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Scaled relative graphs (SRG)

We present the SRG, which provides a correspondence between algebraic
operations on nonlinear operators and geometric operations on subsets of
the 2D plane. We can think of the SRG as a signature of an operator
analogous to how eigenvalues are a signature of a matrix.

Using the SRG and Euclidean geometry, we establish averagedness and
contractiveness of FPIs. (Geometric arguments are rigorous proofs, not
mere illustrations.)
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Operator classes

A is a class of operators if A is a set of operators on Rn for n ∈ N.
(Technical detail: �1,�2 ∈ A, �1 : Rn ⇒ Rn �2 : Rm ⇒ Rm, and
n 6= m is possible.)

Given classes of operators A and B and α > 0, write

A+ B = {� + � |� ∈ A, � ∈ B, � : Rn ⇒ Rn, � : Rn ⇒ Rn}
AB = {�� |� ∈ A, � ∈ B, � : Rn ⇒ Rn, � : Rn ⇒ Rn}
�αA = {�α� |� ∈ A, � : Rn ⇒ Rn}
ℝαA = 2�αA − � = {2�− � | � ∈ �αA, � : Rn ⇒ Rn, � : Rn ⇒ Rn}
A−1 = {�−1 |� ∈ A}
αA = {α� |� ∈ A}.
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Operator classes

Class of L-Lipschitz operators:

LL =
{
� : dom�→ Rn | ‖�x−�y‖2 ≤ L2‖x− y‖2, ∀x, y ∈ dom� ⊆ Rn, n ∈ N

}
.

Class of β-cocoercive operators:

Cβ =
{
� : dom�→ Rn | 〈�x−�y, x− y〉 ≥ β‖�x−�y‖2, ∀x, y ∈ dom� ⊆ Rn, n ∈ N

}
.

Class of monotone operators:

M =
{
� : Rn ⇒ Rn | 〈�x−�y, x− y〉 ≥ 0, ∀x, y ∈ dom�, n ∈ N

}
.

Class of µ-strongly monotone operators:

Mµ =
{
� : Rn ⇒ Rn | 〈�x−�y, x− y〉 ≥ µ‖x− y‖2, ∀x, y ∈ dom�, n ∈ N}.

Class of θ-averaged operators:

Nθ = (1− θ)� + θL1.

(No requirements on domain or maximality.)
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Subdifferential operator classes

Class of µ-strongly convex and L-smooth CCP functions on Rn:

Fµ,L

(µ = 0 convex but not strongly convex; L =∞ not-smooth.)

Class of subdifferential operators:

∂Fµ,L = {∂f | f ∈ Fµ,L}
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Basic geometry

Stewart’s theorem:

A B

C

D

lengths satisfy

AD · CB2
+DB ·AC2

= AB · CD2
+AD ·DB2

+AD
2 ·DB

For any a, b ∈ Rn, angle function:

∠(a, b) =

{
arccos

(
〈a,b〉
‖a‖‖b‖

)
if a 6= 0, b 6= 0

0 otherwise.
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Extended complex plane

Extended complex plane C = C ∪ {∞} represents the 2D plane and the
point at infinity.

We avoid ∞+∞, 0/0, ∞/∞, and 0 · ∞.
Define z +∞ =∞, z/∞ = 0, and [z/0 =∞ and z · ∞ =∞ for z 6= 0].

Inversion map: z 7→ z̄−1, a one-to-one map from C to C.
In polar form: reiϕ 7→ (1/r)eiϕ.

(Inversion preserves angle and inverts magnitude. z̄ is complex conjugate
of z.)
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SRG of operators

Let � : Rn ⇒ Rn, u ∈ �x, and v ∈ �y. Goal: understand change in
ouputs u− v relative to change in inputs x− y.

For x 6= y, consider complex conjugate pair

z =
‖u− v‖
‖x− y‖

exp [±i∠(u− v, x− y)] .

Magnitude |z| = ‖u−v‖
‖x−y‖ represents size of u− v relative to size of x− y.

Angle ∠(u− v, x− y) represents how much u− v is aligned with x− y.

Equivalently, Re z and Im z respectively represent the components of
u− v aligned with and perpendicular to x− y:

Re z = sgn(〈u− v, x− y〉)
‖Πspan{x−y}(u− v)‖

‖x− y‖
=
〈u− v, x− y〉
‖x− y‖2

Im z = ±
‖Π{x−y}⊥(u− v)‖

‖x− y‖



SRG of operators

SRG of an operator � : Rn ⇒ Rn:

G(�) =

{
‖u− v‖
‖x− y‖

exp [±i∠(u− v, x− y)]
∣∣∣u ∈ �x, v ∈ �y, x 6= y

}
(
∪ {∞} if � is multi-valued

)
Clarification:

(i) G(�) ⊆ C

(ii) [∞ ∈ G(�)] ⇔ [�x is multi-valued for some x.]
(Since (x, u), (y, v) ∈ � with x = y and u 6= v,

|z| = ‖u−v‖
0 =∞ and u− v is infinitely larger than x− y = 0.)

(iii) ± makes G(�) symmetric about the real axis. (Include ± because
∠(u− v, x− y) always returns a nonnegative angle.)
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Examples: SRG of operators

G(ΠL) =
1 G(�) =

i

G(∂‖ · ‖) =

{z | Re z > 0} ∪ {0,∞}

∪{∞}

G(�) =
1 2 3

ΠL : R2 → R2 the projection onto a line L; � : R2 → R2 is
�(u, v) = (0, u); ∂‖ · ‖ for n ≥ 2; and � : R3 → R3 is
�(u, v, w) = (u, 2v, 3w); Shapes obtained through direct calculations.



SRG and eigenvalues

For linear operators, SRG generalizes eigenvalues:
Λ(�) ⊆ G(�), if � ∈ Rn×n and n = 1 or n ≥ 3.

SRG of a 3× 3 matrix. The three points denote the eigenvalues.

1/2 + i

1/2− i

2

= G

 1/2 2 0
−1/2 1/2 0

0 0 2
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Example: SRG of normal matrices

For normal matrices, multiplicity of eigenvalues do not affect the SRG.

λ6

λ2

λ4

λ7

λ3

λ5

λ1 λ1 λ2 λ3 λ4 λ5 λ6

(Left) SRG of an n× n normal matrix with one distinct real eigenvalue
and three distinct complex conjugate eigenvalue pairs. (Right) SRG of an
n× n symmetric matrix with distinct eigenvalues λ1 < λ2 < · · · < λ6.



SRG of operator classes

SRG of a collection of operators:

G(A) =
⋃
�∈A
G(�).

(Theorems are usually stated with operator classes. For example,
“If � is β/2-cocoercive, i.e., if � ∈ Cβ/2, then �−� is nonexpansive.”)
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Theorem 19.
Let µ, β, L ∈ (0,∞) and θ ∈ (0, 1). Then

G(LL) =

L−L

{
z ∈ C

∣∣ |z|2 ≤ L2
}

G(Nθ) =

1

1− 2θ

θ

{
z ∈ C

∣∣ |z|2 + (1− 2θ) ≤ 2(1− θ) Re z
}

G(M) =

∪{∞}

{z ∈ C | Re z ≥ 0} ∪ {∞}

G(Mµ) =

∪{∞}

µ

{z ∈ C | Re z ≥ µ} ∪ {∞}

G(Cβ) = 1/β

{
z ∈ C

∣∣ Re z ≥ β|z|2
}



SRG of subdifferential operators

Theorem 20.
Let 0 < µ < L <∞. Then

G(∂F0,∞) =

∪{∞}

{z | Re z ≥ 0} ∪ {∞}

G(∂Fµ,∞) =

∪{∞}

µ

{z | Re z ≥ µ} ∪ {∞}

G(∂F0,L) =
L

G(∂Fµ,L) =

Lµ
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SRG-full classes

An operator defines its SRG. Conversely, can we examine the SRG and
conclude something about the operator?

A class of operators A is SRG-full if

� ∈ A ⇔ G(�) ⊆ G(A).

Since � ∈ A ⇒ G(�) ⊆ G(A) holds by definition,
G(�) ⊆ G(A)⇒ � ∈ A is the substance of SRG-fullness.

Essentially, a class is SRG-full if it can be fully characterized by its SRG;
we can check membership � ∈ A by verifying (through geometric
arguments) containment G(�) ⊆ G(A) in the 2D plane.
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SRG-full classes

SRG-fullness assumes the desirable property G(�) ⊆ G(A)⇒ � ∈ A.
The following characterizes classes with this property.

Theorem 21.
An operator class A is SRG-full if it is defined by

� ∈ A ⇔ h
(
‖u− v‖2, ‖x− y‖2, 〈u− v, x− y〉

)
≤ 0, ∀u ∈ �x, v ∈ �y

for some nonnegative homogeneous function h : R3 → R.

h is nonnegative homogeneous if θh(a, b, c) = h(θa, θb, θc) for all θ ≥ 0.
(We do not assume h is smooth.)
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Example: SRG-full classes

When a class A is defined by h as in Theorem 21, we say h represents A.

µ-strongly monotone class Mµ represented by h(a, b, c) = µb− c:

� ∈Mµ ⇔ µ‖x− y‖2 ≤ 〈u− v, x− y〉, ∀u ∈ �x, v ∈ �y.

Firmly nonexpansive class N1/2 represented by h(a, b, c) = a− c:

� ∈ N1/2 ⇔ ‖u− v‖2 ≤ 〈u− v, x− y〉, ∀u ∈ �x, v ∈ �y.

By Theorem 21, M, Mµ, Cβ , LL, and Nθ are all SRG-full.
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Example: Class of subdifferentials are not SRG-full

Classes ∂F0,∞, ∂Fµ,∞, ∂F0,L, and ∂Fµ,L are not SRG-full.

For example,

�(z1, z2) =

[
0 −1
1 0

] [
z2

z2

]
satisfies G(�) = {−i, i} ⊆ G(∂F0,∞), but � /∈ ∂F0,∞.

(If ∇f = � for a function f , then D� = ∇2f must be symmetric.)
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Role of maximality

Maximality is mostly orthogonal to the notion of the SRG: non-maximal
operators have a well-defined SRGs, and SRG-full classes contain
non-maximal operators.

This separation allows the geometric analyses via SRGs being entangled
with the subtleties of maximality.
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Intersection

Theorem 22.
If A and B are SRG-full classes, then A ∩ B is SRG-full, and

G(A ∩ B) = G(A) ∩ G(B).

The substance of Theorem 22 is G(A ∩ B) ⊇ G(A) ∩ G(B) since
G(A ∩ B) ⊆ G(A) ∩ G(B) holds by definition, regardless of SRG-fullness.
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Example: Non-SRG-full example

Theorem 22 does not apply when the operator classes are not SRG-full.
For example, although

∂Fµ,L = ∂Fµ,∞ ∩ ∂F0,L

we have the strict containment

Lµ

G(∂Fµ,L)

⊂
µ

G(∂Fµ,∞) ∩ G(∂F0,L)

L
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Scaling and translation

Theorem 23.
Let α ∈ R and α 6= 0. If A is a class of operators, then

G(αA) = αG(A), G(� +A) = 1 + G(A).

If A is furthermore SRG-full, then αA and � +A are SRG-full.

Note a class of operators can consist of a single operator. So

G(α�) = αG(�), G(� + �) = 1 + G(�)
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Convergence analysis: gradient descent

Consider
minimize
x∈Rn

f(x),

where f is µ-strongly convex and L-smooth with 0 < µ < L <∞.

Gradient descent
xk+1 = xk − α∇f(xk)

converges with rate

‖xk − x?‖ ≤ (max{|1− αµ|, |1− αL|})k ‖x0 − x?‖

for α ∈ (0, 2/L) by the following Proposition 2.
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Convergence analysis: gradient descent

Proposition 2.
Let 0 < µ < L <∞ and α ∈ (0,∞). If A = ∂Fµ,L, then �− αA ⊆ LR
for

R = max{|1− αµ|, |1− αL|}.

Result is tight in the sense that �− αA * LR for any smaller value of R.

Proof. By Theorems 20 and 23, we have the geometry

1− αL 1− αµ

G (�− αA)

G (LR)

R = max{|1− αµ|, |1− αL|}

The containment of G(�− αA) holds for R and fails for smaller R. Since
LR is SRG-full by Theorem 21, the containment of the SRG in C

equivalent to the containment of the class.



Convergence analysis: Forward step method

Consider
find
x∈Rn

0 ∈ �x,

where � : Rn → Rn. Consider the forward step method

xk+1 = xk − α�xk

under the following two setups.

If � is µ-strongly monotone and L-Lipschitz with 0 < µ < L <∞,

‖xk − x?‖ ≤
(
1− 2αµ+ α2L2

)k/2 ‖x0 − x?‖

for α ∈ (0, 2µ/L2) by Proposition 3.
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Proposition 3.
Let 0 < µ < L <∞ and α ∈ (0,∞). If A =Mµ ∩ LL, then
�− αA ⊆ LR for

R =
√

1− 2αµ+ α2L2.

Result is tight in the sense that �− αA * LR for any smaller value of R.
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Proof. First consider the case αµ > 1. By Theorems 19 and 23, we have

αµ αL

G (αA)

−αµ−αL

G (−αA)

1− αµ1− αL

G (�− αA)

1− αµ1− αL 1

G (�− αA) G (LR)

R =
√

1− 2αµ+ α2L2

AB

C

C ′

D O

To clarify, O is the center of the circle with radius OC (lighter shade)
and A is the center of the circle with radius AC = AD defining the inner
region (darker shade).



Proof of Proposition 3

With 2 applications of the Pythagorean theorem, we get

OC
2

= CB
2

+BO
2

= AC
2 −BA2

+BO
2

= (αL)2 − (αµ)2 + (1− αµ)2 = 1− 2αµ+ α2L2.

Since C ′C is a chord of circle O, it is within the circle. Since 2
non-identical circles intersect at no more than 2 points, and since D is

within circle O, arc
>
CDC ′ is within circle O. Finally, the region bounded

by C ′C ∪
>
CDC ′ (darker shade) is within circle O (lighter shade).
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Proof of Proposition 3

The previous diagram illustrates the case αµ > 1. When αµ = 1 and
αµ < 1, the geometries are slightly different but same arguments hold:

A

C

C ′

D B = O

Case αµ = 1

AB

C

C ′

D O

Case αµ < 1

The containment holds for R and fails for smaller R. Since LR is
SRG-full by Theorem 21, the containment of the SRG in C equivalent to
the containment of the class.
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Convergence analysis: Forward step method

If � is µ-strongly monotone and β-cocoercive with 0 < µ < 1/β <∞,

‖xk − x?‖ ≤
(
1− 2αµ+ α2µ/β

)k/2 ‖x0 − x?‖

for α ∈ (0, 2β) by Proposition 4.

Proposition 4.
Let 0 < µ < 1/β <∞ and α ∈ (0, 2β). If A =Mµ ∩ Cβ , then
�− αA ⊆ LR for

R =
√

1− 2αµ+ α2µ/β.

Result is tight in the sense that �− αA * LR for any smaller value of R.
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Proof of Proposition 4

Proof. First consider the case µ < 1/(2β). By Theorems 19 and 23,

1− αµ

1− α/β 1

G (�− αA)

G (LR) R =
√

1− 2αµ+ α2µ/β

C

B

B′

D

A 1O

To clarify, O is the center of the circle with radius OB (lighter shade)
and C is the center of the circle with radius AC = CB defining the inner
region (darker shade).
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Proof of Proposition 4

With two applications of the Pythagorean theorem, we get

OB
2

= OD
2

+DB
2

= OD
2

+BC
2 − CD2

= (1− αµ)2 + (α/(2β))2 − (α/(2β)− αµ)2 = 1− 2αµ+ α2µ/β.

Since B′B is a chord of circle O, it is within the circle. Since 2
non-identical circles intersect at at most 2 points, and since A is within

circle O, arc
>
BAB′ is within circle O. Finally, the region bounded by

B′B ∪
>
BAB′ (darker shade) is within circle O (lighter shade).
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Proof of Proposition 4

When µ = 1/(2β) and µ > 1/(2β), geometries are slightly different but
same arguments hold:

C = D

B

B′

A 1

O

Case µ = 1/(2β)

C

B

B′

D

A 1

O

Case µ > 1/(2β)

The containment holds for R and fails for smaller R. Since LR is
SRG-full by Theorem 21, the containment of the SRG in C equivalent to
the containment of the class.
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Inversive geometry

Generalized circles consist of (finite) circles and lines with {∞}.
(A line is like a circle with infinite radius.)

Inversion maps generalized circles to generalized circles.

In complex analysis, the inversion map is known as the Möbius
transformation. In classical Euclidean geometry, inversive geometry
considers generally the inversion of the 2D plane about any circle but our
inversion map z 7→ z̄−1 is the inversion about the unit circle.
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Inverting generalized circles

L
yx

1 L 1

1/y1/x

∪{∞}

1. Draw a line L through the origin orthogonally intersecting the
generalized circle. This means L intersects the boundary
perpendicularly, which implies L goes through the circle’s center
when the generalized circle is finite.

2. Let −∞ < x < y ≤ ∞ represent the signed distance of the
intersecting points from the origin along this line. If the generalized
circle is a line, then y =∞.

3. Draw a generalized circle orthogonally intersecting L at (1/x) and
(1/y).

4. When inverting a region with a generalized circle as the boundary,
pick a point on L within the interior of the region to determine on
which side of the boundary the inverted interior lies.



Example: Inverting generalized circles

x y
1

x
1

∪{∞}

y =∞
1

x

∪{∞}

y =∞

x−1y−1

1

y−1 x−1

1

y−1

1

∪{∞}

x−1 =∞
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Inversion

We relate inversion of operators with inversion (reciprocal) of complex
numbers and utilize inversive geometry.

Theorem 24.
If A is a class of operators, then

G(A−1) = (G(A))
−1
.

If A is furthermore SRG-full, then A−1 is SRG-full.

To clarify, (G(A))−1 = {z−1 | z ∈ G(A)} ⊆ C.

Note (G(A))−1 = (G(A))−1, since G(A) is symmetric about real axis, so
we write the simpler (G(A))−1 even though inversion map is z 7→ z̄−1.
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Convergence analysis: proximal point

Consider
find
x∈Rn

0 ∈ �x,

where � is maximal µ-strongly monotone. PPM

xk+1 = �α�x
k

converges exponentially with rate

‖xk − x?‖ ≤
(

1

1 + αµ

)k
‖x0 − x?‖

for α > 0 by the following Proposition 5.

Proposition 5.
Let µ ∈ (0,∞) and α ∈ (0,∞). If A =Mµ, then �αA ⊆ LR for

R =
1

1 + αµ
.

Result is tight in the sense that �αA * LR for any smaller value of R.



Proof. By Theorems 19, 23, and 24, we have

1 + αµ

∪{∞}

1

G (� + αMµ)

z̄−1

−→ 1
1

1+αµ

G (�αA)

G (LR)

R = 1
1+αµ

The containment holds for R and fails for smaller R. Since LR is
SRG-full by Theorem 21, the containment of the SRG in C equivalent to
the containment of the class.
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Convergence analysis: DRS

Consider
find
x∈Rn

0 ∈ (� + �)x,

where � ∈Mµ ∩ Cβ and � ∈M are maximal monotone. DRS

zk+1 =
(

1
2� + 1

2ℝα�ℝα�
)
zk

converges exponentially with rate

‖zk − z?‖ ≤

(
1

2
+

1

2

√
1− 4αµ

1 + 2αµ+ α2µ/β

)k
‖z0 − z?‖

for α > 0 by the following Proposition 6 and Exercise 13.9.

Proposition 6.
Let 0 < µ < 1/β <∞ and α ∈ (0,∞). If A =Mµ ∩ Cβ , then
ℝαA ⊆ LR for

R =

√
1− 4αµ

1 + 2αµ+ α2µ/β
.

Result is tight in the sense that ℝαA * LR for any smaller value of R.



Proof. By Theorems 19, 23, and 24,

1+α
β

1+αµ

1

G(�+αA)

z̄−1

−→
1

1
1+αµ

1
1+α/β

G(�αA)

2z−1−→

G(2�αA−�)

1

1−αµ
1+αµ

β−α
β+α
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A closer look gives us

1−1 O

C

β
β+α

B

−αµ
1+αµ

A
R =

√
1− 4αµ

1+2αµ+α2µ/β
A

A′

ED

O

G (2JαA − I)

G (LR)

To clarify, B is the center of the circle with radius BA and C is the
center of the circle with radius CA.
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By Stewart’s theorem, we have

OA
2

=
OC ·AB2

+BO · CA2 −BO ·OC ·BC
BC

=

β
α+β

(
1− αµ

1+αµ

)2

+ αµ
1+αµ

(
1− β

α+β

)2

− β
α+β

αµ
1+αµ

(
β

α+β + αµ
1+αµ

)
β

α+β + αµ
1+αµ

= 1− 4αµ

1 + 2αµ+ α2µ/β
.

Since 2 non-identitcal circles intersect at at most 2 points, and since D is

within circle B, arc
>
ADA′ is within circle O. By the same reasoning, arc

>
A′EA is within circle O. Finally, the region bounded by

>
ADA′ ∪

>
A′EA

(darker shade) is within circle O (lighter shade).

The containment holds for R and fails for smaller R. Since LR is
SRG-full by Theorem 21, the containment of the SRG in C equivalent to
the containment of the class.
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Convergence analysis: DRS on optimization

Consider
minimize
x∈Rn

f(x) + g(x),

where f and g are CCP. Assume f ∈ Fµ,L or g ∈ F0,∞. DRS

xk+1/2 = Proxαg(z
k)

xk+1 = Proxαf (2xk+1/2 − zk)

zk+1 = zk + xk+1 − xk+1/2

converges exponentially with rate

‖zk − z?‖ ≤
(
1

2
+

1

2
max

{∣∣∣∣1− αµ1 + αµ

∣∣∣∣ , ∣∣∣∣1− αL1 + αL

∣∣∣∣})k
‖z0 − z?‖

by the following Proposition 6 and Exercise 13.9.

Proposition 7.
Let 0 < µ < L <∞ and α ∈ (0,∞). If A = ∂Fµ,L, then ℝαA ⊆ LR for

R = max

{∣∣∣∣1− αµ1 + αµ

∣∣∣∣ , ∣∣∣∣1− αL1 + αL

∣∣∣∣} .
Result is tight in the sense that ℝαA * LR for any smaller value of R.



Proof. By Theorems 20, 23, and 24, we have

G(�+αA)

1 1+αL

1+αµ

z̄−1

−→
1

1+αµ
1

1+αL

G(�αA)

1

2z−1−→

G(2�αA−�)

R=max{| 1−αµ1+αµ |,| 1−αL1+αL |}

1−αµ
1+αµ

1−αL
1+αL

G(LR)



The containment holds for R and fails for smaller R. Since LR is
SRG-full by Theorem 21, the containment of the SRG in C equivalent to
the Since LR is SRG-full by Theorem 21, the containment of the SRG in
C equivalent to the containment of the class.
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Sum of operators

Lline segment between z, w ∈ C:

[z, w] = {θz + (1− θ)w | θ ∈ [0, 1]}.
SRG-full class A satisfies the chord property if z ∈ G(A)\{∞} implies
[z, z̄] ⊆ G(A).

z

z̄

Theorem 25.
Let A,B be SRG-full classes such that ∞ /∈ G(A),∞ /∈ G(B). Then

G(A+ B) ⊇ G(A) + G(B).

If A or B furthermore satisfies the chord property, then

G(A+ B) = G(A) + G(B).
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Composition of operators

Right-hand arc between z ∈ C and z̄:

Arc+(z, z̄) =
{
rei(1−2θ)ϕ

∣∣∣ z = reiϕ, ϕ ∈ (−π, π], θ ∈ [0, 1], r ≥ 0
}

Left-hand arc between z ∈ C and z̄:

Arc−(z, z̄) = −Arc+(−z,−z̄).

z

z̄
Arc−(z, z̄)

z

z̄
Arc+(z, z̄)

An SRG-full class A respectively satisfies the left-arc property and
right-arc property if z ∈ G(A)\{∞} implies Arc−(z, z̄) ⊆ G(A) and
Arc+(z, z̄) ⊆ G(A), respectively. A satisfies an arc property if the left or
right-arc property is satisfied.



Composition of operators

Theorem 26.
Let A and B be SRG-full classes such that ∞ /∈ G(A), ∅ 6= G(A),
∞ /∈ G(B), and ∅ 6= G(B). Then

G(AB) ⊇ G(A)G(B).

If A or B furthermore satisfies an arc property, then

G(AB) = G(BA) = G(A)G(B).
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Composition of averaged operators

Theorem 27.
Let �1 and �2 be θ1- and θ2-averaged operators on Rn with
θ1, θ2 ∈ (0, 1). Then �1�2 is θ-averaged with

θ =
θ1 + θ2 − 2θ1θ2

1− θ1θ2
.
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Proof of Theorem 27

Note

z ∈ G(Nθ) ⇔ |z − (1− θ)|2 ≤ θ2 ⇔ |z|2 ≤ 1− 1− θ
θ
|1− z|2

by Theorem 19 and

θ2 − |z − (1− θ)|2 = θ

(
1− 1− θ

θ
|1− z|2 − |z|2

)
.

Let z1 ∈ G(Nθ1) and z2 ∈ G(Nθ2). Then

|z1z2|2 ≤ |z2|2
(
1− 1− θ1

θ1
|1− z1|2

)
≤ 1− 1− θ2

θ1
|1− z2|2 −

1− θ1
θ1
|1− z1|2|z2|2

= 1− 1− θ
θ
|1− z1z2|2 −

θ1θ2
θ1 + θ2 − 2θ1θ2

∣∣∣∣1− θ1θ1
(1− z1)z2 −

1− θ2
θ2

(1− z2)
∣∣∣∣2

≤ 1− 1− θ
θ
|1− z1z2|2

and z1z2 ∈ G(Nθ), i.e., G(Nθ1)G(Nθ2) ⊆ G(N (Gθ)).



Proof of Theorem 27

Since Nθ1 satisfies an arc property, G(Nθ1)G(Nθ2) = G(Nθ1Nθ2) by
Theorem 26. So

G(Nθ1Nθ2) = G(Nθ1)G(Nθ2) ⊆ G(Nθ),

implies Nθ1Nθ2 ⊆ Nθ by SRG-fullness of Nθ.
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Alternate proof outline of Theorem 27

G(Nθ1)G(Nθ2) is enclosed by the outer curve defined by

r(ϕ)2 − 2r(ϕ)(cos(ϕ)(1− θ1)(1− θ2) + θ1θ2) + (1− 2θ1)(1− 2θ2) = 0.

1

θ1 = 2
3 , θ2 = 1

4

1

θ1 = 1
4 , θ2 = 3

4

1

θ1 = 2
3 , θ2 = 3

4

1

θ1 = θ2 = 1
4

1

θ1 = θ2 = 1
2

1

θ1 = θ2 = 3
4



Alternate proof outline of Theorem 27

The disk G(Nθ) with θ = θ1+θ2−2θ1θ2
1−θ1θ2 contains this region so

G(Nθ1)G(Nθ2) ⊆ G(Nθ). On the other hand, the two shapes have
matching curvature at 1, the inclusion does not hold with smaller θ.
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Davis–Yin splitting

Theorem 28.
Assume �, �, and ℂ are maximal monotone. Assume ℂ is β-cocoercive
and α ∈ (0, 2β). The DYS operator �− �α� + �α�(ℝα� − αℂ�α�) is
θ-averaged with

θ =
2β

4β − α
.
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Proof of Theorem 28

Lemma 5.
For θ ∈ (0, 1), � is θ-averaged if and only if

‖�x− �y‖2 ≤ ‖x− y‖2 − 1− θ
θ
‖�x− x− �y + y‖2 ∀, x, y ∈ Rn.

Proof. Note � is θ-averaged if and only if 1
θ�−

(
1
θ − 1

)
� is

nonexpansive. The claim follows from

0 ≥
∥∥∥∥1

θ
�x−

(
1

θ
− 1

)
x− 1

θ
�y +

(
1

θ
− 1

)
y

∥∥∥∥2

− ‖x− y‖2

=
1

θ

(
‖�x− �y‖2 +

1− θ
θ
‖�x− x− �y + y‖2 − ‖x− y‖2

)
.
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Proof of Theorem 28

For any z0, ẑ0 ∈ Rn, let

x1/2 = �α�(z0)

x1 = �α�(2x1/2 − zk − αℂx1/2)

z1 = z0 + x1 − x1/2

x̂1/2 = �α�(ẑ0)

x̂1 = �α�(2x̂1/2 − ẑk − αℂx̂1/2)

ẑ1 = ẑ0 + x̂1 − x̂1/2.

Define

�̃x1/2 =
1

α
(z0 − x1/2)

�̃x1 =
1

α
(2x1/2 − zk − αℂx1/2 − x1)

�̃x̂1/2 =
1

α
(ẑ0 − x̂1/2)

�̃x̂1 =
1

α
(2x̂1/2 − ẑk − αℂx̂1/2 − x̂1),
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Proof of Theorem 28

which implies

�̃x1/2 ∈ �x1/2

�̃x1 ∈ �x1

�̃x̂1/2 ∈ �x̂1/2

�̃x̂1 ∈ �x̂1.

Then

‖z1 − ẑ1‖2 = ‖z0 − ẑ0‖2 − 1− θ
θ
‖z1 − z0 − ẑ1 + ẑ0‖2

− 2α〈�̃x1 − �̃x̂1, x1 − x̂1〉 − 2α〈�̃x1/2 − �̃x̂1/2, x1/2 − x̂1/2〉

− 2α
(
〈ℂx1/2 − ℂx̂1/2, x1/2 − x̂1/2〉 − β‖ℂx1/2 − ℂx̂1/2‖2

)
− α2

2β

∥∥∥∥�̃x1 − �̃x̂1 + �̃x1/2 − �̃x̂1/2 − 2β − α
α

(ℂx1/2 − ℂx̂1/2)

∥∥∥∥2

≤ ‖z0 − ẑ0‖2 − 1− θ
θ
‖z1 − z0 − ẑ1 + ẑ0‖2,

where the inequality follows from monotonicity of � and � and
β-cocoercivity of ℂ. Finally, the claim follows from Lemma 5.



SRG of DYS

Let

Tα,β = {�− �α� + �α�(ℝα� − αℂ�α�) |�,� ∈M, ℂ ∈ Cβ}.

be the class of DYS operators. Theorem 28 states G(Tα,β) ⊆ G
(
N 2β

4β−α

)
for α ∈ (0, 2β) One can furthermore show

G(Tα,β) = G
(
N 2β

4β−α

)
=

1
2β−α
4β−α
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Operator from SRG

G(·) maps � to a subset of C. Below conversely maps z to �z such that
z ∈ G(�z).

Lemma 4.
Take any z = zr + zii ∈ C. Define �z : R2 → R2 and �∞ : R2 ⇒ R2 as

�z

[
ζ1
ζ2

]
=

[
zrζ1 − ziζ2
zrζ2 + ziζ1

]
�∞(x) =

{
R2 if x = 0
∅ otherwise.

Then,
G(�z) = {z, z̄}, G(�∞) = {∞}.

If ∼= identifies R2 with C, [
x
y

]
∼= x+ yi,

then �z is complex multiplication with z:

�z

[
ζ1
ζ2

]
∼= z(ζ1 + ζ2i).
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Proof of Lemma 4

Write z = rze
iθz . Consider any x, y ∈ R2 where x 6= y and define

u = �zx and v = �zy. Then we can write

x− y = rw

[
cos(θw)
sin(θw)

]
where rw > 0, and

u− v = �z(x− y) ∼= rzrwe
i(θz+θw).

This gives us

‖u− v‖
‖x− y‖

= rz, ∠(u− v, x− y) = |θz|, G(�z) =
{
rze

iθz , rze
−iθz

}
.

Now consider �∞. By definition, ∞ ∈ G(�∞). For any u ∈ �∞x and
v ∈ �∞y, we have x = y = 0, and therefore G(�∞) contains no finite
z ∈ C. We conclude G(�∞) = {∞}.
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Proof of Theorem 19

Characterize G(M). For any � ∈M,

Re z =
〈u− v, x− y〉
‖x− y‖2

≥ 0, ∀u ∈ �x, v ∈ �y, x 6= y.

(Cf. page 10.) Therefore, G(�)\{∞} ⊆ {z | Re z ≥ 0}. On the other
hand, given any z ∈ {z | Re z ≥ 0}, the operator �z of Lemma 4 satisfies
〈�zx−�zy, x− y〉 ≥ 0 for any x, y ∈ R2, i.e., �z ∈M, and
G(�z) = {z, z̄}. Therefore, z ∈ G(�z) ⊂ G(M), and we conclude
{z | Re z ≥ 0} ⊆ G(M). Finally, note that ∞ ∈ G(M) is equivalent to
saying that there exists a multi-valued operator in M. The �∞ of
Lemma 4 is one such example.

The other SRGs follow from a similar reasoning.
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Proof outline of Theorem 20

∂F0,∞ ⊂M and Theorem 19 implies
G(∂F0,∞) ⊆ G(M) = {z ∈ C | Re z ≥ 0} ∪ {∞}.

With basic computation, we can verify f : R2 → R defined by
f(x, y) = |x| satisfies G(∂f) = {z ∈ C | Re z ≥ 0} ∪ {∞}. This tells us
{z ∈ C | Re z ≥ 0} ∪ {∞} ⊆ G(∂F0,∞).

The other SRGs follow from a similar reasoning.
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Proof of Theorem 21

Proofs of SRG theorems 70



Proof of Theorem 22

Since A and B are SRG-full

G(ℂ) ⊆ G(A ∩ B) ⊆ G(A) ∩ G(B) ⇒ G(ℂ) ⊆ G(A) and G(ℂ) ⊆ G(B)

⇒ ℂ ∈ A and ℂ ∈ B
⇒ ℂ ∈ A ∩ B

for an operator ℂ, and we conclude A ∩ B is SRG-full.

Assume z ∈ C satisfies {z, z̄} ⊆ G(A) ∩ G(B). Then �z of Lemma 4
satisfies G(�z) = {z, z̄} ⊆ G(A) ∩ G(B). Since A and B are SRG-full,
�z ∈ A and �z ∈ B and {z, z̄} = G(�z) ⊆ G(A ∩ B). If
∞ ∈ G(A) ∩ G(B), then a similar argument using �∞ of Lemma 4
proves ∞ ∈ G(A ∩ B). Therefore G(A) ∩ G(B) ⊆ G(A ∩ B). Since the
other containment G(A∩ B) ⊆ G(A) ∩ G(B) holds by definition, we have
the equality.
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Proof of Theorem 23

G(α�) = αG(�) follows from the definition of the SRG, and
G(� + �) = 1 + G(�) follows from

Re z =
〈u− v, x− y〉
‖x− y‖2

, Im z = ±
‖P{x−y}⊥(u− v)‖

‖x− y‖
.

The scaling and translation operations are reversible and
G((1/α)A) = (1/α)G(A) and G(A− �) = G(A)− 1. For any
� : Rn ⇒ Rn,

G(�) ⊆ G(αA) ⇒ G((1/α)�) ⊆ G(A) ⇒ (1/α)� ∈ A ⇒ � ∈ αA,

and we conclude αA is SRG-full. By a similar reasoning, � +A is
SRG-full.
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Proof of Theorem 24

The equivalence of non-zero finite points, i.e.,

G(�−1)\{0,∞} = (G(�)\ {0,∞})−1,

follows from

G(�)\{0,∞} =
{
‖u− v‖
‖x− y‖ exp [±i∠(u− v, x− y)]

∣∣∣ (x, u), (y, v) ∈ �, x 6= y, u 6= v

}
and

G(�−1)\{0,∞}

=

{
‖x− y‖
‖u− v‖

exp [±i∠(x− y, u− v)]
∣∣∣ (u, x), (v, y) ∈ �−1, x 6= y, u 6= v

}
=

{
‖x− y‖
‖u− v‖

exp [±i∠(u− v, x− y)]
∣∣∣ (x, u), (y, v) ∈ �, x 6= y, u 6= v

}
= (G(�)\{0,∞})−1

.
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Proof of Theorem 24

The equivalence of the zero and infinite points follow from

∞ ∈ G(�) ⇔ ∃ (x, u), (x, v) ∈ �, u 6= v

⇔ ∃ (u, x), (v, x) ∈ �−1, u 6= v

⇔ 0 ∈ G(�−1).

With the same argument, we have 0 ∈ G(�)⇔∞ ∈ G(�−1).

The inversion operation is reversible. Therefore, for any � : Rn ⇒ Rn,

G(�) ⊆ G(A−1) ⇒ G(�−1) ⊆ G(A) ⇒ �−1 ∈ A ⇒ � ∈ A−1,

and we conclude A−1 is SRG-full.
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Proof of Theorem 25

Proofs of SRG theorems 75



Spherical triangle inequality

Spherical triangle inequality: |θ − ϕ| ≤ ψ ≤ θ + ϕ

For any nonzero a, b, c ∈ Rn,

|∠(a, b)− ∠(b, c)| ≤ ∠(a, c) ≤ ∠(a, b) + ∠(b, c).
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Proof of Theorem 26

We first show G(AB) ⊇ G(A)G(B). Assume G(A) 6= ∅ and G(B) 6= ∅ as
otherwise there is nothing to show. Let z ∈ G(A) and w ∈ G(B) and let
�z and �w be their corresponding operators as defined in Lemma 4.
Then it is straightforward to see that �z�w corresponds to complex
multiplication with respect to zw, and zw ∈ G(�z�w) ⊆ G(AB).
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Proof of Theorem 26

Next, we show G(AB) ⊆ G(A)G(B). Let � ∈ A and � ∈ B. Consider
(u, s), (v, t) ∈ � and (x, u), (y, v) ∈ �, where x 6= y. This implies
(x, s), (y, t) ∈ ��. Define

z =
‖s− t‖
‖x− y‖

exp [i∠(s− t, x− y)] .

Consider the case u = v. Then 0 ∈ G(B). Moreover, s = t, since � is
single-valued (by the assumption ∞ /∈ G(A)), and z = 0. Therefore,
z = 0 ∈ G(A)G(B).
Next, consider the case u 6= v. Define

zA =
‖s− t‖
‖u− v‖

eiϕA , zB =
‖u− v‖
‖x− y‖

eiϕB ,

where ϕA = ∠(s− t, u− v) and ϕB = ∠(u− v, x− y).
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Proof of Theorem 26
Consider the case where A satisfies the right-arc property. Using the
spherical triangle inequality (further discussed in the appendix) we see
that either ϕA ≥ ϕB and

z ∈ ‖s− t‖
‖u− v‖

‖u− v‖
‖x− y‖

exp [i[ϕA − ϕB , ϕA + ϕB ]]

⊆ ‖s− t‖
‖u− v‖

‖u− v‖
‖x− y‖

exp [i[ϕB − ϕA, ϕB + ϕA]]

= zBArc+ (zA, zA)

or ϕA < ϕB and

z ∈ ‖s− t‖
‖u− v‖

‖u− v‖
‖x− y‖

exp [i[ϕB − ϕA, ϕB + ϕA]]

= zBArc+ (zA, zA) .

This gives us
z ∈ zB︸︷︷︸

∈G(B)

Arc+ (zA, zA)︸ ︷︷ ︸
⊆G(A)

⊆ G(A)G(B).

That z̄ ∈ G(A)G(B) follows from the same argument. That
z, z̄ ∈ G(A)G(B) when instead B satisfies the right-arc property follows
from the same argument.



Proof of Theorem 26

Putting everything together, we conclude G(AB) = G(A)G(B) when A
or B satisfies the right-arc property. When A satisfies the left-arc
property, −A satisfies the right-arc property. So

−G(AB) = G(−AB) = G(−A)G(B)− G(A)G(B)

by Theorem 23, and we conclude G(AB) = G(A)G(B). When B satisfies
the left-arc property, B ◦ (−�) satisfies the right-arc property. So

−G(AB) = G(AB ◦ (−I)) = G(A)G(B ◦ (−�)) = −G(A)G(B)

by Theorem 23, and we conclude G(AB) = G(A)G(B).
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