Stochastic Coordinate Update Methods

Ernest K. Ryu Seoul National University

Mathematical and Numerical Optimization Fall 2020

Last edited: 12/01/2020

Outline

Stochastic coordinate fixed-point iteration

Coordinate and extended coordinate friendly operators

Coordinate-partitioning

Partition $x \in \mathbb{R}^n$ into m non-overlapping blocks of sizes n_1, \ldots, n_m . Write $x = (x_1, \ldots, x_m)$, so $x_i \in \mathbb{R}^{n_i}$. Partition $\mathbb{T} \colon \mathbb{R}^n \to \mathbb{R}^n$ into

$$\mathbb{T}(x) = \begin{bmatrix} (\mathbb{T}(x))_1 \\ \vdots \\ (\mathbb{T}(x))_m \end{bmatrix},$$

so $(\mathbb{T}(x))_i \in \mathbb{R}^{n_i}$. Define

$$\mathbb{F}_{i}(x) = \begin{bmatrix} x_{1} \\ \vdots \\ x_{i-1} \\ (\mathbb{T}(x))_{i} \\ x_{i+1} \\ \vdots \\ x_{m} \end{bmatrix},$$

i.e., \mathbb{T}_i is \mathbb{T} on the *i*-th block and is identity on the other blocks. We say "block" and "coordinate" interchangeably.

Coordinate-update fixed-point iteration

For $\mathbb{T} \colon \mathbb{R}^n \to \mathbb{R}^n$, consider

$$\inf_{x \in \mathbb{R}^n} \quad x = \mathbb{T}x.$$

Coordinate-update fixed-point iteration (C-FPI) is

select
$$i(k) \in \{1, \dots, m\}$$
,
$$x^{k+1} = \mathbb{T}_{i(k)}(x^k).$$

At the k-th iteration, C-FPI updates only the i(k)-th block. Specifying the selection rule for i(k) fully specifies the method.

Block selection rules

There are many ways to select $i(\boldsymbol{k})$ with different advantages and disadvantages.

Common selection rules:

- Cyclic rule. Select the blocks in a cyclic order.
- Essential cyclic rule. Each block appears once or more in each "cycle".
- Greedy rule. Select block that leads to the most progress, measured in many different ways.
- Stochastic rule. Select blocks randomly.

Stochastic coordinate-update fixed-point iteration

We focus on the stochastic rule $i(k) \in \{1, ..., m\}$ independently uniformly at random as its analysis is simplest.

We get stochastic coordinate-update fixed-point iteration (SC-FPI):

$$i(k) \sim \text{IID Uniform}\{1, \dots, m\}$$

 $x^{k+1} = \mathbb{T}_{i(k)}(x^k)$

Stochastic coordinate-update fixed-point iteration

Theorem 2.

Assume $\mathbb{T}: \mathbb{R}^n \to \mathbb{R}^n$ is θ -averaged with $\theta \in (0, 1)$ and $\operatorname{Fix} \mathbb{T} \neq \emptyset$. Assume the random indices $i(0), i(1), \ldots \in \{1, \ldots, m\}$ are independent and identically distributed with uniform probability. Then $x^{k+1} = \mathbb{T}_{i(k)}x^k$ with any starting point $x^0 \in \mathbb{R}^n$ converges to one fixed point with probability 1, i.e.,

$$x^k \to x^*$$

with probability 1 for some $x^* \in \operatorname{Fix} \mathbb{T}$. The quantities $\mathbb{E} \operatorname{dist}^2(x^k, \operatorname{Fix} \mathbb{T})$ and $\mathbb{E} ||x^k - x^*||^2$ for any $x^* \in \operatorname{Fix} \mathbb{T}$ decrease monotonically with k. Finally, we have

$$\operatorname{dist}(x^k, \operatorname{Fix} \mathbb{T}) \to 0$$

with probability 1.

We use the following standard result from probability theory.

Theorem.

(Supermartingale convergence theorem.) Let V^k and S^k be \mathcal{F}_k -measurable random variables satisfying $V^k \geq 0$ and $S^k \geq 0$ almost surely for $k = 0, 1, \ldots$ Assume

$$\mathbb{E}\left[V^{k+1} \,|\, \mathcal{F}_k\right] \le V^k - S^k$$

holds for $k = 0, 1, \ldots$ Then

- 1. $V^k \to V^\infty$
- 2. $\sum_{k=0}^{\infty} S^k < \infty$

almost surely. (Note that the limit V^{∞} is a random variable.)

Define S with $\mathbb{T} = \mathbb{I} - \theta S$ and S_i with $\mathbb{T}_i = \mathbb{I} - \theta S_i$. So we have

$$\mathbf{S}_{i}(x) = \begin{bmatrix} 0\\ \vdots\\ 0\\ (\mathbf{S}(x))_{i}\\ 0\\ \vdots\\ 0 \end{bmatrix}$$

for $i=1,\ldots,m.$ Alternately express $x^{k+1}=\mathbb{T}_{i(k)}x^k$ as

$$x^{k+1} = x^k - \theta \mathbf{S}_{i(k)} x^k.$$

 ${\mathbb T}$ is $\theta\text{-averaged}$ if and only if § is (1/2)-coccercive:

$$\begin{split} \mathbb{T} \text{ is } \theta \text{-averaged} & \Leftrightarrow \quad \frac{1}{\theta} \mathbb{T} - \left(\frac{1}{\theta} - 1\right) \mathbb{I} \text{ is nonexpansive} \\ & \Leftrightarrow \quad \mathbb{I} - \mathbb{S} \text{ is nonexpansive} \\ & \Leftrightarrow \quad \|x - \mathbb{S}x - y + \mathbb{S}y\|^2 \leq \|x - y\|^2 \quad \forall x, y \in \mathbb{R}^n \\ & \Leftrightarrow \quad \frac{1}{2} \|\mathbb{S}x - \mathbb{S}y\|^2 \leq \langle x - y, \mathbb{S}x - \mathbb{S}y \rangle \quad \forall x, y \in \mathbb{R}^n \\ & \Leftrightarrow \quad \mathbb{S} \text{ is } (1/2) \text{-cocoercive.} \end{split}$$

Clearly, $\operatorname{Fix} \mathbb{T} = \operatorname{Zer} S$. For any $x^* \in \operatorname{Fix} \mathbb{T} = \operatorname{Zer} S$ and $x \in \mathbb{R}^n$,

$$\frac{1}{2} \|\mathbf{S}x\|^2 \le \langle \mathbf{S}x, x - x^\star \rangle \tag{1}$$

 x^{k+1} is a random variable depending on $i(k), i(k-1), \ldots, i(0)$. x^0 is not random. Write \mathbb{E} for the full expectation. Write \mathbb{E}_k for the conditional expectation with respect to i(k) conditioned on the past random variables $i(k-1), i(k-2), \ldots, i(0)$.

Under these definitions, $\mathbb{E}_k[x^k] = x^k$ and

$$\mathbb{E}_k[\mathbf{S}_{i(k)}x^k] = \frac{1}{m}\mathbf{S}x^k,\tag{2}$$

$$\mathbb{E}_{k} \|\mathbf{S}_{i(k)} x^{k}\|^{2} = \frac{1}{m} \|\mathbf{S} x^{k}\|^{2}.$$
(3)

Stage 1. For any $x^{\star} \in \operatorname{Fix} \mathbb{T}$,

$$\begin{aligned} \|x^{k+1} - x^{\star}\|^{2} &= \|x^{k} - \theta \mathbf{S}_{i(k)} x^{k} - x^{\star}\|^{2} \\ &= \|x^{k} - x^{\star}\|^{2} - 2\theta \langle \mathbf{S}_{i(k)} x^{k}, x^{k} - x^{\star} \rangle + \theta^{2} \|\mathbf{S}_{i(k)} x^{k}\|^{2}. \end{aligned}$$

Take conditional expectation \mathbb{E}_k and use (2) and (3):

$$\mathbb{E}_{k} \|x^{k+1} - x^{\star}\|^{2} = \|x^{k} - x^{\star}\|^{2} - 2\theta \langle \mathbb{E}_{k}[\mathbf{S}_{i(k)}x^{k}], x^{k} - x^{\star} \rangle + \theta^{2} \mathbb{E}_{k} \|\mathbf{S}_{i(k)}x^{k}\|^{2}$$
$$= \|x^{k} - x^{\star}\|^{2} - \frac{2\theta}{m} \langle \mathbf{S}x^{k}, x^{k} - x^{\star} \rangle + \frac{\theta^{2}}{m} \|\mathbf{S}x^{k}\|^{2}$$
$$\leq \|x^{k} - x^{\star}\|^{2} - (1 - \theta)\frac{\theta}{m}\|\mathbf{S}x^{k}\|^{2}, \qquad (4)$$

where the inequality follows from (1).

So
$$(||x^k - x^\star||^2)_{k=0,1,\dots}$$
 a nonnegative supermartingale.

Take the full expectation on both ends of (4):

$$\mathbb{E}\|x^{k+1} - x^{\star}\|^2 \leq \mathbb{E}\|x^k - x^{\star}\|^2 - (1-\theta)\frac{\theta}{m}\mathbb{E}\|\mathbf{S}x^k\|^2.$$

Therefore, $\mathbb{E} ||x^k - x^*||^2$ decreases monotonically with k and, by minimizing over $x^* \in \operatorname{Fix} \mathbb{T}$, so does $\mathbb{E} \operatorname{dist}^2(x^k, \operatorname{Fix} \mathbb{T})$.

Stage 2. We prove convergence of the iterates. Apply the supermartingale convergence theorem to (4) to get

- (i) $\sum_{k=0}^{\infty} \|\mathbf{S}x^k\|^2 < \infty$ and
- (ii) $\lim_{k\to\infty} \|x^k x^\star\|$ exists

with probability 1. Note (i) implies $||Sx^k||^2 \to 0$ and (ii) implies x^k is bounded with probability 1.

For all $x^* \in \operatorname{Fix} \mathbb{T}$, $\lim_{k \to \infty} ||x^k - x^*||$ exists with probability 1. Apply Proposition 1, which we state and prove soon, to conclude with probability 1, $\lim_{k \to \infty} ||x^k - x^*||$ exists for all $x^* \in \operatorname{Fix} \mathbb{T}$. Now $x^k \to x^*$ with probability 1 follows from the same argument of Theorem 1.

Measurability argument

Proposition 1 is subtle. We choose $x^* \in \operatorname{Fix} \mathbb{T}$ and then apply the supermartingale convergence theorem, so $[\lim_{k\to\infty} \|x^k - x^*\|$ exists with probability 1] applies to one fixed point x^* . This is weaker than what we need when there are uncountably many fixed points.

Proposition 1.

Let $Y \subseteq \mathbb{R}^n$ and let x^0, x^1, \ldots be a random sequence. Then statement 1 implies statement 2.

- 1. For all $y \in Y$ [with probability 1, $\lim_{k\to\infty} ||x^k y||$ exists].
- 2. With probability 1 [for all $y \in Y$, $\lim_{k\to\infty} ||x^k y||$ exists].

Proof outline. (i) $Y \subseteq \mathbb{R}^n$ has a countable dense subset (is separable), (ii) sequence of functions $\{||x^k - \cdot||\}_{k \in \mathbb{N}}$ has a limit on the countable dense subset of Y, and (iii) the equicontinuous sequence of functions has a limit on the dense subset of Y, so limit exists on all of Y.

Outline

Stochastic coordinate fixed-point iteration

Coordinate and extended coordinate friendly operators

Coordinate and extended coordinate friendly operators

Coordinate friendly operators

 $\mathsf{SC}\mathsf{-}\mathsf{FPI}$ is computationally useful when $\mathbb T$ is coordinate friendly or extended coordinate friendly.

Let $z = (z_1, \dots, z_m) \in \mathbb{R}^n$. Then $x \mapsto z$ is coordinate friendly if $\max_{i=1,\dots,m} \mathcal{F}[x \mapsto z_i] \ll \mathcal{F}[x \mapsto z].$

(Meaning of \ll depends on context.)

 \mathbb{T} is coordinate friendly if $x \mapsto \mathbb{T}x$ is coordinate friendly.

Coordinate friendly \Rightarrow **parallelizable**

If $x \mapsto z$ is coordinate friendly,

$$\mathcal{F}_p[x \mapsto z] = \max_{i=1,\dots,m} \mathcal{F}[x \mapsto z_i] \ll \mathcal{F}[x \mapsto z]$$

for $p \ge m$. So $x \mapsto z$ is parallelizable.

Affine operators

Affine operator $\mathbb{T}x = Ax + b$, where $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$, is coordinate friendly if $n_i \ll n$ for $i = 1, \dots, m$, since

$$\mathcal{F}[x \mapsto \mathbb{T}_i x] \sim 2nn_i \ll \mathcal{F}[x \mapsto \mathbb{T} x] \sim 2n^2.$$

Separable operators

 $\mathbb{T} \colon \mathbb{R}^n \to \mathbb{R}^n$ is a separable operator if

$$\mathbb{T}(x) = (\mathbb{U}_1(x_1), \dots, \mathbb{U}_m(x_m)),$$

where $\mathbb{U}_i : \mathbb{R}^{n_i} \to \mathbb{R}^{n_i}$ for i = 1, ..., m. Separable operators are coordinate friendly if $\max_{i=1,...,m} \mathcal{F}[x_i \mapsto \mathbb{U}_i(x_i)] \ll \mathcal{F}[x \mapsto \mathbb{T}(x)]$.

Common example: multiplication by a (block) diagonal matrix.

 $f\colon \mathbb{R}^n\to \overline{\mathbb{R}}$ is a separable function if

$$f(x) = \sum_{i=1}^{m} f_i(x_i),$$

where $f_i \colon \mathbb{R}^{n_i} \to \overline{\mathbb{R}}$ for i = 1, ..., m. If f is separable and differentiable, then ∇f is separable. If f is separable and CCP, then Prox_f is separable.

Coordinate and extended coordinate friendly operators

Separable operators

A separable constraint is of the form

$$x_i \in C_i$$
 for $i = 1, \ldots, m$.

Projection onto a separable constraint is separable.

Common example: box constraint

$$a_i \leq x_i \leq b_i$$
 for $i = 1, \ldots, m$.

Extended coordinate-friendly

 ${\mathbb T}$ is extended coordinate-friendly if there is an auxiliary quantity y(x) such that

$$\max_{i=1,\ldots,m} \mathcal{F}\left[\left\{x, y(x)\right\} \mapsto \left\{\mathbb{T}_{i}x, y(\mathbb{T}_{i}x)\right\}\right] \ll \mathcal{F}\left[x \mapsto \mathbb{T}x\right].$$

In other words, computing $\mathbb{T}_i(x)$ is efficient if y(x) is maintained.

More coordinate notation

Use notation $x=(x_1,\ldots,x_m)$ with $x_i\in\mathbb{R}^{n_i}.$ For $A\in\mathbb{R}^{r\times n}$, write $A_{:,i}\in\mathbb{R}^{r\times n_i}$

for the submatrix, i.e.,

$$A = \begin{bmatrix} A_{:,1} & \cdots & A_{:,m} \end{bmatrix}$$

and

$$Ax = A_{:,1}x_1 + \dots + A_{:,m}x_m.$$

When f is differentiable, write

$$\nabla f(x) = \begin{bmatrix} \nabla_1 f(x) \\ \vdots \\ \nabla_m f(x) \end{bmatrix}.$$

Consider

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad \frac{1}{2} \|Ax - b\|^2,$$

where $A \in \mathbb{R}^{r \times n}$ and $b \in \mathbb{R}^{r}$, and

$$\mathbb{T}(x) = x - \alpha A^{\mathsf{T}}(Ax - b).$$

When $r \ll n$, the method is parallelizable, *not* coordinate friendly, but extended coordinate friendly.

Evaluation of \mathbb{T} costs

$$\mathcal{F}[x \mapsto \mathbb{T}x] = \mathcal{O}(rn).$$

Parallelizable (assuming $p < \min\{r, n\}$):

$$\begin{aligned} \mathcal{F}_p[x \mapsto \mathbb{T}x] &= \mathcal{F}_p[\{A, x\} \mapsto Ax] + \mathcal{F}_p[\{A^{\intercal}, Ax\} \mapsto A^{\intercal}(Ax)] \\ &= \mathcal{O}\left(rn/p\right) \end{aligned}$$

Not coordinate friendly:

$$\mathcal{F}[x \mapsto \mathbb{T}_i x] = \mathcal{F}[x \mapsto Ax] + \mathcal{F}[Ax \mapsto \mathbb{T}_i x]$$
$$= \mathcal{O}(rn) + \mathcal{O}(rn_i)$$
$$= \mathcal{O}(rn)$$

Coordinate and extended coordinate friendly operators

Extended coordinate friendly with auxiliary quantity Ax:

$$\mathcal{F}\left[\left\{x, Ax\right\} \mapsto \left\{\mathbb{T}_{i}x, A(\mathbb{T}_{i}x)\right\}\right] = \mathcal{O}(rn_{i})$$

if we use the formula

$$A(\mathbb{T}_i x) = Ax + A_{:,i}((\mathbb{T} x)_i - x_i).$$

Therefore the C-FPI with ${\mathbb T}$

$$\begin{split} x_{i(k)}^{k+1} &= x_{i(k)}^{k} - \alpha A_{:,i(k)}^{\mathsf{T}} (y^{k} - b) \\ x_{j}^{k+1} &= x_{j}^{k} \quad \text{ for } j \neq i(k) \\ y^{k+1} &= y^{k} + A_{:,i(k)} (x_{i(k)}^{k+1} - x_{i(k)}^{k}) \end{split}$$

costs $\mathcal{O}(rn_{i(k)})$ flops per iteration. $(x_j^{k+1} = x_j^k \text{ costs no operations.})$ Initialize $x^0 = 0$ and $y = Ax^0 = 0$.

Other approach of using $\mathbb{T}(x) = x - \alpha((A^{\mathsf{T}}A)x - A^{\mathsf{T}}b)$ is not effective.

Precomputing

$$\mathcal{F}[\{A,b\} \mapsto \{A^{\mathsf{T}}A, A^{\mathsf{T}}b\}] = \mathcal{O}\left(rn^2\right)$$

can be prohibitively expensive, and

$$\mathcal{F}[\{x^k, A^{\mathsf{T}}A, A^{\mathsf{T}}b\} \mapsto x_{i(k)}^{k+1}] = \mathcal{O}\left(nn_{i(k)}\right),$$

is larger than $\mathcal{O}(rn_{i(k)})$. (Remember, $r \ll n$.)

Example: Coordinate gradient descent

Consider

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x),$$

where f is differentiable. SC-FPI applied to $\mathbb{I} - \alpha \nabla f$

$$x_{i(k)}^{k+1} = x_{i(k)}^k - \alpha \nabla_{i(k)} f(x^k),$$

is stochastic coordinate gradient method or stochastic coordinate gradient descent. Converges if a minimizer exists, f is L-smooth, and $\alpha \in (0, 2/L)$.

Example: Coordinate gradient descent

In general, $\mathbb{I} - \alpha \nabla f$ may not be extended coordinate friendly.

However, the following machine learning setup is extended coordinate friendly

$$f(x) = \sum_{j=1}^{r} \ell_j (a_j^{\mathsf{T}} x - b_j),$$

where $a_1, \ldots, a_r \in \mathbb{R}^n$, $b_1, \ldots, b_r \in \mathbb{R}$, and ℓ_1, \ldots, ℓ_r are differentiable CCP functions on \mathbb{R} .

Write

$$A = \begin{bmatrix} -a_1^{\mathsf{T}} & -\\ \vdots \\ -a_r^{\mathsf{T}} & - \end{bmatrix} \in \mathbb{R}^{r \times n}, \qquad \ell(y) = \sum_{j=1}^r \ell_j(y_j).$$

Then

$$\nabla \ell(x) = (\ell'_1(x_1), \dots, \ell'_r(x_r)).$$

Coordinate and extended coordinate friendly operators

Example: Coordinate gradient descent

Stochastic coordinate gradient descent with $y^k = Ax^k$

$$\begin{split} x_{i(k)}^{k+1} &= x_{i(k)}^k - \alpha A_{:,i(k)}^{\mathsf{T}} \nabla \ell(y^k - b) \\ y^{k+1} &= y^k + A_{:,i(k)} (x_{i(k)}^{k+1} - x_{i(k)}^k) \end{split}$$

has cost per iteration of $\mathcal{O}\left(rn_{i(k)}\right)$, if $\max_{j=1,\dots,r} \mathcal{F}[x \mapsto \ell'_j(x)] = \mathcal{O}(1)$.

Initialize $x^0 = 0$ and $y = Ax^0 = 0$.

Coordinate and extended coordinate friendly operators

Example: Coordinate GD with block-wise stepsize Consider

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x),$$

where f is L-smooth. For any diagonal matrix

$$D = \begin{bmatrix} \beta_1 I_{n_1} & & & \\ & \beta_2 I_{n_2} & & \\ & & \ddots & \\ & & & & \beta_m I_{n_m} \end{bmatrix}$$

where $\beta_i > 0$ and $I_{n_i} \in \mathbb{R}^{n_i \times n_i}$ is the $n_i \times n_i$ identity matrix, the problem is equivalent to

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(Dx).$$

Stochastic coordinate gradient method on equivalent problem is

$$x_{i(k)}^{k+1} = x_{i(k)}^k - \alpha_{i(k)} \nabla_{i(k)} f(x^k),$$

where $\alpha_{i(k)} = \alpha \beta_{i(k)}$. Non-uniform block-wise stepsize is often necessary for a speedup compared to the (full deterministic) gradient method.

Example: Coordinate proximal-gradient descent

Consider

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) + \sum_{i=1}^m g_i(x_i)$$

where f is differentiable. So we minimize sum of a differentiable function and a separable function. Write

$$g(x) = \sum_{i=1}^{m} g_i(x_i)$$

SC-FPI with FBS operator $\mathrm{Prox}_{\alpha g}(I-\alpha \nabla f)$

$$x_{i(k)}^{k+1} = \operatorname{Prox}_{\alpha g_{i(k)}} \left(x_{i(k)}^k - \alpha \nabla_{i(k)} f(x^k) \right),$$

is coordinate proximal-gradient (descent) method. Converges if a minimizer exists, f is L-smooth, and $\alpha \in (0, 2/L)$.

Coordinate and extended coordinate friendly operators

Example: Coordinate proximal-gradient descent

With block-wise argument, we get

$$x_{i(k)}^{k+1} = \operatorname{Prox}_{\alpha_{i(k)}g_{i(k)}} \left(x_{i(k)}^{k} - \alpha_{i(k)} \nabla_{i(k)} f(x^{k}) \right).$$

Non-uniform block-wise stepsizes important for speedup.

When g is not separable, $Prox_{\alpha g}(I - \alpha \nabla f)$ is in general not extended coordinate friendly and SC-FPI not efficient.

Example: Stochastic dual coordinate ascent

Consider

$$\underset{x \in \mathbb{R}^r}{\text{minimize}} \quad g(x) + \sum_{i=1}^n \ell_i (a_i^\intercal x - b_i),$$

where g is a strongly convex CCP function on \mathbb{R}^r (so g^* is smooth) and ℓ_i is a CCP function on \mathbb{R} . Write

$$A = \begin{bmatrix} - & a_1^{\mathsf{T}} & - \\ \vdots \\ - & a_n^{\mathsf{T}} & - \end{bmatrix} \in \mathbb{R}^{n \times r}, \qquad b = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \in \mathbb{R}^n.$$

Primal problem generated bu

$$\mathbf{L}(x,u) = g(x) + \langle u, Ax - b \rangle - \sum_{i=1}^{n} \ell_i^*(u_i)$$

and corresponding dual problem is

$$\underset{u \in \mathbb{R}^n}{\operatorname{maximize}} \quad -g^* \left(-A^\intercal u \right) - b^\intercal u - \sum_{i=1}^n \ell_i^*(u_i).$$

Coordinate and extended coordinate friendly operators

Example: Stochastic dual coordinate ascent

Stochastic coordinate proximal-gradient applied to dual

$$\begin{aligned} u_{i(k)}^{k+1} &= \operatorname{Prox}_{\alpha_{i(k)}\ell_{i(k)}^{*}} \left(u_{i(k)}^{k} + \alpha_{i(k)} \left(A_{i(k),:} \nabla g^{*}(y^{k}) - b_{i(k)} \right) \right) \\ y^{k+1} &= y^{k} - A_{i(k),:}^{\intercal} (u_{i(k)}^{k+1} - u_{i(k)}^{k}) \end{aligned}$$

is a variation of stochastic dual coordinate ascent. Assume $\mathcal{F}[y \mapsto \nabla g^*(y)] = \mathcal{O}(r)$ and $\max_{i=1,...,n} \mathcal{F}[u \mapsto \operatorname{Prox}_{\alpha_i \ell_i^*}(u)] = \mathcal{O}(1)$. Extended coordinate friendly with $y^k = -A^{\intercal} u^k$ maintained. We have

$$\mathcal{F}[\{y^k, u^k\} \mapsto \{y^{k+1}, u^{k+1}\}] = \mathcal{O}\left(rn_{i(k)}\right).$$

(One can recover the primal solution with $\nabla g^*(y^k)$.)

Note on splitting data

Iteration of primal coordinate GD accesses $A_{:,i(k)}$, a block of columns. Iteration of dual coordinate GD accesses $A_{i(k),:}$, a block of rows.

In machine learning, a row of A is a training sample, and we may not want to split it into parts. In so, dual approach is preferred.

Example: MISO/Finito

Consider

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad r(x) + \frac{1}{m} \sum_{i=1}^m f_i(x),$$

where f_1,\ldots,f_m are differentiable. Use consensus technique to get

$$\underset{\mathbf{x}\in\mathbb{R}^{nm}}{\text{minimize}} \quad \delta_C(\mathbf{x}) + \sum_{i=1}^m \left(r(x_i) + f_i(x_i) \right),$$

where $\mathbf{x} = (x_1, \dots, x_m)$ and C is the consensus set.

Write $f(\mathbf{x}) = \sum_{i=1}^{m} f_i(x_i)$ and $g(\mathbf{x}) = \delta_C(\mathbf{x}) + \sum_{i=1}^{m} r(x_i)$, so $\operatorname{Prox}_{\alpha g}(y_1, \dots, y_m) = (x, \dots, x), \quad x = \operatorname{Prox}_{\alpha r}\left(\frac{1}{m}\sum_{i=1}^{m} y_i\right).$

(See Exercise 2.28.)

Example: MISO/Finito

Both FBS and BFS are extended coordinate friendly with \overline{z}^k maintained. SC-FPI with BFS operator $(\mathbb{I} - \alpha \nabla f) \operatorname{Prox}_{\alpha g}$ is

$$x^{k} = \operatorname{Prox}_{\alpha r}\left(\overline{z}^{k}\right)$$
$$z_{i(k)}^{k+1} = x^{k} - \alpha \nabla f_{i(k)}(x^{k})$$
$$\overline{z}^{k+1} = \overline{z}^{k} + \frac{1}{m} \left(z_{i(k)}^{k+1} - z_{i(k)}^{k} \right).$$

SC-FPI with FBS operator $\operatorname{Prox}_{\alpha g}(\mathbb{I} - \alpha \nabla f)$ is

$$\begin{split} x_{i(k)}^{k+1} &= \operatorname{Prox}_{\alpha r}(\overline{z}^k) \\ \overline{z}^{k+1} &= \overline{z}^k + \frac{1}{m} \left(x_{i(k)}^{k+1} - x_{i(k)}^k - \alpha (\nabla f_i(x_{i(k)}^{k+1}) - \nabla f_i(x_{i(k)}^k)) \right), \end{split}$$

where $\overline{z}^k = \frac{1}{m} \sum_{i=1}^m (x_i^k - \alpha \nabla f_{i(k)}(x_i^k))$. These two equivalent methods are called minimization by incremental surrogate optimization (MISO) or Finito. Converges if a solution exists and $\alpha \in (0, 2/L)$.

Example: MISO/Finito

Among the two, BFS has a minor and subtle advantage.

For BFS, one can use $(z_1^0,\ldots,z_m^0)=(0,\ldots,0)$ and $\overline{z}^0=0$ as the starting point.

For FBS, the starting point $(x_1^0,\ldots,x_m^0)\in\mathbb{R}^{nm}$ can be arbitrary, but

$$\overline{z}^0 = \frac{1}{m} \sum_{i=1}^m \left(x_i^0 - \alpha \nabla f_i(x_i^0) \right)$$

needs to be computed before starting the iterations in order to establish convergence via Theorem 2.

Example: Conic programs with many small cones

Consider

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & c^{\mathsf{T}}x\\ \text{subject to} & Ax = b\\ & x \in Q_1 \times \cdots \times Q_m, \end{array}$$

where $Q_i \subseteq \mathbb{R}^{n_i}$ is a nonempty closed convex set, $A \in \mathbb{R}^{r \times n}$ has rank r, and $b \in \mathbb{R}^r$. Assume $\mathcal{F}[x_i \mapsto \prod_{Q_i} x_i] = C_i$.

Note: $[x \in Q_1 \times \cdots \times Q_m] \Leftrightarrow [x_i \in Q_i \text{ for } i = 1, \dots, m]$

When Q_1, \ldots, Q_m are convex cones, problem called a conic program.

Coordinate and extended coordinate friendly operators

Example: Conic programs with many small cones

Naive SC-FPI with DRS applied to

becomes
$$\underbrace{ \underset{x \in \mathbb{R}^n}{\text{minimize}}}_{\text{becomes}} \underbrace{ \underbrace{ c^{\mathsf{T}}x + \delta_{\{x \mid Ax = b\}}(x)}_{=f(x)} + \underbrace{ \delta_{Q_1 \times \dots \times Q_m}(x)}_{=g(x)}$$

$$\begin{aligned} x_i^{k+1/2} &= \Pi_{Q_i}(z_i^k) & \text{ for } i = 1, \dots, m \\ z_{i(k)}^{k+1} &= z_{i(k)}^k + D_{i(k),:}(2x^{k+1/2} - z^k) + v_{i(k)} - x_{i(k)}^{k+1/2}, \end{aligned}$$

where $D = I - A^{\mathsf{T}} (AA^{\mathsf{T}})^{-1}A$ and $v = A^{\mathsf{T}} (AA^{\mathsf{T}})^{-1}b - \alpha Dc$. (Exercise 2.24.) Costs $\mathcal{O} (C_1 + \cdots + C_n + nn_{i(k)})$ per iteration.

$$\begin{split} \text{Utilize the extended coordinate friendly structure with} \\ y^k &= D2x^{k+1/2} - z^k \text{:} \\ x^{k+1/2}_{i(k)} &= \Pi_{Q_{i(k)}}(z^k_{i(k)}) \\ z^{k+1}_{i(k)} &= z^k_{i(k)} + y^k_{i(k)} + v_{i(k)} - x^{k+1/2}_{i(k)} \\ y^{k+1} &= D_{:,i(k)} \left(2\Pi_{Q_{i(k)}}(z^{k+1}_{i(k)}) - 2x^{k+1/2}_{i(k)} - z^{k+1}_{i(k)} + z^k_{i(k)} \right), \end{split}$$

which costs $\mathcal{O}\left(C_{i(k)} + nn_{i(k)}\right)$ per iteration.