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Imaging through optimization

Many medical imaging problems are solved via

minimize
x∈Rn

g(Ax− b)

I g convex function

I A ∈ Rm×n contains something like the Radon transform

I b measurement

I x image to recover

PDHG and ADMM/DRS are popular methods for solving large instances
of this problem.
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ADMM/DRS

ADMM/DRS

xk+1 = xk − α−1(ATA)+ATuk

uk+1 = Proxαg∗(uk + α(A(2xk+1 − xk)− b))

converges for α > 0.

ADMM/DRS often requires relatively fewer iterations to converge, but
the cost of computing (AAT )+ can be prohibitively expensive.
Can’t perform even a single iteration.

This isn’t the usual form of ADMM. We performed a few change of variables.
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Why can’t we invert?

The n× n matrix
ATA

is difficult to directly (pseudo) invert when, say, n ≥ 5122

If ATA were circulant (spatially invariant) we could use the FFT for the
(pseudo) inversion. However, ATA is not circulant.
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PDHG

PDHG

xk+1 = xk − β−1ATuk

uk+1 = Proxαg∗(uk + α(A(2xk+1 − xk)− b))

converges for β/α ≥ λmax(AAT ).

While PDHG has small cost per iteration, it often requires prohibitively
many iterations to converge to a good solution.
Requires too many iterations.

Motivation and algorithm 6



Near-circulant matrix

Although ATA is not circulant, it is near-circulant.

In imaging applications, R is a discretization of R, a linear operator on a
continuous image.

R discretize−−−−−−→ R

R∗R is a linear spatially invariant operator, so the Fourier transform
diagonalizes it:

R∗Rf = F−1
[
k̂(ω)f̂(ω)

]
for some k̂(ω) where f̂ = F [f ].
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Near-circulant matrix

However, the discretization of R∗R (in the Fourier domain) is only
approximately equal to RTR.

R∗R discretize−−−−−−→ F−1diag(h)F 6= RTR

Discretize then transpose 6= Transpose then discretize.

R R

R∗R F−1diag(h)F RTR

discretize

discretize
//

(The diagram doesn’t commute.)
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Near-circulant matrix

Nevertheless,
F−1diag(h)F︸ ︷︷ ︸

circulant

≈ RTR

and RTR is a near-circulant matrix.

We can use
F−1diag(h)+F ≈ (RTR)+

as a computationally efficient approximation to (RTR)+.
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Why not circulant?

ATA is not circulant for 2 reasons.

Reason 1: Boundary conditions.

When we discretize, we move to a bounded domain. Since we do not use
periodic boundary conditions, ATA is not circulant.

Reason 1 is less important. There are ways to resolve the issue (e.g.
zero-padding).
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Why not circulant?

Reason 2: Spatial invariance is not preserved in the discretization.

The Radon transform R maps from Cartesian to polar coordinates, and
R∗ maps back to Cartesian coordinates. In continuous space, R∗R is
spatially invariant.

However, when discretized, the Cartesian → polar → Cartesian change of
coordinates breaks spatial invariance.

There’s no easy way to resolve this issue.
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Motivation of main algorithm

Leverage computationally efficient approximate (pseudo) inverse of ATA.

ADMM uses the exact inverse. PDHG uses no inverse.

We want something in between.
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Main method NCS

Near-Circulant Splitting (NCS)

xk+1 = xk −M+ATuk

uk+1 = Proxαg∗(uk + α(A(2xk+1 − xk)− b))

converges for M � αATA.

M = αATA gives us ADMM.

M = βI gives us PDHG.

Motivation and algorithm 13



NCS

xk+1 = xk −M+ATuk

uk+1 = Proxαg∗(uk + α(A(2xk+1 − xk)− b))

Choose
M = βI + C

where C ≈ αATA is circulant and β > 0 is small.
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Prior work

I Deng and Yin, JSC, 2016. (Posted 2012.)
Briefly discusses a similar idea.

I O’Connor and Vandenberghe, SIIMS, 2014.
Starts with a similar motivation and presents a variety of primal-dual
methods.

I Bredies and Sun, J. Math. Imag. Vis. and SINUM, 2015.
Starts with a similar motivation and presents “Preconditioned DRS”.

I O’Connor and Vandenberghe, 2017.
Presented a reduction, which this work uses for the analysis.
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Assumptions

g is convex and Proxαg∗ is well defined. (A1)

A primal-dual solution pair exists and strong duality holds. (A2)

M � αATA (A3)

(A1) and (A2) are very standard.
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Convergence

Theorem
Assume (A1) and (A2). Then xk → x? and uk → u?, where x? and u?

are primal and dual solutions.
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Rate of convergence

Theorem
Assume (A1) and (A2). Assume g is L-Lipschitz. Then

g(Axk+1 − b)− g(Ax? − b)

≤ 1

α
√
k + 1

(
‖u0 − u? − αA(x0 − x?)‖+ ‖u?‖+ L

+ ‖x0 − x?‖(αM−α2ATA)

)2

where x? and u? are primal and dual solutions.
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Total variation CT

In CT imaging with TV regularization, we solve

minimize (1/2)‖y‖2 + λ‖z‖1
subject to

[
R
D

]
x−

[
b
0

]
=

[
y
z

]
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Total variation CT

Use the circulant approximation,

M = F−1diag(h)F ≈ αRTR+ αDTD

where diag(h) ∈ RN2×N2

corresponds to the N ×N mask defined by

H(j+1)(k+1) = γ + Cα
(
min{j,N − j}2 + min{k,N − k}2

)−1/2
+ 4β2/α

(
sin2

(
jπ

N

)
+ 4 sin2

(
kπ

N

))

2nd term corresponds to the Radon transform’s ramp filter and 3rd term
corresponds to the periodic Laplacian’s eigenvalues.
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Total variation CT

The method becomes

xk+1 = xk − F−1diag(h)−1F (RTuk +DT vk)

uk+1 =
1

1 + α
(uk + αR(2xk+1 − xk)− αb)

vk+1 = Π[−λ,λ]
(
vk + αD(2xk+1 − xk)

)
The computational bottleneck is multiplication by R and RT .
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Stastical Recon PET

In statistical reconstruction PET with TV regularization, we solve

minimize
x∈Rn

∑n
i=1 `((Ex)i; bi) + λ‖Dx‖1

`(µ; b) is the negative log-likelihood for the Poisson distribution with
mean µ and observation b ∈ Z.
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Stastical Recon PET

The log-likelihood function is

`(y; b) = y − b log y

Although ` is a differentiable convex function, its domain is not closed
and its gradient is not Lipschitz continuous. This makes gradient
methods difficult to apply.

However, Proxα` has a closed-form solution.
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Stastical Recon PET

The main method becomes

xk+1 = xk − F−1diag(h)−1F (ETuk +DT vk + sk)

uk+1 = S(uk + αE(2xk+1 − xk);αbi)

vk+1 = Π[−λ,λ](v
k + αD(2xk+1 − xk))

where

S(u; c) = 1 +
u− 1−

√
(u− 1)2 + 4c

2
.
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CT: PDHG

1024× 1024, 300 and 1, 000 iterations, 4.67s and 15.4s on TITAN Xp
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CT: NCS

1024× 1024, 30 and 100 iterations, 0.51s and 1.59s on TITAN Xp
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PET: PDHG and NCS

512× 512, 300 iterations for PDHG and 30 iterations for NCS, 2.99s and
0.33s on TITAN Xp
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Objective value suboptimality vs. iteration count
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GPU acceleration

Intel Core i7-990X TITAN Xp Speedup
CT (128× 128) 2.41s 3.86s 0.62x
CT (256× 256) 8.51s 4.49s 1.90x
CT (512× 512) 38.92s 5.32s 7.32x

CT (1024× 1024) 198.53s 14.99s 13.2x
PET (128× 128) 27.57s 4.07s 6.77x
PET (256× 256) 109.68s 5.09s 21.5x
PET (512× 512) 452.8s 9.39s 48.2x
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Conclusion

NCS is a method that efficiently solves

minimize g(Ax− b)

by leveraging a circulant approximation to ATA.

Although the optimization problem and the approximate inverse
assumption is seemingly very specific, it fits imaging applications very
well.

Experiments on synthetic data are promising.
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