
Convex Optimization — Boyd & Vandenberghe (Modified by E. K. Ryu)

4. Convex optimization problems

• optimization problem in standard form

• convex optimization problems

• linear optimization

• quadratic optimization

• semidefinite programming

• vector optimization
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Optimization problem in standard form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

• x ∈ Rn is the optimization variable

• f0 : R
n → R is the objective or cost function

• fi : R
n → R, i = 1, . . . ,m, are the inequality constraint functions

• hi : R
n → R are the equality constraint functions

optimal value:

p⋆ = inf{f0(x) | fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}

• p⋆ = ∞ if problem is infeasible (no x satisfies the constraints)

• p⋆ = −∞ if problem is unbounded below
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Optimal and locally optimal points

x is feasible if x ∈ dom f0 and it satisfies the constraints

a feasible x is optimal if f0(x) = p⋆; Xopt is the set of optimal points

x is locally optimal if there is an R > 0 such that x is optimal for

minimize (over z) f0(z)
subject to fi(z) ≤ 0, i = 1, . . . ,m, hi(z) = 0, i = 1, . . . , p

‖z − x‖2 ≤ R

examples (with n = 1, m = p = 0)

• f0(x) = 1/x, dom f0 = R++: p
⋆ = 0, no optimal point

• f0(x) = − log x, dom f0 = R++: p
⋆ = −∞

• f0(x) = x log x, dom f0 = R++: p
⋆ = −1/e, x = 1/e is optimal

• f0(x) = x3 − 3x, p⋆ = −∞, local optimum at x = 1
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Implicit constraints

the standard form optimization problem has an implicit constraint

x ∈ D =

m
⋂

i=0

dom fi ∩
p
⋂

i=1

domhi,

• we call D the domain of the problem

• the constraints fi(x) ≤ 0, hi(x) = 0 are the explicit constraints

• a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:

minimize f0(x) = −∑k
i=1 log(bi − aTi x)

is an unconstrained problem with implicit constraints aTi x < bi
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Feasibility problem

find x
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

can be considered a special case of the general problem with f0(x) = 0:

minimize 0
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

• p⋆ = 0 if constraints are feasible; any feasible x is optimal

• p⋆ = ∞ if constraints are infeasible
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Convex optimization problem

standard form convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

aTi x = bi, i = 1, . . . , p

• f0, f1, . . . , fm are convex; equality constraints are affine

often written as

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

important property: feasible set of a convex optimization problem is convex
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example

minimize f0(x) = x2
1 + x2

2

subject to f1(x) = x1/(1 + x2
2) ≤ 0

h1(x) = (x1 + x2)
2 = 0

• f0 is convex; feasible set {(x1, x2) | x1 = −x2 ≤ 0} is convex

• not a convex problem (according to our definition): f1 is not convex, h1

is not affine

• equivalent (but not identical) to the convex problem

minimize x2
1 + x2

2

subject to x1 ≤ 0
x1 + x2 = 0
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Local and global optima

any locally optimal point of a convex problem is (globally) optimal

proof: suppose x is locally optimal, but there exists a feasible y with
f0(y) < f0(x)

x locally optimal means there is an R > 0 such that

z feasible, ‖z − x‖2 ≤ R =⇒ f0(z) ≥ f0(x)

consider z = θy + (1− θ)x with θ = R/(2‖y − x‖2)

• ‖y − x‖2 > R, so 0 < θ < 1/2
• z is a convex combination of two feasible points, hence also feasible
• ‖z − x‖2 = R/2 and

f0(z) ≤ θf0(y) + (1− θ)f0(x) < f0(x)

which contradicts our assumption that x is locally optimal
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Optimality criterion for differentiable f0

x is optimal if and only if it is feasible and

∇f0(x)
T (y − x) ≥ 0 for all feasible y

−∇f0(x)

X
x

if nonzero, ∇f0(x) defines a supporting hyperplane to feasible set X at x
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• unconstrained problem: x is optimal if and only if

x ∈ dom f0, ∇f0(x) = 0

• equality constrained problem

minimize f0(x) subject to Ax = b

x is optimal if and only if there exists a ν such that

x ∈ dom f0, Ax = b, ∇f0(x) +ATν = 0

• minimization over nonnegative orthant

minimize f0(x) subject to x � 0

x is optimal if and only if

x ∈ dom f0, x � 0,

{

∇f0(x)i ≥ 0 xi = 0
∇f0(x)i = 0 xi > 0
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Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily
obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

• eliminating equality constraints

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

is equivalent to

minimize (over z) f0(Fz + x0)
subject to fi(Fz + x0) ≤ 0, i = 1, . . . ,m

where F and x0 are such that

Ax = b ⇐⇒ x = Fz + x0 for some z
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• introducing equality constraints

minimize f0(A0x+ b0)
subject to fi(Aix+ bi) ≤ 0, i = 1, . . . ,m

is equivalent to

minimize (over x, yi) f0(y0)
subject to fi(yi) ≤ 0, i = 1, . . . ,m

yi = Aix+ bi, i = 0, 1, . . . ,m

• introducing slack variables for linear inequalities

minimize f0(x)
subject to aTi x ≤ bi, i = 1, . . . ,m

is equivalent to

minimize (over x, s) f0(x)
subject to aTi x+ si = bi, i = 1, . . . ,m

si ≥ 0, i = 1, . . .m
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• epigraph form: standard form convex problem is equivalent to

minimize (over x, t) t
subject to f0(x)− t ≤ 0

fi(x) ≤ 0, i = 1, . . . ,m
Ax = b

• minimizing over some variables

minimize f0(x1, x2)
subject to fi(x1) ≤ 0, i = 1, . . . ,m

is equivalent to

minimize f̃0(x1)
subject to fi(x1) ≤ 0, i = 1, . . . ,m

where f̃0(x1) = infx2 f0(x1, x2)
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Linear program (LP)

minimize cTx+ d
subject to Gx � h

Ax = b

• convex problem with affine objective and constraint functions

• feasible set is a polyhedron

P x⋆

−c
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Examples

diet problem: choose quantities x1, . . . , xn of n foods

• one unit of food j costs cj, contains amount aij of nutrient i

• healthy diet requires nutrient i in quantity at least bi

to find cheapest healthy diet,

minimize cTx
subject to Ax � b, x � 0

piecewise-linear minimization

minimize maxi=1,...,m(aTi x+ bi)

equivalent to an LP

minimize t
subject to aTi x+ bi ≤ t, i = 1, . . . ,m

Convex optimization problems 4–15



Chebyshev center of a polyhedron

Chebyshev center of

P = {x | aTi x ≤ bi, i = 1, . . . ,m}

is center of largest inscribed ball

B = {xc + u | ‖u‖2 ≤ r}

xchebxcheb

• aTi x ≤ bi for all x ∈ B if and only if

sup{aTi (xc + u) | ‖u‖2 ≤ r} = aTi xc + r‖ai‖2 ≤ bi

• hence, xc, r can be determined by solving the LP

maximize r
subject to aTi xc + r‖ai‖2 ≤ bi, i = 1, . . . ,m
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Quadratic program (QP)

minimize (1/2)xTPx+ qTx+ r
subject to Gx � h

Ax = b

• P ∈ Sn
+, so objective is convex quadratic

• minimize a convex quadratic function over a polyhedron

P

x⋆

−∇f0(x
⋆)
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Examples

least-squares
minimize ‖Ax− b‖22

• analytical solution x⋆ = A†b (A† is pseudo-inverse)

• can add linear constraints, e.g., l � x � u

linear program with random cost

minimize c̄Tx+ γxTΣx = E cTx+ γ var(cTx)
subject to Gx � h, Ax = b

• c is random vector with mean c̄ and covariance Σ

• hence, cTx is random variable with mean c̄Tx and variance xTΣx

• γ > 0 is risk aversion parameter; controls the trade-off between
expected cost and variance (risk)
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Quadratically constrained quadratic program (QCQP)

minimize (1/2)xTP0x+ qT0 x+ r0
subject to (1/2)xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m

Ax = b

• Pi ∈ Sn
+; objective and constraints are convex quadratic

• if P1, . . . , Pm ∈ Sn
++, feasible region is intersection of m ellipsoids and

an affine set
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Second-order cone programming

minimize fTx
subject to ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m

Fx = g

(Ai ∈ Rni×n, F ∈ Rp×n)

• inequalities are called second-order cone (SOC) constraints:

(Aix+ bi, c
T
i x+ di) ∈ second-order cone in Rni+1

• for ni = 0, reduces to an LP; if ci = 0, reduces to a QCQP

• more general than QCQP and LP
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Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m,

there can be uncertainty in c, ai, bi

two common approaches to handling uncertainty (in ai, for simplicity)

• deterministic model: constraints must hold for all ai ∈ Ei

minimize cTx
subject to aTi x ≤ bi for all ai ∈ Ei, i = 1, . . . ,m,

• stochastic model: ai is random variable; constraints must hold with
probability η

minimize cTx
subject to prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m
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deterministic approach via SOCP

• choose an ellipsoid as Ei:

Ei = {āi + Piu | ‖u‖2 ≤ 1} (āi ∈ Rn, Pi ∈ Rn×n)

center is āi, semi-axes determined by singular values/vectors of Pi

• robust LP

minimize cTx
subject to aTi x ≤ bi ∀ai ∈ Ei, i = 1, . . . ,m

is equivalent to the SOCP

minimize cTx
subject to āTi x+ ‖PT

i x‖2 ≤ bi, i = 1, . . . ,m

(follows from sup‖u‖2≤1(āi + Piu)
Tx = āTi x+ ‖PT

i x‖2)
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stochastic approach via SOCP

• assume ai is Gaussian with mean āi, covariance Σi (ai ∼ N (āi,Σi))

• aTi x is Gaussian r.v. with mean āTi x, variance xTΣix; hence

prob(aTi x ≤ bi) = Φ

(

bi − āTi x

‖Σ1/2
i x‖2

)

where Φ(x) = (1/
√
2π)

∫ x

−∞
e−t2/2 dt is CDF of N (0, 1)

• robust LP

minimize cTx
subject to prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m,

with η ≥ 1/2, is equivalent to the SOCP

minimize cTx

subject to āTi x+Φ−1(η)‖Σ1/2
i x‖2 ≤ bi, i = 1, . . . ,m
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Semidefinite program (SDP)

minimize cTx
subject to x1F1 + x2F2 + · · ·+ xnFn +G � 0

Ax = b

with Fi, G ∈ Sk

• inequality constraint is called linear matrix inequality (LMI)

• includes problems with multiple LMI constraints: for example,

x1F̂1 + · · ·+ xnF̂n + Ĝ � 0, x1F̃1 + · · ·+ xnF̃n + G̃ � 0

is equivalent to single LMI

x1

[

F̂1 0

0 F̃1

]

+x2

[

F̂2 0

0 F̃2

]

+· · ·+xn

[

F̂n 0

0 F̃n

]

+

[

Ĝ 0

0 G̃

]

� 0
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LP and SOCP as SDP

LP and equivalent SDP

LP: minimize cTx
subject to Ax � b

SDP: minimize cTx
subject to diag(Ax− b) � 0

(note different interpretation of generalized inequality �)

SOCP and equivalent SDP

SOCP: minimize fTx
subject to ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m

SDP: minimize fTx

subject to

[

(cTi x+ di)I Aix+ bi
(Aix+ bi)

T cTi x+ di

]

� 0, i = 1, . . . ,m
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Eigenvalue minimization

minimize λmax(A(x))

where A(x) = A0 + x1A1 + · · ·+ xnAn (with given Ai ∈ Sk)

equivalent SDP
minimize t
subject to A(x) � tI

• variables x ∈ Rn, t ∈ R

• follows from
λmax(A) ≤ t ⇐⇒ A � tI
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Matrix norm minimization

minimize ‖A(x)‖2 =
(

λmax(A(x)TA(x))
)1/2

where A(x) = A0 + x1A1 + · · ·+ xnAn (with given Ai ∈ Rp×q)

equivalent SDP

minimize t

subject to

[

tI A(x)
A(x)T tI

]

� 0

• variables x ∈ Rn, t ∈ R

• constraint follows from

‖A‖2 ≤ t ⇐⇒ ATA � t2I, t ≥ 0

⇐⇒
[

tI A
AT tI

]

� 0
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