Stochastic Coordinate Update Methods

Ernest K. Ryu
Seoul National University

Mathematical and Numerical Optimization
Fall 2020

Last edited: 12/01/2020



Outline

Stochastic coordinate fixed-point iteration

Stochastic coordinate fixed-point iteration



Coordinate-partitioning

Partition z € R™ into m non-overlapping blocks of sizes ny, ..., ny,.
Write © = (21, ...,2Zm), so x; € R™. Partition T: R” — R™ into

so (T(z)); € R™. Define

Ti—1
Ti@) = | (T(@)):
Tit1

Tm

i.e., T; is T on the i-th block and is identity on the other blocks.
We say “block” and “coordinate” interchangeably.



Coordinate-update fixed-point iteration

For T: R™ — R™, consider

find x =Tx.
rER™

Coordinate-update fixed-point iteration (C-FPI) is

select i(k) € {1,...,m},

karl _ Ti(k) ({Ek)

At the k-th iteration, C-FPI updates only the i(k)-th block. Specifying
the selection rule for i(k) fully specifies the method.
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Block selection rules

There are many ways to select i(k) with different advantages and
disadvantages.

Common selection rules:
» Cyclic rule. Select the blocks in a cyclic order.

» Essential cyclic rule. Each block appears once or more in each
“cycle”.

> Greedy rule. Select block that leads to the most progress, measured
in many different ways.

» Stochastic rule. Select blocks randomly.
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Stochastic coordinate-update fixed-point iteration

We focus on the stochastic rule i(k) € {1,...,m} independently
uniformly at random as its analysis is simplest.

We get stochastic coordinate-update fixed-point iteration (SC-FPI):

i(k) ~ lID Uniform{1,...,m}

2T =T (a")
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Stochastic coordinate-update fixed-point iteration

Theorem 2.
Assume T: R™ — R"™ is §-averaged with 6 € (0,1) and FixT # {).
Assume the random indices i(0),i(1),... € {1,...,m} are independent

and identically distributed with uniform probability. Then
o+t =T, a* with any starting point z° € R™ converges to one fixed
point with probability 1, i.e.,

k= 2

with probability 1 for some x* € FixT. The quantities E dist?(z*, Fix T)
and E||z* — x*||? for any 2* € Fix T decrease monotonically with k.
Finally, we have

dist(z*, FixT) — 0

with probability 1.
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Proof of Theorem 2

We use the following standard result from probability theory.

Theorem.

(Supermartingale convergence theorem.) Let V* and S* be
Fi-measurable random variables satisfying V* > 0 and S* > 0 almost
surely for k =0,1,.... Assume

E[VHF] <VvF - gk

holds for k =0,1,.... Then
1. Vk 5 pee
2. Y 0,8 <00

almost surely. (Note that the limit V> is a random variable.)
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Proof of Theorem 2

Define $ with T =1 — S and §; with T, =T — 8S;. So we have

for i =1,...,m. Alternately express z**! = Ti(k)xk as

k+1

T S GSi(k)xk.
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Proof of Theorem 2
T is -averaged if and only if $ is (1/2)-cocoercive:

0 0
I — S is nonexpansive

lv =Sz —y +8y|* < & —y|* Va,yeR”

1 1
T is 6-averaged -T — < - 1> I is nonexpansive

(I

1
& SlSe—Syl* < (z -y, Sz —Sy) VayeR”
< Sis (1/2)-cocoercive.

Clearly, FixT = Zer $. For any z* € FixT = Zer S and xz € R"™,

1 *
SISl < (2,0~ %) M)
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Proof of Theorem 2

k+1is a random variable depending on i(k),i(k — 1),...,4(0).
0

z" is not random. Write [E for the full expectation. Write Ej for the
conditional expectation with respect to (k) conditioned on the past
random variables i(k — 1),i(k — 2),...,%(0).

T

Under these definitions, Ex[z*] = z* and

1
[Ek[si(k)$k] = ESJ;’“, (2)

1
Ex|[Signyz"|? = EHSka? (3)

Stochastic coordinate fixed-point iteration

11



Proof of Theorem 2

Stage 1. For any z* € Fix T,

a1 = a2 = [l — 88ig02" o

= [lz* — 2*)|* = 20(Si(1y 2", 2* — &) + 67|80y 2" 1.
Take conditional expectation E; and use (2) and (3):
Bl — 22 = lo* — 2|2 — 20(Ex[Si2"], 2 — %) + 624 Siay "
20 62
= [la* — 2*||* — —(8a*, 2" — 2”) + —||$a*|?
m m
0
< lz® =¥ = (1 - 0)—[ISz"|*, (4)
m
where the inequality follows from (1).
So (||z* — 2*||?)k=0.1,... a nonnegative supermartingale.
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Proof of Theorem 2

Take the full expectation on both ends of (4):

0
Ellz**! —2*|* < Ell2" — 2*|* - (1 - 0) —E[/$a"].
m

Therefore, E|z* — 2*||> decreases monotonically with k and, by
minimizing over z* € Fix T, so does E dist?(z*, Fix T).

Stochastic coordinate fixed-point iteration 13



Proof of Theorem 2

Stage 2. We prove convergence of the iterates. Apply the
supermartingale convergence theorem to (4) to get

(i) 5o 82" < oo and

(i) limg_soo ||2% — 2*|| exists
with probability 1. Note (i) implies ||Sz*||? — 0 and (i) implies z* is
bounded with probability 1.

For all 2* € FixT, limy_, o ||2* — 2*|| exists with probability 1. Apply
Proposition 1, which we state and prove soon, to conclude with
probability 1, limy_, . [|2¥ — 2*|| exists for all z* € FixT. Now 2% — 2*
with probability 1 follows from the same argument of Theorem 1. O
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Measurability argument

Proposition 1 is subtle. We choose 2* € FixT and then apply the
supermartingale convergence theorem, so [limy, s [|z¥ — 2*|| exists with
probability 1] applies to one fixed point 2*. This is weaker than what we
need when there are uncountably many fixed points.

Proposition 1.
Let Y C R™ and let z°,2',... be a random sequence. Then statement 1
implies statement 2.

1. Forally € Y [with probability 1, limy_,.. ||z* — y|| exists].

2. With probability 1 [for all y € Y, limy,_, o ||2* — y|| exists].

Proof outline. (i) Y C R™ has a countable dense subset (is separable),
(i) sequence of functions {||z* — -||}ren has a limit on the countable
dense subset of Y, and (iii) the equicontinuous sequence of functions has
a limit on the dense subset of Y, so limit exists on all of Y. O



Outline

Coordinate and extended coordinate friendly operators

Coordinate and extended coordinate friendly operators

16



Coordinate friendly operators

SC-FPI is computationally useful when T is coordinate friendly or
extended coordinate friendly.

Let z = (z1,...,2m) € R™ Then x — z is coordinate friendly if
max Flz — z;] € Flz — 2].
i=1,...,m

(Meaning of < depends on context.)

T is coordinate friendly if  — Tz is coordinate friendly.

Coordinate and extended coordinate friendly operators
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Coordinate friendly = parallelizable

If z — z is coordinate friendly,

Fplr = 2] = max Flz = 2] < Flr+— 2]

i=1,....,m

for p > m. So x — z is parallelizable.

Coordinate and extended coordinate friendly operators
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Affine operators

Affine operator Tz = Ax + b, where A € R™*™ and b € R", is
coordinate friendly if n, < n fori =1,...,m, since

Flo = Tix] ~2nn; < Flo— Ta] ~ 202

Coordinate and extended coordinate friendly operators
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Separable operators

T: R™ — R™ is a separable operator if
T(I) = (Ul(xl)v s 7Um(117m)),

where U;: R™ — R"™ for 4 = 1,...,m. Separable operators are
coordinate friendly if max;—1 __n Flz; — U;(z;)] < Flz — T(x)].

Common example: multiplication by a (block) diagonal matrix.

f: R™ — R is a separable function if

f@)=>" filwi),
i=1
where f;: R — R fori=1,...,m. If f is separable and differentiable,

then V f is separable. If f is separable and CCP, then Prox; is separable.
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Separable operators

A separable constraint is of the form

z,eC; fori=1,...,m.
Projection onto a separable constraint is separable.
Common example: box constraint

a; <x; <b; fori=1,....,m.
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Extended coordinate-friendly

T is extended coordinate-friendly if there is an auxiliary quantity y(x)
such that

max F{a,y(@)} = {Tiz,y(Tia)}] < F o - Tal.

i=1

In other words, computing T;(x) is efficient if y(x) is maintained.
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More coordinate notation

Use notation = = (x1,...,&,,) with z; € R™. For A € R"™", write
A:7i c RT‘Xni
for the submatrix, i.e.,

A= [A:,1 A'm]

©y

and
Az =A. 121+ + A T,

When f is differentiable, write
Vif(z)

Vi) = :
Vo f(2)



Example: Gradient descent on least squares

Consider
. 1 9
minimize —| Az — bl|%,
TER™ 2
where A € R™*™ and b € R", and

T(x) =2 — aAT(Axz — b).

When r < n, the method is parallelizable, not coordinate friendly, but
extended coordinate friendly.
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Example: Gradient descent on least squares

Evaluation of T costs

Flz — Tz] = O(rn).

Parallelizable (assuming p < min{r,n}):

Fplr = Ta] = Fp[{A, 2} — Az] + F,[{AT, Az} — AT(Az)]
=0 (rn/p)

Not coordinate friendly:

Flz — Tix] = Flz — Azx] + F[Ax — T;x]
= 0O (rn) + O (rn;)
=0 (rn)

Coordinate and extended coordinate friendly operators
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Example: Gradient descent on least squares

Extended coordinate friendly with auxiliary quantity Ax:
F[{z, Az} — {T;z, A(T;x)}] = O(rn;)
if we use the formula

A(Tz) = Az + A, ;((Tx); — ).

Therefore the C-FPI with T

Tithy = i) — @Al (0" )

xf“ = a:f for j # i(k)

Y =yt A (@) - 7))
costs O(rn;(y)) flops per iteration. (xf"‘l = xé“ costs no operations.)
Initialize 2° = 0 and y = Ax? = 0.



Example: Gradient descent on least squares

Other approach of using T(x) = 2 — a((ATA)xz — ATb) is not effective.

Precomputing
FI{A,b} = {ATA, ATb}] = O (rn?)
can be prohibitively expensive, and
Fl{a", ATA, ATH} 5 i) = O (nnir),

is larger than O (rn;)). (Remember, r < n.)
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Example: Coordinate gradient descent

Consider

minimize f(x),

where f is differentiable. SC-FPI applied to I — aV f
5”5(:)1 = xf(k) — aVig f(2"),

is stochastic coordinate gradient method or stochastic coordinate
gradient descent. Converges if a minimizer exists, f is L-smooth, and
a € (0,2/L).

Coordinate and extended coordinate friendly operators
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Example: Coordinate gradient descent

In general, T — oV f may not be extended coordinate friendly.

However, the following machine learning setup is extended coordinate
friendly

fle) =3 b= b))

where ay,...,a, € R™, by,...,b. € R, and ¢y, ..., ¢, are differentiable
CCP functions on R.

Write
—q] —
A= : ER™M Uy) = Li(yy).
J— a/I J—

Then
Vi(z) = (i (x1), ..., 0 (x,)).

Coordinate and extended coordinate friendly operators
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Example: Coordinate gradient descent

Stochastic coordinate gradient descent with y* = Ax*

Tithy = i) — @Al VA )
v =+ A (xf(t; - xf(k))
has cost per iteration of O (rn)), if max;—,.., Flz — €;(z)]

Initialize 2° = 0 and y = Ax? = 0.
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Example: Coordinate GD with block-wise stepsize
Consider

minimize f(z),

where f is L-smooth. For any diagonal matrix

ﬁllnl
BQInQ

BmIn,,

where 3; > 0 and [,,, € R™*™ is the n; x n, identity matrix, the
problem is equivalent to

mlznelwr!ze f(Dzx).
Stochastic coordinate gradient method on equivalent problem is
Tithy = i) — it Vi f (@),

where oy = afix). Non-uniform block-wise stepsize is often necessary
for a speedup compared to the (full deterministic) gradient method.



Example: Coordinate proximal-gradient descent

Consider

mimnei&lize flz)+ Z gi(;)

where f is differentiable. So we minimize sum of a differentiable function
and a separable function. Write

= Zgz(wz)
i=1

SC-FPI with FBS operator Prox,g (I — aVf)

xf(z)l Proxagl(k)( — aVig f(=")),

is coordinate proximal-gradient (descent) method. Converges if a
minimizer exists, f is L-smooth, and o € (0,2/L).

Coordinate and extended coordinate friendly operators
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Example: Coordinate proximal-gradient descent

With block-wise argument, we get

xf@l = ProxXa, 9., (xi?(k) - ai(k)vi(k)f(xk))-

Non-uniform block-wise stepsizes important for speedup.

When g is not separable, Proxqq(I — aVf) is in general not extended
coordinate friendly and SC-FPI not efficient.

Coordinate and extended coordinate friendly operators
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Example: Stochastic dual coordinate ascent

Consider
n

minimize g(z)+Z€,(a2x bi),

i=1
where g is a strongly convex CCP function on R” (so g* is smooth) and
£; is a CCP function on R. Write

- CLI —_— b1
A= : € R™", b=|:] €R™
—_— a,TL i bn
Primal problem generated bu
L(z,u) = g(x) + (u, Az —b) = > £} (u;)
i=1
and corresponding dual problem is

mag&jze —g* (=ATw) = bTu — Y0 0 (u;).

Coordinate and extended coordinate friendly operators
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Example: Stochastic dual coordinate ascent

Stochastic coordinate proximal-gradient applied to dual

k+1 k * (. k

ui(‘};) = PrOXai(k)g:(k) (ui(k) + Qi) (Ai(k),:Vg (y ) — bi(k)))
k+1 __ , k k+1 k

y o=y - Az'T(/e),:(“i(ng) = Uj(p)

is a variation of stochastic dual coordinate ascent. Assume

Fly = Vg*(y)] = O(r) and max;—1 _n Fu > Prox,, e (u)] = O(1).

Extended coordinate friendly with y* = —ATu* maintained. We have
Fl{y" u*} = a1 = O (raag )

(One can recover the primal solution with Vg*(y*).)
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Note on splitting data

Iteration of primal coordinate GD accesses A. j(x), a block of columns.

Iteration of dual coordinate GD accesses A;,) ., a block of rows.

In machine learning, a row of A is a training sample, and we may not
want to split it into parts. In so, dual approach is preferred.

Coordinate and extended coordinate friendly operators
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Example: MISO/Finito

Consider
1 m
minimize r(z) + o ;fi(a:),
=
where f1, ..., fi, are differentiable. Use consensus technique to get
m
minimize  dc(x) + Z; (r(x:) + filw:),
i—
where x = (21, ...,2,,) and C is the consensus set.

Write f(x) = S0, fi(wi) and g(x) = 60(x) + S0, (), s0
Proxag(y1, ... Ym) = (z,...,2), z=Proxe, <§1 Z%) )
i=1

(See Exercise 2.28.)



Example: MISO/Finito

Both FBS and BFS are extended coordinate friendly with Z* maintained.
SC-FPI with BFS operator (I — aV f)Prox., is

zF = Proxq. (Ek)
2y = 2" = aV fig (=)

1
—k+1 _ =k s k+1 k .
z Z" + m ( l(k) Z’L(k))

SC-FPI with FBS operator Prox,,(I — aV f) is

xf('};)l = Proxa,(z")

B _ 1
Pl =zk 4 m (xf(;)l - zi‘c(k) a(V fi(z k—H) v fily ))) ’

where 2" = LS (28 — oV f; (1) (2F)). These two equivalent methods
are called minimization by |ncrementa| surrogate optimization (MISO) or
Finito. Converges if a solution exists and o € (0,2/L).



Example: MISO/Finito

Among the two, BFS has a minor and subtle advantage.

For BFS, one can use (29,...,29) = (0,...,0) and 2° = 0 as the
starting point.

For FBS, the starting point (z9,...,2%) € R™™ can be arbitrary, but

m

2= L3 (@ - Vi)

i=1

needs to be computed before starting the iterations in order to establish
convergence via Theorem 2.
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Example: Conic programs with many small cones

Consider

minimize c¢Tx
reR™
subject to Az =1b

€ Q1 X X Qm,

where Q; € R™ is a nonempty closed convex set, A € R™*" has rank r,
and b € R". Assume Flx; — Ilg,z;] = C;.

Note: [t € Q1 X -+ X Q] & [z, € Q; fori=1,...,m)]

When @1, ...,Q,, are convex cones, problem called a conic program.
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Example: Conic programs with many small cones
Naive SC-FPI with DRS applied to

minimize T2 4 0 | vy (7) + 00, 20, (7)

becomes =f(z) =g(z)

a:fH/Q:HQi(zk) fori=1,...,m

7

k k+1/2
2 = 2By + Digey (20812 = 2F) vy — 2l

where D = [ — AT(AAT)"'A and v = AT(AAT)" b — aDec. (Exercise
2.24.) Costs O (Cl +--+C, + nni(k)) per iteration.

Utilize the extended coordinate friendly structure with
yk = D2gk+1/2 _ k.
k+1/2
xi(k)/ = HQi(k) (sz(k))
k+1 _ _k k k+1/2
Ziky = Fitk) T Yi(e) T Vi) — Ty
k+1 _ k+ k+1/2
Yy =D, (QHQi(m (Zi(k)) =223 (k) + Zz(k))

which costs O (Cji) + nnix)) per iteration.
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