop count 6



Algorithm vs. method

In a rigorous discussion, flop count ascribed to algorithm, not method.

For example, consider the method

xk+1 = xk − αA⊺(Axk − b)

where A ∈ Rm×n and b ∈ Rm.

Algorithm corresponding to

A⊺(Axk − b)

costs O (mn) flops per iteration, but algorithm corresponding to

(A⊺A)xk −A⊺b

costs O
(
n2
)
flops per iteration, provided that A⊺A ∈ Rn×n and

A⊺b ∈ Rm have been precomputed and stored.

Often more than one way to implement a method. When implementation
clear from the context, informally ascribe the flop count to the method.



Flop-count operator

Flop-count operator:

F [{x1, . . . , xn} 7→ {y1, . . . , ym} |A]

number of flops A to compute {y1, . . . , ym} given {x1, . . . , xn}.
(Algorithm A, not a method, that determines the flop count.)

When algorithm is clear from context, omit A and write

F [{x1, . . . , xn} 7→ {y1, . . . , ym}] .

For example, when A ∈ Rm×n

F [A 7→ (I + αA⊺A)−1] = F [A 7→ I + αA⊺A] + F [I + αA⊺A 7→ (I + αA⊺A)−1]

= O
(
mn2)+O

(
n3) = O

(
(m+ n)n2).

Computational complexity via flop count 8



Flop-count operator

As another example, consider

minimize
x∈Rn

1

2
∥Ax− b∥2 + λ∥x∥1,

where A ∈ Rm×n, b ∈ Rm, and λ > 0. DRS is

xk+1/2 = (I + αA⊺A)−1(zk + αA⊺b)

xk+1 = S(2xk+1/2 − zk;αλ)

zk+1 = zk + xk+1 − xk+1/2,

where S is soft-thresholding. A naive implementation costs

F
[
zk 7→ zk+1

]
= F

[
A 7→ (I + αA⊺A)−1]+ F

[
{zk, (I + αA⊺A)−1} 7→ xk+1/2

]
+ F

[
{xk+1/2, zk} 7→ xk+1

]
+ F

[
{zk, xk+1/2, xk+1} 7→ zk+1

]
= O

(
(m+ n)n2)+O ((m+ n)n) +O (n) +O (n)

= O
(
(m+ n)n2).



Flop-count operator

Reduce this cost. When m ≥ n, precompute (I + αA⊺A)−1 with cost

F
[
A 7→ (I + αA⊺A)−1

]
= O

(
mn2

)
and αA⊺b with cost

F [{α,A, b} 7→ αA⊺b] = O (mn).

In subsequent iterations,

F
[
{zk, (I + αA⊺A)−1, αA⊺b} 7→ zk+1

]
= F

[
{zk, (I + αA⊺A)−1, αA⊺b} 7→ xk+1/2

]
+ F

[
{xk+1/2, zk} 7→ xk+1

]
+ F

[
{zk, xk+1/2, xk+1} 7→ zk+1

]
= O

(
n2
)
+O (n) +O (n)

= O
(
n2
)
.

Computational complexity via flop count 10



Outline

Computational complexity via flop count

Parallel computing

Parallel computing 11



Simplified view of parallel computing

(Over)simplified view of parallel computing: group of computational
agents working on a single task. Example: CPU cores, GPU cores, or
computers connected over the internet.

If p processors, A,B ∈ Rm×n, and p ≤ mn, then C = A+B requires
O (mn/p) flops for each processor:

parallel for i=1,...,m, j=1,...,n {

C[i,j] = A[i,j]+B[i,j]

}

Parallel computing 12



Embarrassingly parallel

Task is embarrassingly parallel if trivial to parallelize.
(Embarrassingly parallel is good.)

For example, v = Ax is embarrassingly parallel:

parallel for i=1,...,m {

v[i] = 0;

for j=1,...,n

v[i] += A[i,j]*x[j]

}

Parallel computing 13



Not everything is parallelizable

Some tasks can’t be parallelized. Consider DRS:

xk+1/2 = Proxαf (z
k)

xk+1 = Proxαg(2x
k+1/2 − zk)

zk+1 = zk + xk+1 − xk+1/2.

Proxαg and Proxαf cannot be computed simultaneously, in parallel.

Computational bottleneck usually in Proxαg or Proxαf . If Proxαf and
Proxαg are not parallelizable, DRS is not parallelizable.

Parallel computing 14



Parallel flop count operator

Let A be an algorithm that utilizes p parallel computing units.
(A can process up to p flops in parallel each step.)

Parallel flop-count operator:

Fp [{x1, . . . , xn} 7→ {y1, . . . , ym} |A]

number of steps A takes to compute {y1, . . . , ym} given {x1, . . . , xn}.

Parallel computing 15



Parallelizable methods and operators

Method is parallelizable if many processors (large p) provide a significant
speedup and is serial otherwise. (“Significant” depends on context.)

Parallelizability of {y1, . . . , ym} given {x1, . . . , xn} defined with Fp:

Fp [{x1, . . . , xn} 7→ {y1, . . . , ym}] ≪ F [{x1, . . . , xn} 7→ {y1, . . . , ym}]

for large enough p.

Meaning of ≪ depends on context, but if

Fp [{x1, . . . , xn} 7→ {y1, . . . , ym}] ∼ C

p
F [{x1, . . . , xn} 7→ {y1, . . . , ym}]

for some C > 0 not too large, then parallelizable.

Operator 𝕋 is parallelizable if

Fp [x 7→ 𝕋x] ≪ F [x 7→ 𝕋x] .



Reduction

Reduction combines a set of numbers into one with an associative binary
operator. A common example is the sum

xsum =

n∑
i=1

xi,

where x1, . . . , xn ∈ R. With p = 1 processor, reduction costs O (n).

Parallel computing 17



Parallel reduction

With p ≥ ⌊n/2⌋ processors, reduction takes O (log n) steps. In the
following example with n = 8 and p = 4, Fp [{x1, . . . , x8} 7→ xsum] = 3.

xsum

x1 + x2 + x3 + x4

x1 + x2

x1 x2

x3 + x4

x3 x4

x5 + x6 + x7 + x8

x5 + x6

x5 x6

x7 + x8

x7 x8

Step 1

Step 2

Step 3

+

+ +

+ + + +

General strategy: follow a binary tree with depth log2 n.



Parallel reduction

With p < ⌊n/2⌋ processors, reduction takes O (n/p+ log p) steps. In the
following example with n = 40 and p = 4,
Fp [{x1, . . . , x40} 7→ xsum] = 40/4− 1 + log2 4 = 11.

xsum

x1 + · · ·+ x20

x1 + · · ·+ x10

x1 x10

x11 + · · ·+ x20

x11 x20

x21 + · · ·+ x40

x21 + · · ·+ x30

x21 x30

x31 + · · ·+ x40

x31 x40

Steps 1–9

Step 10

Step 11

+

+ +

· · · + · · · · · · + · · · · · · + · · · · · · + · · ·

General strategy: (i) partition n numbers into p groups of sizes roughly
n/p, (ii) reduce within p groups with O (n/p) steps, (iii) reduce p
numbers with O (log p) steps.



Parallel reduction

To summarize,

Fp [{x1, . . . , xn} 7→ xsum] =


O (n) if p = 1

O (n/p+ log p) if 1 < p < ⌊n/2⌋
O (log n) if p ≥ ⌊n/2⌋.

Likewise, we can compute

▶ minimum and maximum of x1, . . . , xn ∈ R,

▶ arithmetic mean, geometric mean, and product of x1, . . . , xn ∈ R,

▶ ⟨x, y⟩ for x, y ∈ Rn, and

▶ ∥x∥1 and ∥x∥∞ for x ∈ Rn.

Parallel computing 20



Parallel matrix-vector multiplication

Let A ∈ Rm×n and x ∈ Rn and consider {A, x} 7→ b.

Fp [{A, x} 7→ b] =


O (mn) if p = 1
O (mn/p) if p ≤ m
O (mn/p+ log(p/m)) m < p < mn/2
O (log n) if mn/2 ≤ p.

For m < p, assign p
m processors to compute bi =

∑n
j=1 Ai,jxj with

parallel reduction.



Other costs: coordination and communication

On a multi-core CPU, counting flops only is a useful approximation.

Parallel computing on a graphics processing unit (GPU) relies on
thousands of slower processors. Cost of coordination may be significant.

In distributed and decentralized computing, many computers operate in
parallel and communicate. Cost of communication may be significant.

Parallel computing 22



Parallelizing linear algebra vs. high-level parallelism

When a method relies on linear algebraic operations (like {A, x} 7→ Ax),
it is possible to parallelize the linear algebra.

In some cases, a method itself is parallelizable at a higher level.

Parallel computing 23



Example: Sum of smooth functions

Consider

minimize
x∈Rn

f(x) +
1

m

m∑
i=1

hi(x),

where h1, . . . , hm are differentiable. FBS is

vk = − α

m

m∑
i=1

∇hi(x
k)

xk+1 = Proxαf
(
xk + vk

)
Assume Proxαf costs Cf flops and ∇hi costs Ch flops (or fewer). Then

Fp

[
xk 7→ xk+1

]
= Fp

[
xk 7→ {∇hi(x

k)}mi=1

]
+ Fp

[
{∇hi(x

k)}mi=1 7→ vk
]

+ Fp

[
{xk, vk} 7→ xk+1

]
= O (mCh/p) +O (mn/p) +O (n/p+ Cf )

= O ((Ch + n)m/p+ Cf ).

for p ≤ min{m,n}. Method parallelizable if Cf = O ((Ch + n)m/p).



Example: Sum of proximable functions

Consider

minimize
x∈Rn

f(x) +
1

m

m∑
i=1

gi(x).

Using the consensus technique, reformulate into

minimize
x1,...,xm∈Rn

f(x1) + δC(x1, . . . , xm) +
1

m

m∑
i=1

gi(xi),

where C = {(x1, . . . , xm) |x1 = · · · = xm}. DRS is

xk+1/2 = Proxαf

(
1

m

m∑
i=1

zki

)
,

xk+1
i = Proxαgi(2x

k+1/2 − zki )

zk+1
i = zki + xk+1

i − xk+1/2 for i = 1, . . . ,m.

Assume Proxαf costs Cf and Proxαgi costs Cg (or fewer). For p ≤ m,

Fp

[
zk 7→ zk+1

]
= Fp

[
zk 7→ xk+1/2

]
+ Fp

[
{zk, xk+1/2} 7→ zk+1

]
= O (mn/p+ Cf + Cgm/p).



Example: Sum of proximable functions and a strongly

convex function

Consider primal problem

minimize
x∈Rn

f(x) +

m∑
i=1

gi(a
⊺
i x− bi)

and dual problem

maximize
u1,...,um∈R

−f∗

(
−

m∑
i=1

uiai

)
−

m∑
i=1

(g∗i (ui) + biui)

generated by

L(x, u1, . . . , um) = f(x) +

m∑
i=1

⟨ui, a
⊺
i x− bi⟩ −

m∑
i=1

g∗i (ui),

where a1, . . . , am ∈ Rn, b1, . . . , bm ∈ R, f is a strongly convex CCP
function on Rn, and g1, . . . , gm are proximable CCP functions on R.

Parallel computing 26



Example: Sum of proximable functions and a strongly

convex function

FBS applied to the dual is

xk = ∇f∗

(
−

m∑
i=1

uk
i ai

)
uk+1
i = Proxαg∗

i

(
uk
i + α(a⊺i x

k − bi)
)

for i = 1, . . . ,m.

(Since f is strongly convex, f∗ is smooth.) Assume ∇f∗ costs Cf flops
and Proxαg∗

i
costs Cg flops. Then for p ≤ m and p ≤ n,

Fp

[
{uk

1 , . . . , u
k
m} 7→ {uk+1

1 , . . . , uk+1
m }

]
= O ((Cg + n)m/p+ Cf ).

Parallel computing 27



Example: Support-vector machine

In the support-vector machine (SVM) setup of machine learning, we solve

minimize
x∈Rn

λ

2
∥x∥2 +

m∑
i=1

max{1− yia
⊺
i x, 0},

where a1, . . . , am ∈ Rn, y1, . . . , yn ∈ {−1, 1}, and λ > 0. FBS applied
to the dual is

xk =
1

2λ

(
−

m∑
i=1

uk
i yiai

)
uk+1
i = Π[−1,0]

(
uk
i − α(1− yia

⊺
i x

k)
)

for i = 1, . . . ,m.

Parallelizable since

Fp

[
{uk

1 , . . . , u
k
m} 7→ {uk+1

1 , . . . , uk+1
m }

]
= O (nm/p)

for p ≤ min{m,n}.
Parallel computing 28



Amdahl’s law

Imagine the algorithm

xk+1/2 = xk − α∇f(xk)

xk+1 = Proxαg(x
k+1/2)

takes 6ms to evaluate xk+1/2 and 3ms to evaluate xk+1.

If we reduce the computation of xk+1/2 from 6ms to 0ms, speedup is

9

3 + 0
= 3.

Upper bounds the maximum speedup achievable by reducing the
computation time of xk+1/2.

Parallel computing 29



Amdahl’s law

If a part of a task takes time η ∈ [0, 1], in proportion, and we speedup
the part by s, then the total speedup is

S(s) =
1

1− η + η/s
.

This formula is Amdahl’s law.

The s = ∞ case 1/(1− η) upper bounds the speedup.

A part of an algorithm is only worth accelerating if it occupies a
significant portion of the runtime (if η is large).

Parallel computing 30



Conclusion

The notion of computational cost we briefly considered is incomplete as it
only accounts for flops while ignoring coordination and communication.

Nevertheless, this framework is a useful approximation for analyzing the
running time of algorithms.

Parallel computing 31


	Computational complexity via flop count
	Parallel computing

