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Coordinate-partitioning

Partition x ∈ Rn into m non-overlapping blocks of sizes n1, . . . , nm.
Write x = (x1, . . . , xm), so xi ∈ Rni . Partition � : Rn → Rn into

�(x) =

 (�(x))1
...

(�(x))m

 ,
so (�(x))i ∈ Rni . Define

�i(x) =



x1
...

xi−1

(�(x))i
xi+1

...
xm


,

i.e., �i is � on the i-th block and is identity on the other blocks.
We say “block” and “coordinate” interchangeably.



Coordinate-update fixed-point iteration

For � : Rn → Rn, consider

find
x∈Rn

x = �x.

Coordinate-update fixed-point iteration (C-FPI) is

select i(k) ∈ {1, . . . ,m},
xk+1 = �i(k)(x

k).

At the k-th iteration, C-FPI updates only the i(k)-th block. Specifying
the selection rule for i(k) fully specifies the method.
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Block selection rules

There are many ways to select i(k) with different advantages and
disadvantages.

Common selection rules:

I Cyclic rule. Select the blocks in a cyclic order.

I Essential cyclic rule. Each block appears once or more in each
“cycle”.

I Greedy rule. Select block that leads to the most progress, measured
in many different ways.

I Stochastic rule. Select blocks randomly.
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Stochastic coordinate-update fixed-point iteration

We focus on the stochastic rule i(k) ∈ {1, . . . ,m} independently
uniformly at random as its analysis is simplest.

We get stochastic coordinate-update fixed-point iteration (SC-FPI):

i(k) ∼ IID Uniform{1, . . . ,m}
xk+1 = �i(k)(x

k)
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Stochastic coordinate-update fixed-point iteration

Theorem 2.
Assume � : Rn → Rn is θ-averaged with θ ∈ (0, 1) and Fix� 6= ∅.
Assume the random indices i(0), i(1), . . . ∈ {1, . . . ,m} are independent
and identically distributed with uniform probability. Then
xk+1 = �i(k)x

k with any starting point x0 ∈ Rn converges to one fixed
point with probability 1, i.e.,

xk → x?

with probability 1 for some x? ∈ Fix�. The quantities Edist2(xk,Fix�)
and E‖xk − x?‖2 for any x? ∈ Fix� decrease monotonically with k.
Finally, we have

dist(xk,Fix�)→ 0

with probability 1.
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Proof of Theorem 2

We use the following standard result from probability theory.

Theorem.
(Supermartingale convergence theorem.) Let V k and Sk be
Fk-measurable random variables satisfying V k ≥ 0 and Sk ≥ 0 almost
surely for k = 0, 1, . . . . Assume

E
[
V k+1 | Fk

]
≤ V k − Sk

holds for k = 0, 1, . . . . Then

1. V k → V∞

2.
∑∞
k=0 S

k <∞
almost surely. (Note that the limit V∞ is a random variable.)
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Proof of Theorem 2

Define � with � = �− θ� and �i with �i = �− θ�i. So we have

�i(x) =



0
...
0

(�(x))i
0
...
0


for i = 1, . . . ,m. Alternately express xk+1 = �i(k)x

k as

xk+1 = xk − θ�i(k)xk.
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Proof of Theorem 2

� is θ-averaged if and only if � is (1/2)-cocoercive:

� is θ-averaged ⇔ 1

θ
�−

(
1

θ
− 1

)
� is nonexpansive

⇔ �− � is nonexpansive

⇔ ‖x− �x− y + �y‖2 ≤ ‖x− y‖2 ∀x, y ∈ Rn

⇔ 1

2
‖�x− �y‖2 ≤ 〈x− y,�x− �y〉 ∀x, y ∈ Rn

⇔ � is (1/2)-cocoercive.

Clearly, Fix� = Zer�. For any x? ∈ Fix� = Zer� and x ∈ Rn,

1

2
‖�x‖2 ≤ 〈�x, x− x?〉 (1)
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Proof of Theorem 2

xk+1 is a random variable depending on i(k), i(k − 1), . . . , i(0).
x0 is not random. Write E for the full expectation. Write Ek for the
conditional expectation with respect to i(k) conditioned on the past
random variables i(k − 1), i(k − 2), . . . , i(0).

Under these definitions, Ek[xk] = xk and

Ek[�i(k)x
k] =

1

m
�xk, (2)

Ek‖�i(k)xk‖2 =
1

m
‖�xk‖2. (3)
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Proof of Theorem 2

Stage 1. For any x? ∈ Fix�,

‖xk+1 − x?‖2 = ‖xk − θ�i(k)xk − x?‖2

= ‖xk − x?‖2 − 2θ〈�i(k)xk, xk − x?〉+ θ2‖�i(k)xk‖2.

Take conditional expectation Ek and use (2) and (3):

Ek‖xk+1 − x?‖2 = ‖xk − x?‖2 − 2θ〈Ek[�i(k)x
k], xk − x?〉+ θ2Ek‖�i(k)xk‖2

= ‖xk − x?‖2 − 2θ

m
〈�xk, xk − x?〉+

θ2

m
‖�xk‖2

≤ ‖xk − x?‖2 − (1− θ) θ
m
‖�xk‖2, (4)

where the inequality follows from (1).

So (‖xk − x?‖2)k=0,1,... a nonnegative supermartingale.
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Proof of Theorem 2

Take the full expectation on both ends of (4):

E‖xk+1 − x?‖2 ≤ E‖xk − x?‖2 − (1− θ) θ
m
E‖�xk‖2.

Therefore, E‖xk − x?‖2 decreases monotonically with k and, by
minimizing over x? ∈ Fix�, so does Edist2(xk,Fix�).
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Proof of Theorem 2

Stage 2. We prove convergence of the iterates. Apply the
supermartingale convergence theorem to (4) to get

(i)
∑∞
k=0 ‖�xk‖2 <∞ and

(ii) limk→∞ ‖xk − x?‖ exists

with probability 1. Note (i) implies ‖�xk‖2 → 0 and (ii) implies xk is
bounded with probability 1.

For all x? ∈ Fix�, limk→∞ ‖xk − x?‖ exists with probability 1. Apply
Proposition 1, which we state and prove soon, to conclude with
probability 1, limk→∞ ‖xk − x?‖ exists for all x? ∈ Fix�. Now xk → x?

with probability 1 follows from the same argument of Theorem 1.
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Measurability argument

Proposition 1 is subtle. We choose x? ∈ Fix� and then apply the
supermartingale convergence theorem, so [limk→∞ ‖xk − x?‖ exists with
probability 1] applies to one fixed point x?. This is weaker than what we
need when there are uncountably many fixed points.

Proposition 1.
Let Y ⊆ Rn and let x0, x1, . . . be a random sequence. Then statement 1
implies statement 2.

1. For all y ∈ Y [with probability 1, limk→∞ ‖xk − y‖ exists].

2. With probability 1 [for all y ∈ Y , limk→∞ ‖xk − y‖ exists].

Proof outline. (i) Y ⊆ Rn has a countable dense subset (is separable),
(ii) sequence of functions {‖xk − ·‖}k∈N has a limit on the countable
dense subset of Y , and (iii) the equicontinuous sequence of functions has
a limit on the dense subset of Y , so limit exists on all of Y .
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Coordinate friendly operators

SC-FPI is computationally useful when � is coordinate friendly or
extended coordinate friendly.

Let z = (z1, . . . , zm) ∈ Rn. Then x 7→ z is coordinate friendly if

max
i=1,...,m

F [x 7→ zi]� F [x 7→ z].

(Meaning of � depends on context.)

� is coordinate friendly if x 7→ �x is coordinate friendly.

Coordinate and extended coordinate friendly operators 17



Coordinate friendly ⇒ parallelizable

If x 7→ z is coordinate friendly,

Fp[x 7→ z] = max
i=1,...,m

F [x 7→ zi]� F [x 7→ z]

for p ≥ m. So x 7→ z is parallelizable.
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Affine operators

Affine operator �x = Ax+ b, where A ∈ Rn×n and b ∈ Rn, is
coordinate friendly if ni � n for i = 1, . . . ,m, since

F [x 7→ �ix] ∼ 2nni � F [x 7→ �x] ∼ 2n2.
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Separable operators

� : Rn → Rn is a separable operator if

�(x) = (�1(x1), . . . ,�m(xm)),

where �i : R
ni → Rni for i = 1, . . . ,m. Separable operators are

coordinate friendly if maxi=1,...,m F [xi 7→ �i(xi)]� F [x 7→ �(x)].

Common example: multiplication by a (block) diagonal matrix.

f : Rn → R is a separable function if

f(x) =

m∑
i=1

fi(xi),

where fi : R
ni → R for i = 1, . . . ,m. If f is separable and differentiable,

then ∇f is separable. If f is separable and CCP, then Proxf is separable.
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Separable operators

A separable constraint is of the form

xi ∈ Ci for i = 1, . . . ,m.

Projection onto a separable constraint is separable.

Common example: box constraint

ai ≤ xi ≤ bi for i = 1, . . . ,m.
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Extended coordinate-friendly

� is extended coordinate-friendly if there is an auxiliary quantity y(x)
such that

max
i=1,...,m

F [{x, y(x)} 7→ {�ix, y(�ix)}]� F [x 7→ �x] .

In other words, computing �i(x) is efficient if y(x) is maintained.
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More coordinate notation

Use notation x = (x1, . . . , xm) with xi ∈ Rni . For A ∈ Rr×n, write

A:,i ∈ Rr×ni

for the submatrix, i.e.,

A =
[
A:,1 · · · A:,m

]
and

Ax = A:,1x1 + · · ·+A:,mxm.

When f is differentiable, write

∇f(x) =

∇1f(x)
...

∇mf(x)

 .



Example: Gradient descent on least squares

Consider

minimize
x∈Rn

1

2
‖Ax− b‖2,

where A ∈ Rr×n and b ∈ Rr, and

�(x) = x− αAᵀ(Ax− b).

When r � n, the method is parallelizable, not coordinate friendly, but
extended coordinate friendly.
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Example: Gradient descent on least squares

Evaluation of � costs

F [x 7→ �x] = O(rn).

Parallelizable (assuming p < min{r, n}):

Fp[x 7→ �x] = Fp[{A, x} 7→ Ax] + Fp[{Aᵀ, Ax} 7→ Aᵀ(Ax)]

= O (rn/p)

Not coordinate friendly:

F [x 7→ �ix] = F [x 7→ Ax] + F [Ax 7→ �ix]

= O (rn) +O (rni)

= O (rn)
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Example: Gradient descent on least squares

Extended coordinate friendly with auxiliary quantity Ax:

F [{x,Ax} 7→ {�ix,A(�ix)}] = O(rni)

if we use the formula

A(�ix) = Ax+A:,i((�x)i − xi).

Therefore the C-FPI with �

xk+1
i(k) = xki(k) − αA

ᵀ
:,i(k)(y

k − b)

xk+1
j = xkj for j 6= i(k)

yk+1 = yk +A:,i(k)(x
k+1
i(k) − x

k
i(k))

costs O(rni(k)) flops per iteration. (xk+1
j = xkj costs no operations.)

Initialize x0 = 0 and y = Ax0 = 0.



Example: Gradient descent on least squares

Other approach of using �(x) = x− α((AᵀA)x−Aᵀb) is not effective.

Precomputing

F [{A, b} 7→ {AᵀA,Aᵀb}] = O
(
rn2
)

can be prohibitively expensive, and

F [{xk, AᵀA,Aᵀb} 7→ xk+1
i(k) ] = O

(
nni(k)

)
,

is larger than O
(
rni(k)

)
. (Remember, r � n.)
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Example: Coordinate gradient descent

Consider

minimize
x∈Rn

f(x),

where f is differentiable. SC-FPI applied to �− α∇f

xk+1
i(k) = xki(k) − α∇i(k)f(xk),

is stochastic coordinate gradient method or stochastic coordinate
gradient descent. Converges if a minimizer exists, f is L-smooth, and
α ∈ (0, 2/L).

Coordinate and extended coordinate friendly operators 28



Example: Coordinate gradient descent

In general, �− α∇f may not be extended coordinate friendly.

However, the following machine learning setup is extended coordinate
friendly

f(x) =

r∑
j=1

`j(a
ᵀ
j x− bj),

where a1, . . . , ar ∈ Rn, b1, . . . , br ∈ R, and `1, . . . , `r are differentiable
CCP functions on R.

Write

A =

— aᵀ1 —
...

— aᵀr —

 ∈ Rr×n, `(y) =

r∑
j=1

`j(yj).

Then
∇`(x) = (`′1(x1), . . . , `′r(xr)).
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Example: Coordinate gradient descent

Stochastic coordinate gradient descent with yk = Axk

xk+1
i(k) = xki(k) − αA

ᵀ
:,i(k)∇`(y

k − b)

yk+1 = yk +A:,i(k)(x
k+1
i(k) − x

k
i(k))

has cost per iteration of O
(
rni(k)

)
, if maxj=1,...,r F [x 7→ `′j(x)] = O(1).

Initialize x0 = 0 and y = Ax0 = 0.
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Example: Coordinate GD with block-wise stepsize

Consider

minimize
x∈Rn

f(x),

where f is L-smooth. For any diagonal matrix

D =


β1In1

β2In2

. . .

βmInm


where βi > 0 and Ini ∈ Rni×ni is the ni × ni identity matrix, the
problem is equivalent to

minimize
x∈Rn

f(Dx).

Stochastic coordinate gradient method on equivalent problem is

xk+1
i(k) = xki(k) − αi(k)∇i(k)f(xk),

where αi(k) = αβi(k). Non-uniform block-wise stepsize is often necessary
for a speedup compared to the (full deterministic) gradient method.



Example: Coordinate proximal-gradient descent

Consider

minimize
x∈Rn

f(x) +

m∑
i=1

gi(xi)

where f is differentiable. So we minimize sum of a differentiable function
and a separable function. Write

g(x) =

m∑
i=1

gi(xi).

SC-FPI with FBS operator Proxαg(I − α∇f)

xk+1
i(k) = Proxαgi(k)

(
xki(k) − α∇i(k)f(xk)

)
,

is coordinate proximal-gradient (descent) method. Converges if a
minimizer exists, f is L-smooth, and α ∈ (0, 2/L).
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Example: Coordinate proximal-gradient descent

With block-wise argument, we get

xk+1
i(k) = Proxαi(k)gi(k)

(
xki(k) − αi(k)∇i(k)f(xk)

)
.

Non-uniform block-wise stepsizes important for speedup.

When g is not separable, Proxαg(I − α∇f) is in general not extended
coordinate friendly and SC-FPI not efficient.
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Example: Stochastic dual coordinate ascent

Consider

minimize
x∈Rr

g(x) +

n∑
i=1

`i(a
ᵀ
i x− bi),

where g is a strongly convex CCP function on Rr (so g∗ is smooth) and
`i is a CCP function on R. Write

A =

— aᵀ1 —
...

— aᵀn —

 ∈ Rn×r, b =

b1...
bn

 ∈ Rn.

Primal problem generated bu

L(x, u) = g(x) + 〈u,Ax− b〉 −
n∑
i=1

`∗i (ui)

and corresponding dual problem is

maximize
u∈Rn

−g∗ (−Aᵀu)− bᵀu−
∑n
i=1 `

∗
i (ui).
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Example: Stochastic dual coordinate ascent

Stochastic coordinate proximal-gradient applied to dual

uk+1
i(k) = Proxαi(k)`

∗
i(k)

(
uki(k) + αi(k)

(
Ai(k),:∇g∗(yk)− bi(k)

))
yk+1 = yk −Aᵀ

i(k),:(u
k+1
i(k) − u

k
i(k))

is a variation of stochastic dual coordinate ascent. Assume
F [y 7→ ∇g∗(y)] = O(r) and maxi=1,...,n F [u 7→ Proxαi`∗i

(u)] = O(1).

Extended coordinate friendly with yk = −Aᵀuk maintained. We have

F [{yk, uk} 7→ {yk+1, uk+1}] = O
(
rni(k)

)
.

(One can recover the primal solution with ∇g∗(yk).)
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Note on splitting data

Iteration of primal coordinate GD accesses A:,i(k), a block of columns.
Iteration of dual coordinate GD accesses Ai(k),:, a block of rows.

In machine learning, a row of A is a training sample, and we may not
want to split it into parts. In so, dual approach is preferred.
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Example: MISO/Finito

Consider

minimize
x∈Rn

r(x) +
1

m

m∑
i=1

fi(x),

where f1, . . . , fm are differentiable. Use consensus technique to get

minimize
x∈Rnm

δC(x) +

m∑
i=1

(
r(xi) + fi(xi)

)
,

where x = (x1, . . . , xm) and C is the consensus set.

Write f(x) =
∑m
i=1 fi(xi) and g(x) = δC(x) +

∑m
i=1 r(xi), so

Proxαg(y1, . . . , ym) = (x, . . . , x), x = Proxαr

(
1

m

m∑
i=1

yi

)
.

(See Exercise 2.28.)



Example: MISO/Finito

Both FBS and BFS are extended coordinate friendly with zk maintained.
SC-FPI with BFS operator (�− α∇f)Proxαg is

xk = Proxαr

(
zk
)

zk+1
i(k) = xk − α∇fi(k)(xk)

zk+1 = zk +
1

m

(
zk+1
i(k) − z

k
i(k)

)
.

SC-FPI with FBS operator Proxαg(�− α∇f) is

xk+1
i(k) = Proxαr(z

k)

zk+1 = zk +
1

m

(
xk+1
i(k) − x

k
i(k) − α(∇fi(xk+1

i(k) )−∇fi(xki(k)))
)
,

where zk = 1
m

∑m
i=1(xki − α∇fi(k)(xki )). These two equivalent methods

are called minimization by incremental surrogate optimization (MISO) or
Finito. Converges if a solution exists and α ∈ (0, 2/L).



Example: MISO/Finito

Among the two, BFS has a minor and subtle advantage.

For BFS, one can use (z01 , . . . , z
0
m) = (0, . . . , 0) and z0 = 0 as the

starting point.

For FBS, the starting point (x01, . . . , x
0
m) ∈ Rnm can be arbitrary, but

z0 =
1

m

m∑
i=1

(
x0i − α∇fi(x0i )

)
needs to be computed before starting the iterations in order to establish
convergence via Theorem 2.
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Example: Conic programs with many small cones

Consider

minimize
x∈Rn

cᵀx

subject to Ax = b
x ∈ Q1 × · · · ×Qm,

where Qi ⊆ Rni is a nonempty closed convex set, A ∈ Rr×n has rank r,
and b ∈ Rr. Assume F [xi 7→ ΠQi

xi] = Ci.

Note: [x ∈ Q1 × · · · ×Qm] ⇔ [xi ∈ Qi for i = 1, . . . ,m]

When Q1, . . . , Qm are convex cones, problem called a conic program.
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Example: Conic programs with many small cones

Naive SC-FPI with DRS applied to

minimize
x∈Rn

cᵀx+ δ{x |Ax=b}(x)︸ ︷︷ ︸
=f(x)

+ δQ1×···×Qm(x)︸ ︷︷ ︸
=g(x)becomes

x
k+1/2
i = ΠQi

(zki ) for i = 1, . . . ,m

zk+1
i(k) = zki(k) +Di(k),:(2x

k+1/2 − zk) + vi(k) − x
k+1/2
i(k) ,

where D = I −Aᵀ(AAᵀ)−1A and v = Aᵀ(AAᵀ)−1b− αDc. (Exercise
2.24.) Costs O

(
C1 + · · ·+ Cn + nni(k)

)
per iteration.

Utilize the extended coordinate friendly structure with
yk = D2xk+1/2 − zk:

x
k+1/2
i(k) = ΠQi(k)

(zki(k))

zk+1
i(k) = zki(k) + yki(k) + vi(k) − x

k+1/2
i(k)

yk+1 = D:,i(k)

(
2ΠQi(k)

(zk+1
i(k) )− 2x

k+1/2
i(k) − zk+1

i(k) + zki(k)

)
,

which costs O
(
Ci(k) + nni(k)

)
per iteration.
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