Stochastic Coordinate Update Methods

Ernest K. Ryu
Seoul National University

Mathematical and Numerical Optimization
Fall 2020

Last edited: 12/01/2020

Outline

Stochastic coordinate fixed-point iteration

Coordinate and extended coordinate friendly operators

Coordinate-partitioning

Partition $x \in \mathbb{R}^{n}$ into m non-overlapping blocks of sizes n_{1}, \ldots, n_{m}. Write $x=\left(x_{1}, \ldots, x_{m}\right)$, so $x_{i} \in \mathbb{R}^{n_{i}}$. Partition $\mathbb{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ into

$$
\mathbb{T}(x)=\left[\begin{array}{c}
(\mathbb{T}(x))_{1} \\
\vdots \\
(\mathbb{T}(x))_{m}
\end{array}\right],
$$

so $(\mathbb{T}(x))_{i} \in \mathbb{R}^{n_{i}}$. Define

$$
\mathbb{T}_{i}(x)=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{i-1} \\
(\mathbb{T}(x))_{i} \\
x_{i+1} \\
\vdots \\
x_{m}
\end{array}\right]
$$

i.e., \mathbb{T}_{i} is \mathbb{T} on the i-th block and is identity on the other blocks. We say "block" and "coordinate" interchangeably.

Coordinate-update fixed-point iteration

For $\mathbb{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, consider

$$
\operatorname{find}_{x \in \mathbb{R}^{n}} \quad x=\mathbb{T} x
$$

Coordinate-update fixed-point iteration (C-FPI) is

$$
\begin{aligned}
& \text { select } i(k) \in\{1, \ldots, m\}, \\
& x^{k+1}=\mathbb{T}_{i(k)}\left(x^{k}\right)
\end{aligned}
$$

At the k-th iteration, C-FPI updates only the $i(k)$-th block. Specifying the selection rule for $i(k)$ fully specifies the method.

Block selection rules

There are many ways to select $i(k)$ with different advantages and disadvantages.

Common selection rules:

- Cyclic rule. Select the blocks in a cyclic order.
- Essential cyclic rule. Each block appears once or more in each "cycle".
- Greedy rule. Select block that leads to the most progress, measured in many different ways.
- Stochastic rule. Select blocks randomly.

Stochastic coordinate-update fixed-point iteration

We focus on the stochastic rule $i(k) \in\{1, \ldots, m\}$ independently uniformly at random as its analysis is simplest.

We get stochastic coordinate-update fixed-point iteration (SC-FPI):

$$
\begin{aligned}
i(k) & \sim \text { IID Uniform }\{1, \ldots, m\} \\
x^{k+1} & =\mathbb{T}_{i(k)}\left(x^{k}\right)
\end{aligned}
$$

Stochastic coordinate-update fixed-point iteration

Theorem 2.

Assume $\mathbb{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is θ-averaged with $\theta \in(0,1)$ and $\operatorname{Fix} \mathbb{T} \neq \emptyset$. Assume the random indices $i(0), i(1), \ldots \in\{1, \ldots, m\}$ are independent and identically distributed with uniform probability. Then
$x^{k+1}=\mathbb{T}_{i(k)} x^{k}$ with any starting point $x^{0} \in \mathbb{R}^{n}$ converges to one fixed point with probability 1, i.e.,

$$
x^{k} \rightarrow x^{\star}
$$

with probability 1 for some $x^{\star} \in \operatorname{Fix} \mathbb{T}$. The quantities $\mathbb{E} \operatorname{dist}^{2}\left(x^{k}\right.$, Fix $\left.\mathbb{T}\right)$ and $\mathbb{E}\left\|x^{k}-x^{\star}\right\|^{2}$ for any $x^{\star} \in \operatorname{Fix} \mathbb{T}$ decrease monotonically with k.
Finally, we have

$$
\operatorname{dist}\left(x^{k}, \operatorname{Fix} \mathbb{T}\right) \rightarrow 0
$$

with probability 1.

Proof of Theorem 2

We use the following standard result from probability theory. Theorem.
(Supermartingale convergence theorem.) Let V^{k} and S^{k} be \mathcal{F}_{k}-measurable random variables satisfying $V^{k} \geq 0$ and $S^{k} \geq 0$ almost surely for $k=0,1, \ldots$. Assume

$$
\mathbb{E}\left[V^{k+1} \mid \mathcal{F}_{k}\right] \leq V^{k}-S^{k}
$$

holds for $k=0,1, \ldots$. Then

1. $V^{k} \rightarrow V^{\infty}$
2. $\sum_{k=0}^{\infty} S^{k}<\infty$
almost surely. (Note that the limit V^{∞} is a random variable.)

Proof of Theorem 2

Define \mathbb{S} with $\mathbb{T}=\mathbb{I}-\theta \mathbb{S}$ and \mathbb{S}_{i} with $\mathbb{T}_{i}=\mathbb{I}-\theta \mathbf{S}_{i}$. So we have

$$
\mathbf{S}_{i}(x)=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
(\mathbf{S}(x))_{i} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

for $i=1, \ldots, m$. Alternately express $x^{k+1}=\mathbb{T}_{i(k)} x^{k}$ as

$$
x^{k+1}=x^{k}-\theta \mathbf{S}_{i(k)} x^{k} .
$$

Proof of Theorem 2

\mathbb{T} is θ-averaged if and only if S is ($1 / 2$)-cocoercive:
\mathbb{T} is θ-averaged $\Leftrightarrow \frac{1}{\theta} \mathbb{T}-\left(\frac{1}{\theta}-1\right) \mathbb{I}$ is nonexpansive

$$
\Leftrightarrow \quad \mathbb{I}-\mathrm{S} \text { is nonexpansive }
$$

$$
\Leftrightarrow \quad\|x-\mathbf{S} x-y+\mathbf{S} y\|^{2} \leq\|x-y\|^{2} \quad \forall x, y \in \mathbb{R}^{n}
$$

$$
\Leftrightarrow \quad \frac{1}{2}\|\mathbf{S} x-\mathbf{S} y\|^{2} \leq\langle x-y, \mathbf{S} x-\mathbf{S} y\rangle \quad \forall x, y \in \mathbb{R}^{n}
$$

$$
\Leftrightarrow \quad \mathbf{S} \text { is }(1 / 2) \text {-cocoercive. }
$$

Clearly, Fix $\mathbb{T}=\operatorname{Zer} \mathbf{S}$. For any $x^{\star} \in \operatorname{Fix} \mathbb{T}=\operatorname{Zer} \mathbf{S}$ and $x \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\frac{1}{2}\|\mathbf{S} x\|^{2} \leq\left\langle\mathbf{S} x, x-x^{\star}\right\rangle \tag{1}
\end{equation*}
$$

Proof of Theorem 2

x^{k+1} is a random variable depending on $i(k), i(k-1), \ldots, i(0)$.
x^{0} is not random. Write \mathbb{E} for the full expectation. Write \mathbb{E}_{k} for the conditional expectation with respect to $i(k)$ conditioned on the past random variables $i(k-1), i(k-2), \ldots, i(0)$.

Under these definitions, $\mathbb{E}_{k}\left[x^{k}\right]=x^{k}$ and

$$
\begin{align*}
\mathbb{E}_{k}\left[\mathbf{S}_{i(k)} x^{k}\right] & =\frac{1}{m} \mathbf{S} x^{k} \tag{2}\\
\mathbb{E}_{k}\left\|\mathbf{S}_{i(k)} x^{k}\right\|^{2} & =\frac{1}{m}\left\|\mathbf{S} x^{k}\right\|^{2} . \tag{3}
\end{align*}
$$

Proof of Theorem 2

Stage 1. For any $x^{\star} \in \operatorname{Fix} T$,

$$
\begin{aligned}
\left\|x^{k+1}-x^{\star}\right\|^{2} & =\left\|x^{k}-\theta \mathbf{S}_{i(k)} x^{k}-x^{\star}\right\|^{2} \\
& =\left\|x^{k}-x^{\star}\right\|^{2}-2 \theta\left\langle\mathbf{S}_{i(k)} x^{k}, x^{k}-x^{\star}\right\rangle+\theta^{2}\left\|\mathbf{S}_{i(k)} x^{k}\right\|^{2}
\end{aligned}
$$

Take conditional expectation \mathbb{E}_{k} and use (2) and (3):

$$
\begin{align*}
\mathbb{E}_{k}\left\|x^{k+1}-x^{\star}\right\|^{2} & =\left\|x^{k}-x^{\star}\right\|^{2}-2 \theta\left\langle\mathbb{E}_{k}\left[\mathbf{S}_{i(k)} x^{k}\right], x^{k}-x^{\star}\right\rangle+\theta^{2} \mathbb{E}_{k}\left\|\mathbf{S}_{i(k)} x^{k}\right\|^{2} \\
& =\left\|x^{k}-x^{\star}\right\|^{2}-\frac{2 \theta}{m}\left\langle\mathbf{S} x^{k}, x^{k}-x^{\star}\right\rangle+\frac{\theta^{2}}{m}\left\|\mathbf{S} x^{k}\right\|^{2} \\
& \leq\left\|x^{k}-x^{\star}\right\|^{2}-(1-\theta) \frac{\theta}{m}\left\|\mathbf{S} x^{k}\right\|^{2}, \tag{4}
\end{align*}
$$

where the inequality follows from (1).
So $\left(\left\|x^{k}-x^{\star}\right\|^{2}\right)_{k=0,1, \ldots}$ a nonnegative supermartingale.

Proof of Theorem 2

Take the full expectation on both ends of (4):

$$
\mathbb{E}\left\|x^{k+1}-x^{\star}\right\|^{2} \leq \mathbb{E}\left\|x^{k}-x^{\star}\right\|^{2}-(1-\theta) \frac{\theta}{m} \mathbb{E}\left\|\mathbf{S} x^{k}\right\|^{2} .
$$

Therefore, $\mathbb{E}\left\|x^{k}-x^{\star}\right\|^{2}$ decreases monotonically with k and, by minimizing over $x^{\star} \in \operatorname{Fix} \mathbb{T}$, so does $\mathbb{E} \operatorname{dist}^{2}\left(x^{k}\right.$, Fix $\left.\mathbb{T}\right)$.

Proof of Theorem 2

Stage 2. We prove convergence of the iterates. Apply the supermartingale convergence theorem to (4) to get
(i) $\sum_{k=0}^{\infty}\left\|\mathbf{S} x^{k}\right\|^{2}<\infty$ and
(ii) $\lim _{k \rightarrow \infty}\left\|x^{k}-x^{\star}\right\|$ exists
with probability 1 . Note (i) implies $\left\|\mathbf{S} x^{k}\right\|^{2} \rightarrow 0$ and (ii) implies x^{k} is bounded with probability 1 .

For all $x^{\star} \in \operatorname{Fix} \mathbb{T}, \lim _{k \rightarrow \infty}\left\|x^{k}-x^{\star}\right\|$ exists with probability 1 . Apply Proposition 1, which we state and prove soon, to conclude with probability $1, \lim _{k \rightarrow \infty}\left\|x^{k}-x^{\star}\right\|$ exists for all $x^{\star} \in \operatorname{Fix} T$. Now $x^{k} \rightarrow x^{\star}$ with probability 1 follows from the same argument of Theorem 1 .

Measurability argument

Proposition 1 is subtle. We choose $x^{\star} \in$ Fix \mathbb{T} and then apply the supermartingale convergence theorem, so $\left[\lim _{k \rightarrow \infty}\left\|x^{k}-x^{\star}\right\|\right.$ exists with probability 1] applies to one fixed point x^{\star}. This is weaker than what we need when there are uncountably many fixed points.

Proposition 1.

Let $Y \subseteq \mathbb{R}^{n}$ and let x^{0}, x^{1}, \ldots be a random sequence. Then statement 1 implies statement 2.

1. For all $y \in Y$ [with probability $1, \lim _{k \rightarrow \infty}\left\|x^{k}-y\right\|$ exists].
2. With probability 1 [for all $y \in Y, \lim _{k \rightarrow \infty}\left\|x^{k}-y\right\|$ exists].

Proof outline. (i) $Y \subseteq \mathbb{R}^{n}$ has a countable dense subset (is separable), (ii) sequence of functions $\left\{\left\|x^{k}-\cdot\right\|\right\}_{k \in \mathbb{N}}$ has a limit on the countable dense subset of Y, and (iii) the equicontinuous sequence of functions has a limit on the dense subset of Y, so limit exists on all of Y.

Outline

Stochastic coordinate fixed-point iteration

Coordinate and extended coordinate friendly operators

Coordinate friendly operators

SC-FPI is computationally useful when \mathbb{T} is coordinate friendly or extended coordinate friendly.

Let $z=\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{R}^{n}$. Then $x \mapsto z$ is coordinate friendly if

$$
\max _{i=1, \ldots, m} \mathcal{F}\left[x \mapsto z_{i}\right] \ll \mathcal{F}[x \mapsto z] .
$$

(Meaning of \ll depends on context.)
\mathbb{T} is coordinate friendly if $x \mapsto \mathbb{T} x$ is coordinate friendly.

Coordinate friendly \Rightarrow parallelizable

If $x \mapsto z$ is coordinate friendly,

$$
\mathcal{F}_{p}[x \mapsto z]=\max _{i=1, \ldots, m} \mathcal{F}\left[x \mapsto z_{i}\right] \ll \mathcal{F}[x \mapsto z]
$$

for $p \geq m$. So $x \mapsto z$ is parallelizable.

Affine operators

Affine operator $\mathbb{T} x=A x+b$, where $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$, is coordinate friendly if $n_{i} \ll n$ for $i=1, \ldots, m$, since

$$
\mathcal{F}\left[x \mapsto \mathbb{T}_{i} x\right] \sim 2 n n_{i} \quad \ll \mathcal{F}[x \mapsto \mathbb{T} x] \sim 2 n^{2} .
$$

Separable operators

$\mathbb{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a separable operator if

$$
\mathbb{T}(x)=\left(\mathbb{U}_{1}\left(x_{1}\right), \ldots, \mathbb{U}_{m}\left(x_{m}\right)\right),
$$

where $\mathbb{U}_{i}: \mathbb{R}^{n_{i}} \rightarrow \mathbb{R}^{n_{i}}$ for $i=1, \ldots, m$. Separable operators are coordinate friendly if $\max _{i=1, \ldots, m} \mathcal{F}\left[x_{i} \mapsto \mathbb{U}_{i}\left(x_{i}\right)\right] \ll \mathcal{F}[x \mapsto \mathbb{T}(x)]$.

Common example: multiplication by a (block) diagonal matrix.
$f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is a separable function if

$$
f(x)=\sum_{i=1}^{m} f_{i}\left(x_{i}\right),
$$

where $f_{i}: \mathbb{R}^{n_{i}} \rightarrow \overline{\mathbb{R}}$ for $i=1, \ldots, m$. If f is separable and differentiable, then ∇f is separable. If f is separable and CCP, then Prox_{f} is separable.

Separable operators

A separable constraint is of the form

$$
x_{i} \in C_{i} \quad \text { for } i=1, \ldots, m \text {. }
$$

Projection onto a separable constraint is separable.

Common example: box constraint

$$
a_{i} \leq x_{i} \leq b_{i} \quad \text { for } i=1, \ldots, m .
$$

Extended coordinate-friendly

\mathbb{T} is extended coordinate-friendly if there is an auxiliary quantity $y(x)$ such that

$$
\max _{i=1, \ldots, m} \mathcal{F}\left[\{x, y(x)\} \mapsto\left\{\mathbb{T}_{i} x, y\left(\mathbb{T}_{i} x\right)\right\}\right] \ll \mathcal{F}[x \mapsto \mathbb{T} x]
$$

In other words, computing $\mathbb{T}_{i}(x)$ is efficient if $y(x)$ is maintained.

More coordinate notation

Use notation $x=\left(x_{1}, \ldots, x_{m}\right)$ with $x_{i} \in \mathbb{R}^{n_{i}}$. For $A \in \mathbb{R}^{r \times n}$, write

$$
A_{:, i} \in \mathbb{R}^{r \times n_{i}}
$$

for the submatrix, i.e.,

$$
A=\left[\begin{array}{lll}
A_{:, 1} & \cdots & A_{:, m}
\end{array}\right]
$$

and

$$
A x=A_{:, 1} x_{1}+\cdots+A_{:, m} x_{m} .
$$

When f is differentiable, write

$$
\nabla f(x)=\left[\begin{array}{c}
\nabla_{1} f(x) \\
\vdots \\
\nabla_{m} f(x)
\end{array}\right]
$$

Example: Gradient descent on least squares

Consider

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} \frac{1}{2}\|A x-b\|^{2},
$$

where $A \in \mathbb{R}^{r \times n}$ and $b \in \mathbb{R}^{r}$, and

$$
\mathbb{T}(x)=x-\alpha A^{\top}(A x-b)
$$

When $r \ll n$, the method is parallelizable, not coordinate friendly, but extended coordinate friendly.

Example: Gradient descent on least squares

Evaluation of \mathbb{T} costs

$$
\mathcal{F}[x \mapsto \mathbb{T} x]=\mathcal{O}(r n)
$$

Parallelizable (assuming $p<\min \{r, n\}$):

$$
\begin{aligned}
\mathcal{F}_{p}[x \mapsto \mathbb{T} x] & =\mathcal{F}_{p}[\{A, x\} \mapsto A x]+\mathcal{F}_{p}\left[\left\{A^{\top}, A x\right\} \mapsto A^{\top}(A x)\right] \\
& =\mathcal{O}(r n / p)
\end{aligned}
$$

Not coordinate friendly:

$$
\begin{aligned}
\mathcal{F}\left[x \mapsto \mathbb{T}_{i} x\right] & =\mathcal{F}[x \mapsto A x]+\mathcal{F}\left[A x \mapsto \mathbb{T}_{i} x\right] \\
& =\mathcal{O}(r n)+\mathcal{O}\left(r n_{i}\right) \\
& =\mathcal{O}(r n)
\end{aligned}
$$

Example: Gradient descent on least squares

Extended coordinate friendly with auxiliary quantity $A x$:

$$
\mathcal{F}\left[\{x, A x\} \mapsto\left\{\mathbb{T}_{i} x, A\left(\mathbb{T}_{i} x\right)\right\}\right]=\mathcal{O}\left(r n_{i}\right)
$$

if we use the formula

$$
A\left(\mathbb{T}_{i} x\right)=A x+A_{:, i}\left((\mathbb{T} x)_{i}-x_{i}\right) .
$$

Therefore the C-FPI with T

$$
\begin{aligned}
& x_{i(k)}^{k+1}=x_{i(k)}^{k}-\alpha A_{:, i(k)}^{\top}\left(y^{k}-b\right) \\
& x_{j}^{k+1}=x_{j}^{k} \quad \text { for } j \neq i(k) \\
& y^{k+1}=y^{k}+A_{:, i(k)}\left(x_{i(k)}^{k+1}-x_{i(k)}^{k}\right)
\end{aligned}
$$

costs $\mathcal{O}\left(r n_{i(k)}\right)$ flops per iteration. ($x_{j}^{k+1}=x_{j}^{k}$ costs no operations.) Initialize $x^{0}=0$ and $y=A x^{0}=0$.

Example: Gradient descent on least squares

Other approach of using $\mathbb{T}(x)=x-\alpha\left(\left(A^{\top} A\right) x-A^{\top} b\right)$ is not effective.
Precomputing

$$
\mathcal{F}\left[\{A, b\} \mapsto\left\{A^{\top} A, A^{\top} b\right\}\right]=\mathcal{O}\left(r n^{2}\right)
$$

can be prohibitively expensive, and

$$
\mathcal{F}\left[\left\{x^{k}, A^{\top} A, A^{\top} b\right\} \mapsto x_{i(k)}^{k+1}\right]=\mathcal{O}\left(n n_{i(k)}\right),
$$

is larger than $\mathcal{O}\left(r n_{i(k)}\right)$. (Remember, $r \ll n$.)

Example: Coordinate gradient descent

Consider

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad f(x),
$$

where f is differentiable. SC-FPI applied to $\mathbb{I}-\alpha \nabla f$

$$
x_{i(k)}^{k+1}=x_{i(k)}^{k}-\alpha \nabla_{i(k)} f\left(x^{k}\right)
$$

is stochastic coordinate gradient method or stochastic coordinate gradient descent. Converges if a minimizer exists, f is L-smooth, and $\alpha \in(0,2 / L)$.

Example: Coordinate gradient descent

In general, $\mathbb{I}-\alpha \nabla f$ may not be extended coordinate friendly.

However, the following machine learning setup is extended coordinate friendly

$$
f(x)=\sum_{j=1}^{r} \ell_{j}\left(a_{j}^{\top} x-b_{j}\right),
$$

where $a_{1}, \ldots, a_{r} \in \mathbb{R}^{n}, b_{1}, \ldots, b_{r} \in \mathbb{R}$, and $\ell_{1}, \ldots, \ell_{r}$ are differentiable CCP functions on \mathbb{R}.

Write

$$
A=\left[\begin{array}{c}
-a_{1}^{\top}- \\
\vdots \\
-a_{r}^{\top}-
\end{array}\right] \in \mathbb{R}^{r \times n}, \quad \ell(y)=\sum_{j=1}^{r} \ell_{j}\left(y_{j}\right) .
$$

Then

$$
\nabla \ell(x)=\left(\ell_{1}^{\prime}\left(x_{1}\right), \ldots, \ell_{r}^{\prime}\left(x_{r}\right)\right) .
$$

Example: Coordinate gradient descent

Stochastic coordinate gradient descent with $y^{k}=A x^{k}$

$$
\begin{aligned}
x_{i(k)}^{k+1} & =x_{i(k)}^{k}-\alpha A_{:, i(k)}^{\top} \nabla \ell\left(y^{k}-b\right) \\
y^{k+1} & =y^{k}+A_{:, i(k)}\left(x_{i(k)}^{k+1}-x_{i(k)}^{k}\right)
\end{aligned}
$$

has cost per iteration of $\mathcal{O}\left(r n_{i(k)}\right)$, if $\max _{j=1, \ldots, r} \mathcal{F}\left[x \mapsto \ell_{j}^{\prime}(x)\right]=\mathcal{O}(1)$.
Initialize $x^{0}=0$ and $y=A x^{0}=0$.

Example: Coordinate GD with block-wise stepsize

Consider

$$
{\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad f(x), ~, ~}_{\text {, }}
$$

where f is L-smooth. For any diagonal matrix

$$
D=\left[\begin{array}{llll}
\beta_{1} I_{n_{1}} & & & \\
& \beta_{2} I_{n_{2}} & & \\
& & \ddots & \\
& & & \beta_{m} I_{n_{m}}
\end{array}\right]
$$

where $\beta_{i}>0$ and $I_{n_{i}} \in \mathbb{R}^{n_{i} \times n_{i}}$ is the $n_{i} \times n_{i}$ identity matrix, the problem is equivalent to

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad f(D x) .
$$

Stochastic coordinate gradient method on equivalent problem is

$$
x_{i(k)}^{k+1}=x_{i(k)}^{k}-\alpha_{i(k)} \nabla_{i(k)} f\left(x^{k}\right)
$$

where $\alpha_{i(k)}=\alpha \beta_{i(k)}$. Non-uniform block-wise stepsize is often necessary for a speedup compared to the (full deterministic) gradient method.

Example: Coordinate proximal-gradient descent

Consider

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x)+\sum_{i=1}^{m} g_{i}\left(x_{i}\right)
$$

where f is differentiable. So we minimize sum of a differentiable function and a separable function. Write

$$
g(x)=\sum_{i=1}^{m} g_{i}\left(x_{i}\right) .
$$

SC-FPI with FBS operator $\operatorname{Prox}_{\alpha g}(I-\alpha \nabla f)$

$$
x_{i(k)}^{k+1}=\operatorname{Prox}_{\alpha g_{i(k)}}\left(x_{i(k)}^{k}-\alpha \nabla_{i(k)} f\left(x^{k}\right)\right),
$$

is coordinate proximal-gradient (descent) method. Converges if a minimizer exists, f is L-smooth, and $\alpha \in(0,2 / L)$.

Example: Coordinate proximal-gradient descent

With block-wise argument, we get

$$
x_{i(k)}^{k+1}=\operatorname{Prox}_{\alpha_{i(k)} g_{i(k)}}\left(x_{i(k)}^{k}-\alpha_{i(k)} \nabla_{i(k)} f\left(x^{k}\right)\right)
$$

Non-uniform block-wise stepsizes important for speedup.
When g is not separable, $\operatorname{Prox}_{\alpha g}(I-\alpha \nabla f)$ is in general not extended coordinate friendly and SC-FPI not efficient.

Example: Stochastic dual coordinate ascent

Consider

$$
\underset{x \in \mathbb{R}^{r}}{\operatorname{minimize}} g(x)+\sum_{i=1}^{n} \ell_{i}\left(a_{i}^{\top} x-b_{i}\right)
$$

where g is a strongly convex CCP function on \mathbb{R}^{r} (so g^{*} is smooth) and ℓ_{i} is a CCP function on \mathbb{R}. Write

$$
A=\left[\begin{array}{c}
-a_{1}^{\top}- \\
\vdots \\
-a_{n}^{\top}-
\end{array}\right] \in \mathbb{R}^{n \times r}, \quad b=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right] \in \mathbb{R}^{n}
$$

Primal problem generated bu

$$
\mathbf{L}(x, u)=g(x)+\langle u, A x-b\rangle-\sum_{i=1}^{n} \ell_{i}^{*}\left(u_{i}\right)
$$

and corresponding dual problem is

$$
\underset{u \in \mathbb{R}^{n}}{\operatorname{maximize}} \quad-g^{*}\left(-A^{\top} u\right)-b^{\top} u-\sum_{i=1}^{n} \ell_{i}^{*}\left(u_{i}\right)
$$

Example: Stochastic dual coordinate ascent

Stochastic coordinate proximal-gradient applied to dual

$$
\begin{aligned}
& u_{i(k)}^{k+1}=\operatorname{Prox}_{\alpha_{i(k)} \ell_{i(k)}^{*}}\left(u_{i(k)}^{k}+\alpha_{i(k)}\left(A_{i(k),:} \nabla g^{*}\left(y^{k}\right)-b_{i(k)}\right)\right) \\
& y^{k+1}=y^{k}-A_{i(k)::}^{\top}\left(u_{i(k)}^{k+1}-u_{i(k)}^{k}\right)
\end{aligned}
$$

is a variation of stochastic dual coordinate ascent. Assume $\mathcal{F}\left[y \mapsto \nabla g^{*}(y)\right]=\mathcal{O}(r)$ and $\max _{i=1, \ldots, n} \mathcal{F}\left[u \mapsto \operatorname{Prox}_{\alpha_{i} \ell_{i}^{*}}(u)\right]=\mathcal{O}(1)$. Extended coordinate friendly with $y^{k}=-A^{\boldsymbol{\top}} u^{k}$ maintained. We have

$$
\mathcal{F}\left[\left\{y^{k}, u^{k}\right\} \mapsto\left\{y^{k+1}, u^{k+1}\right\}\right]=\mathcal{O}\left(r n_{i(k)}\right) .
$$

(One can recover the primal solution with $\nabla g^{*}\left(y^{k}\right)$.)

Note on splitting data

Iteration of primal coordinate GD accesses $A_{:, i(k)}$, a block of columns. Iteration of dual coordinate GD accesses $A_{i(k), \text {; }}$, a block of rows.

In machine learning, a row of A is a training sample, and we may not want to split it into parts. In so, dual approach is preferred.

Example: MISO/Finito

Consider

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} r(x)+\frac{1}{m} \sum_{i=1}^{m} f_{i}(x),
$$

where f_{1}, \ldots, f_{m} are differentiable. Use consensus technique to get

$$
\underset{\mathbf{x} \in \mathbb{R}^{n m}}{\operatorname{minimize}} \quad \delta_{C}(\mathbf{x})+\sum_{i=1}^{m}\left(r\left(x_{i}\right)+f_{i}\left(x_{i}\right)\right),
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)$ and C is the consensus set.
Write $f(\mathbf{x})=\sum_{i=1}^{m} f_{i}\left(x_{i}\right)$ and $g(\mathbf{x})=\delta_{C}(\mathbf{x})+\sum_{i=1}^{m} r\left(x_{i}\right)$, so

$$
\operatorname{Prox}_{\alpha g}\left(y_{1}, \ldots, y_{m}\right)=(x, \ldots, x), \quad x=\operatorname{Prox}_{\alpha r}\left(\frac{1}{m} \sum_{i=1}^{m} y_{i}\right) .
$$

(See Exercise 2.28.)

Example: MISO/Finito

Both FBS and BFS are extended coordinate friendly with \bar{z}^{k} maintained. SC-FPI with BFS operator $(\mathbb{I}-\alpha \nabla f) \operatorname{Prox}_{\alpha g}$ is

$$
\begin{aligned}
x^{k} & =\operatorname{Prox}_{\alpha r}\left(\bar{z}^{k}\right) \\
z_{i(k)}^{k+1} & =x^{k}-\alpha \nabla f_{i(k)}\left(x^{k}\right) \\
\bar{z}^{k+1} & =\bar{z}^{k}+\frac{1}{m}\left(z_{i(k)}^{k+1}-z_{i(k)}^{k}\right) .
\end{aligned}
$$

SC-FPI with FBS operator $\operatorname{Prox}_{\alpha g}(\mathbb{I}-\alpha \nabla f)$ is

$$
\begin{aligned}
& x_{i(k)}^{k+1}=\operatorname{Prox}_{\alpha r}\left(\bar{z}^{k}\right) \\
& \bar{z}^{k+1}=\bar{z}^{k}+\frac{1}{m}\left(x_{i(k)}^{k+1}-x_{i(k)}^{k}-\alpha\left(\nabla f_{i}\left(x_{i(k)}^{k+1}\right)-\nabla f_{i}\left(x_{i(k)}^{k}\right)\right)\right),
\end{aligned}
$$

where $\bar{z}^{k}=\frac{1}{m} \sum_{i=1}^{m}\left(x_{i}^{k}-\alpha \nabla f_{i(k)}\left(x_{i}^{k}\right)\right)$. These two equivalent methods are called minimization by incremental surrogate optimization (MISO) or Finito. Converges if a solution exists and $\alpha \in(0,2 / L)$.

Example: MISO/Finito

Among the two, BFS has a minor and subtle advantage.
For BFS, one can use $\left(z_{1}^{0}, \ldots, z_{m}^{0}\right)=(0, \ldots, 0)$ and $\bar{z}^{0}=0$ as the starting point.

For FBS, the starting point $\left(x_{1}^{0}, \ldots, x_{m}^{0}\right) \in \mathbb{R}^{n m}$ can be arbitrary, but

$$
\bar{z}^{0}=\frac{1}{m} \sum_{i=1}^{m}\left(x_{i}^{0}-\alpha \nabla f_{i}\left(x_{i}^{0}\right)\right)
$$

needs to be computed before starting the iterations in order to establish convergence via Theorem 2.

Example: Conic programs with many small cones

Consider

$$
\begin{array}{cl}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \in Q_{1} \times \cdots \times Q_{m},
\end{array}
$$

where $Q_{i} \subseteq \mathbb{R}^{n_{i}}$ is a nonempty closed convex set, $A \in \mathbb{R}^{r \times n}$ has rank r, and $b \in \mathbb{R}^{r}$. Assume $\mathcal{F}\left[x_{i} \mapsto \Pi_{Q_{i}} x_{i}\right]=C_{i}$.

Note: $\left[x \in Q_{1} \times \cdots \times Q_{m}\right] \Leftrightarrow\left[x_{i} \in Q_{i}\right.$ for $\left.i=1, \ldots, m\right]$

When Q_{1}, \ldots, Q_{m} are convex cones, problem called a conic program.

Example: Conic programs with many small cones

Naive SC-FPI with DRS applied to
becomes

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} \underbrace{c^{\top} x+\delta_{\{x \mid A x=b\}}(x)}_{=f(x)}+\underbrace{\delta_{Q_{1} \times \cdots \times Q_{m}}(x)}_{=g(x)}
$$

$$
\begin{aligned}
x_{i}^{k+1 / 2} & =\Pi_{Q_{i}}\left(z_{i}^{k}\right) \quad \text { for } i=1, \ldots, m \\
z_{i(k)}^{k+1} & =z_{i(k)}^{k}+D_{i(k),:}\left(2 x^{k+1 / 2}-z^{k}\right)+v_{i(k)}-x_{i(k)}^{k+1 / 2},
\end{aligned}
$$

where $D=I-A^{\top}\left(A A^{\top}\right)^{-1} A$ and $v=A^{\top}\left(A A^{\top}\right)^{-1} b-\alpha D c$. (Exercise 2.24.) Costs $\mathcal{O}\left(C_{1}+\cdots+C_{n}+n n_{i(k)}\right)$ per iteration.

Utilize the extended coordinate friendly structure with $y^{k}=D 2 x^{k+1 / 2}-z^{k}$:

$$
\begin{aligned}
x_{i(k)}^{k+1 / 2} & =\Pi_{Q_{i(k)}}\left(z_{i(k)}^{k}\right) \\
z_{i(k)}^{k+1} & =z_{i(k)}^{k}+y_{i(k)}^{k}+v_{i(k)}-x_{i(k)}^{k+1 / 2} \\
y^{k+1} & =D_{:, i(k)}\left(2 \Pi_{Q_{i(k)}}\left(z_{i(k)}^{k+1}\right)-2 x_{i(k)}^{k+1 / 2}-z_{i(k)}^{k+1}+z_{i(k)}^{k}\right)
\end{aligned}
$$

which costs $\mathcal{O}\left(C_{i(k)}+n n_{i(k)}\right)$ per iteration.

