Douglas-Rachford Splitting and ADMM for Pathological Convex Optimization

Ernest K. Ryu Yanli Liu Wotao Yin

ISMP July 5, 2018

Problem setup

Consider the primal problem

minimize
$$f(x) + g(x)$$
 (P)

and its dual problem

maximize
$$-f^*(\nu) - g^*(-\nu)$$
 (D)

Write p^{\star} and d^{\star} for the primal and dual optimal values.

Douglas-Rachford splitting

DRS applied to (P):

$$x^{k+1/2} = \operatorname{Prox}_{\gamma f}(z^k)$$
$$x^{k+1} = \operatorname{Prox}_{\gamma g}(2x^{k+1/2} - z^k)$$
$$z^{k+1} = z^k + x^{k+1} - x^{k+1/2}$$

DRS finds solutions to (P) and (D). Convergence depends on the status of both (P) and (D).

DRS convergence (classical)

The classic literature says DRS "converges" when

- ► (P) has a solution,
- (D) has a solution, and
- strong duality holds, i.e., $p^{\star} = d^{\star}$.

However, are these assumptions actually necessary?

DRS convergence (new)

DRS "works" when

- (P) has a solution,
- ► (D) has a solution, and
- ▶ strong duality holds, i.e., $p^{\star} = d^{\star} \in [-\infty, \infty]$.

Summary of this work: DRS essentially "works" when $p^{\star} = d^{\star}$.

Pathology: definition

Problem pair (P) and (D) is not pathological if

- ► (P) has a solution,
- ▶ (D) has a solution, and
- strong duality holds, i.e., $p^{\star} = d^{\star}$.

Otherwise, it's pathological.

For a precise discussion, we need to classify pathologies into several cases. Let's not do that here.

Pathology: examples

(P) is (weakly) infeasible

$$\underset{x \in \mathbb{R}}{\text{minimize}} \quad \underbrace{-\log x}_{=f(x)} + \underbrace{1/\sqrt{-x}}_{=g(x)} \tag{P}$$

Note dom $f = (0, \infty)$ and dom $g = (-\infty, 0]$. Infeasible since dom $f \cap \text{dom } g = \emptyset$. Weakly infeasible since dist(dom f, dom g) = 0.

Pathology: examples

(P) is feasible but has no solution

$$\underset{(\nu_1,\nu_2)\in\mathbb{R}^2}{\text{minimize}} \quad \sqrt{\nu_1^2 + \nu_2^2} - \nu_1 + \delta_{\{\nu_2=1\}}(-\nu_2)$$

(D) is

$$\begin{array}{ll} \underset{(x_1,x_2) \in \mathbb{R}^2}{\text{maximize}} & -\delta_{\{(x_1,x_2) \mid x_1^2 + x_2^2 \le 1\}} - x_2 - \delta_{\{(x_1,x_2) \mid x_1 = 1\}} & (\mathsf{P}) \end{array}$$

Nevertheless, $d^{\star} = p^{\star} = 0$.

What do we want DRS to do?

We want DRS to find a point that is **approximately feasible** and (when applicable) **approximately optimal**.

E.g. if (P) is weakly infeasible, we want

$$x^{k+1} - x^{k+1/2} \to 0$$

E.g. if (P) is feasible but has no solution, we want

$$\begin{aligned} x^{k+1} - x^{k+1/2} &\to 0 \\ f(x^{k+1/2}) + g(x^{k+1}) &\to p^{\star} \end{aligned}$$

DRS convergence (new): examples

Theorem If (P) is weakly infeasible and $p^* = d^* = \infty$, then

$$x^{k+1} - x^{k+1/2} \to 0.$$

Theorem If (P) is feasible but has no solution and $p^* = d^* > -\infty$.

$$x^{k+1} - x^{k+1/2} \to 0$$

and

$$\liminf_{k\to\infty}f(x^{k+1/2})+g(x^{k+1})=p^\star.$$

We can say something for all the pathological cases if $d^* = p^*$.

Theoretical components

DRS has 2 goals: achieve feasibility and reduce function value. We use 2 set of tools to show DRS achieves both goals.

Operator theory and "fixed-point iteration" without a fixed point. With this machinery, we show things like $x^{k+1} - x^k \rightarrow 0$ or $x^{k+1} - x^k \rightarrow v$, where we characterize v.

Function-value analysis (i.e., subgradient inequalities). With this machinery, we show things like $f(x^{k+1/2}) + g(x^{k+1}) \rightarrow p^*$. This part needs the $d^* = p^*$ assumption.

Prior work

There has been surprisingly little work studying DRS and ADMM under pathologies. Our understanding is still incomplete.

Results in specific pathological setups:

- Bauschke, Combettes, and Luke, 2004.
- Bauschke and Moursi, 2016, 2017,
- Liu, Ryu, and Yin, 2018.

Results on general setups:

Bauschke, Hare, and Moursi, 2014, 2016, 2017

ADMM under specific pathological setups for conic programs:

- Raghunathan and Cairano, 2014.
- Stellato, Banjac, Goulart, Bemporad, and Boyd, 2017.
- Banjac, Goulart, Stellato, and S. Boyd, 2017.

Outline

Nonexpansive iterations with a fixed point

Improving direction

Function value analysis

Pathological convergence for DRS and conjecture

Pathological convergence for ADMM

Conclusion

Fixed point iteration with a fixed point

DRS is a fixed point iteration with a firmly nonexpansive operator T:

$$z^{k+1} = T(z^k).$$

Under non-pathology, $T: \mathbb{R}^d \rightarrow \mathbb{R}^d$ has a fixed point and

$$z^k \to z^\star$$

for some fixed point z^* .

Fixed point iteration without fixed points

The *infimal displacement vector* of T is

$$v = P_{\overline{\text{range}(I-T)}} 0.$$

Lemma (Pazy 1971, Baillon, Bruck, Reich 1978) When T is firmly nonexpansive and has no fixed point, then

$$z^k = -kv + o(k), \qquad z^k - T(z^k) \to v.$$

Fixed point iteration without fixed points

Under pathology, $T: \mathbb{R}^d \rightarrow \mathbb{R}^d$ has no fixed point, and

$$z^k - T(z^k) \to v.$$

When v = 0, $z^{k+1} - z^k \rightarrow 0$, and therefore $x^{k+1} - x^k \rightarrow 0$. (DRS achieves approximate feasibility.)

When $v \neq 0$, we can understand the asymptotic behavior of DRS with v. (This v turns out to be a certificate of infeasibility.)

Characterization of \boldsymbol{v}

Theorem (Bauschke, Hare, Moursi 2016) When T is the DRS operator,

 $\overline{\operatorname{range}(I-T)} = \overline{\operatorname{dom} f - \operatorname{dom} g} \cap \overline{\operatorname{dom} f^* + \operatorname{dom} g^*}$

Characterization of v: Infeasible case

When (P) is infeasible,

$$v = \prod_{\overline{\mathrm{dom}\, f - \mathrm{dom}\, g}}(0),$$

i.e., v represents the shortest distance from dom g to dom f.

This implies $||x^{k+1} - x^{k+1/2}|| \to \operatorname{dist}(\operatorname{dom} f, \operatorname{dom} g)$, i.e., $(x^{k+1/2}, x^{k+1})$ represents the best effort to achieve feasibility.

Characterization of v: Other cases

When (P) feasible but has no solution, and (D) feasible, we know $z^k - T(z^k) \rightarrow 0$. For more details, we need more work.

When (P) is feasible, and (D) is strongly infeasible, we know $z^k - T(z^k) \rightarrow v$. To further understand what v is, we need more work.

For other pathological cases, we also need more work to concretely understand the asymptotic behavior.

Outline

Nonexpansive iterations with a fixed point

Improving direction

Function value analysis

Pathological convergence for DRS and conjecture

Pathological convergence for ADMM

Conclusion

Improving direction

 $d \neq 0$ is an *improving direction* for (P) if we have C > 0 such that

$$f(x+d) + g(x+d) \le f(x) + g(x) - C$$

for all x.

When d is an improving direction, we have

$$f(x + \alpha d) + g(x + \alpha d) = -C\alpha + o(\alpha)$$

as $\alpha \to \infty$ for all feasible x.

If (P) has an improving direction, then $p^* = -\infty$. (This generalizes the notion of improving directions in conic programs.)

Improving direction

Recession function

The recession function of f is defined as

$$\operatorname{rec} f(d) = \lim_{\alpha \to \infty} f'(x + \alpha d; d).$$

for any $x \in \operatorname{dom} f$.

 $\operatorname{rec} f$ characterizes the asymptotic change of f as we go in direction d.

Recession function and improving direction

Lemma

d is an improving direction for (P) if and only if

 $\operatorname{rec} f(d) + \operatorname{rec} g(d) < 0$

and if and only if (D) is strongly infeasible.

I.e., improving directions are closely related to recession functions.

Characterization of \boldsymbol{v}

Using duality relationships like $\operatorname{rec} f = (\sigma_{f^*})^*$, we can characterize v with improving directions.

Lemma If (P) is feasible and (D) is strongly infeasible

$$v=-d\neq 0$$

for some improving direction d.

Similar results hold for different pathologies.

DRS with strong dual infeasibility

Theorem If (P) is feasible and (D) is strongly infeasible. Then $d(x^{k+1/2}, \operatorname{dom} g) \to 0 \qquad d(x^{k+1}, \operatorname{dom} f) \to 0$ and $x^{k+1/2} = x^{k-1/2} + d + o(1)$ for some improving direction d.

Similar results hold for different pathologies.

Improving direction

Outline

Nonexpansive iterations with a fixed point

Improving direction

Function value analysis

Pathological convergence for DRS and conjecture

Pathological convergence for ADMM

Conclusion

Fixed-point analysis is not enough

Under certain pathologies, DRS iterates satisfy

$$z^k - T(z^k) \to 0.$$

However, this is not enough.

This is much alike the fact that

$$\nabla f(x^k) \to 0$$

does not necessarily imply

$$f(x^k) \to \inf_x f(x)$$

even if f is convex.

Counter-example

$$f(x,y) = x^2/y$$

then

$$f(x, x^2) = 1$$

but

$$\nabla f(x, x^2) = (2/x, -1/x^4) \to 0$$

as $x \to \infty$.

Consequence: We must separately show the DRS iterates achieve approximately optimal function values.

Key inequality and its consequence

Lemma

$$f(x^{k+1/2}) - f(x) + g(x^{k+1}) - g(x) \le (1/\gamma)(x^{k+1} - x^{k+1/2})^T (x - z^{k+1})$$
 For any $x.$

With some work, we can use this inequality to show

$$\liminf_{k \to \infty} f(x^{k+1/2}) + g(x^{k+1}) \le p^{\star}.$$

This is an inequality, and we need the other direction.

Primal subvalue

Define the primal subvalue as

$$p^{-} = \lim_{\varepsilon \to 0^{+}} \inf_{\|x-y\| \le \varepsilon} \{f(x) + g(y)\}.$$

i.e., p^- is the optimal value of (P) achieved with infinitesimal infeasibilities.

Lemma When convex.

$$d^* = p^- \le p^*.$$

(This is where $d^{\star} = p^{\star}$ enters the analysis.)

With this, we can show

$$p^* \le \liminf_{k \to \infty} f(x^{k+1/2}) + g(x^{k+1}).$$

Outline

Nonexpansive iterations with a fixed point

Improving direction

Function value analysis

Pathological convergence for DRS and conjecture

Pathological convergence for ADMM

Conclusion

Pathological convergence for DRS and conjecture

Convergence results

Putting these pieces together, we can show things like

Theorem

If (P) is feasible but has no solution, (D) is feasible, and $p^* = d^*$. Then

$$x^{k+1/2} - x^k \to 0$$

and

$$\liminf_{k \to \infty} f(x^{k+1/2}) + g(x^{k+1}) = p^{\star}.$$

We can say something for all pathological cases, so long as $p^{\star} = d^{\star}$.

Is strong duality necessary?

DRS iteration has 2 goals: achieve feasibility and reduce function value.

Because DRS never arrives at feasibility, it can reduce the function value below p^{\star} when strong duality fails.

Conjecture

When strong duality fails, DRS necessarily fails in that

$$\liminf_{k \to \infty} f(x^{k+1/2}) + g(x^{k+1}) < p^{\star}.$$

In other words, DRS finds the wrong objective value.

Evidence for conjecture

The pathological problem

$$\underset{x \in \mathbb{R}^2}{\text{minimize}} \quad \underbrace{\exp(-\sqrt{x_1 x_2})}_{f(x)} + \underbrace{\delta_{\{(x_1, x_2) \mid x_1 = 0\}}(x)}_{g(x)}$$

has $p^{\star}=1$ but $d^{\star}=0.$ Experimentally, we observe

$$d^{\star} < \lim_{k \to \infty} f(x^{k+1/2}) + g(x^{k+1}) < p^{\star}$$

for all $\gamma > 0$.

Pathological convergence for DRS and conjecture

Evidence for conjecture

The pathological problem

$$\underset{X \in \mathbf{S}^{3}}{\text{minimize}} \quad \underbrace{\delta_{\mathbf{S}^{3}_{+}}(X)}_{f(X)} + \underbrace{X_{22} + \delta_{\{X \in \mathbf{S}^{3} \mid X_{33} = 0, X_{22} + 2X_{13} = 1\}}(X)}_{g(X)},$$

has $p^{\star} = 1$ but $d^{\star} = 0$. Experimentally, we observe

$$d^{\star} = \lim_{k \to \infty} f(x^{k+1/2}) + g(x^{k+1})$$

for $\gamma \geq 0.5,$ and

$$d^{\star} < \lim_{k \to \infty} f(x^{k+1/2}) + g(x^{k+1}) < p^{\star}$$

for $0 < \gamma < 0.5$.

Pathological convergence for DRS and conjecture

Outline

Nonexpansive iterations with a fixed point

Improving direction

Function value analysis

Pathological convergence for DRS and conjecture

Pathological convergence for ADMM

Conclusion

Setup

For ADMM, consider the primal problem

minimize
$$f(x) + g(y)$$

subject to $Ax + By = c$, (P-ADMM)

and its dual problem

maximize
$$-f^*(-A^T\nu) - g^*(-B^T\nu) - c^T\nu$$
. (D-ADMM)

Write p^{\star} and d^{\star} for the primal and dual optimal values.

Method

ADMM applied to this primal-dual problem pair is

$$\begin{aligned} x^{k+1} &\in \operatorname*{arg\,min}_{x \in \mathbb{R}^p} L_{\rho}(x, y^k, \nu^k) \\ y^{k+1} &\in \operatorname*{arg\,min}_{y \in \mathbb{R}^q} L_{\rho}(x^{k+1}, y, \nu^k) \\ \nu^{k+1} &= \nu^k + \rho(Ax^{k+1} + By^{k+1} - c). \end{aligned}$$

(We need to assume something to ensure the subproblems have a solution.)

Pathological convergence examples

If $d^{\star}=p^{\star}\in[-\infty,\infty),$ primal problem is feasible but has no solution, then $Ax^k+By^k-c\to 0$ and

$$\lim_{k \to \infty} \frac{1}{k} \sum_{i=1}^{k} f(x^{i}) + g(y^{i}) = p^{\star}, \quad \liminf_{k \to \infty} f(x^{k}) + g(y^{k}) = p^{\star}.$$

Pathological convergence examples

It $d^{\star}=p^{\star}=\infty$, problem problem is infeasible, then

$$||Ax^k + By^k - c|| \to \inf_{\substack{x \in \operatorname{dom} f \\ y \in \operatorname{dom} g}} ||Ax + By - c||.$$

Outline

Nonexpansive iterations with a fixed point

Improving direction

Function value analysis

Pathological convergence for DRS and conjecture

Pathological convergence for ADMM

Conclusion

Conclusion and future work

Conclusion of this work:

- With some caveats, DRS and ADMM work when strong duality holds.
- We conjectured that DRS necessarily fails when strong duality fails, and provided supporting evidence.

Open questions:

- What happens to DRS and ADMM in the absence of strong duality?
- ► DRS can be generalized with a relaxation parameter in (0, 2). Our analysis generalizes to this setup. ADMM can be generalized with a relaxation parameter in (0, 1.618). Our analysis does not immediately generalize to this setup.