Splitting with Near-Circulant Linear Systems: Applications to Total Variation CT and PET

Ernest K. Ryu S. Ko J.-H. Won

Outline

Motivation and algorithm

Theory

Applications

Experiments

Conclusion

Motivation and algorithm

Imaging through optimization

Many medical imaging problems are solved via

 $\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad g(Ax - b)$

► g convex function

- $A \in \mathbb{R}^{m \times n}$ contains something like the Radon transform
- ▶ *b* measurement
- ► x image to recover

PDHG and ADMM/DRS are popular methods for solving large instances of this problem.

Motivation and algorithm

ADMM/DRS

ADMM/DRS

$$\begin{aligned} x^{k+1} &= x^k - \alpha^{-1} (A^T A)^+ A^T u^k \\ u^{k+1} &= \mathbf{Prox}_{\alpha g^*} (u^k + \alpha (A(2x^{k+1} - x^k) - b)) \end{aligned}$$

converges for $\alpha > 0$.

ADMM/DRS often requires relatively fewer iterations to converge, but the cost of computing $(AA^T)^+$ can be prohibitively expensive. Can't perform even a single iteration.

This isn't the usual form of ADMM. We performed a few change of variables. Motivation and algorithm

Why can't we invert?

The $n \times n$ matrix

$A^T A$

is difficult to directly (pseudo) invert when, say, $n \geq 512^2$

If $A^T A$ were circulant (spatially invariant) we could use the FFT for the (pseudo) inversion. However, $A^T A$ is not circulant.

PDHG

PDHG

$$x^{k+1} = x^k - \beta^{-1} A^T u^k$$
$$u^{k+1} = \mathbf{Prox}_{\alpha g^*} (u^k + \alpha (A(2x^{k+1} - x^k) - b))$$

converges for $\beta/\alpha \geq \lambda_{\max}(AA^T)$.

While PDHG has small cost per iteration, it often requires prohibitively many iterations to converge to a good solution. Requires too many iterations.

Near-circulant matrix

Although $A^T A$ is not circulant, it is *near-circulant*.

In imaging applications, R is a discretization of $\mathcal{R},$ a linear operator on a continuous image.

 $\mathcal{R} \xrightarrow{\text{discretize}} R$

 $\mathcal{R}^*\mathcal{R}$ is a linear spatially invariant operator, so the Fourier transform diagonalizes it:

$$\mathcal{R}^*\mathcal{R}f = F^{-1}\left[\hat{k}(\omega)\hat{f}(\omega)\right]$$

for some $\hat{k}(\omega)$ where $\hat{f} = \mathcal{F}[f]$.

Motivation and algorithm

Near-circulant matrix

However, the discretization of $\mathcal{R}^*\mathcal{R}$ (in the Fourier domain) is only approximately equal to $R^T R$.

$$\mathcal{R}^*\mathcal{R} \xrightarrow{\text{discretize}} F^{-1} \text{diag}(h) F \neq R^T R$$

Discretize then transpose \neq Transpose then discretize.

(The diagram doesn't commute.)

Motivation and algorithm

Near-circulant matrix

Nevertheless,

$$\underbrace{F^{-1} \text{diag}(h)F}_{\text{circulant}} \approx R^T R$$

and $R^T R$ is a near-circulant matrix.

We can use

$$F^{-1}$$
diag $(h)^+ F \approx (R^T R)^+$

as a computationally efficient approximation to $(R^T R)^+$.

Why not circulant?

 $A^T A$ is not circulant for 2 reasons.

Reason 1: Boundary conditions.

When we discretize, we move to a bounded domain. Since we do not use periodic boundary conditions, $A^T A$ is not circulant.

Reason 1 is less important. There are ways to resolve the issue (e.g. zero-padding).

Why not circulant?

Reason 2: Spatial invariance is not preserved in the discretization.

The Radon transform \mathcal{R} maps from Cartesian to polar coordinates, and \mathcal{R}^* maps back to Cartesian coordinates. In continuous space, $\mathcal{R}^*\mathcal{R}$ is spatially invariant.

However, when discretized, the Cartesian \to polar \to Cartesian change of coordinates breaks spatial invariance.

There's no easy way to resolve this issue.

Motivation of main algorithm

Leverage computationally efficient approximate (pseudo) inverse of $A^T A$.

ADMM uses the exact inverse. PDHG uses no inverse.

We want something in between.

Main method NCS

Near-Circulant Splitting (NCS)

$$\begin{aligned} x^{k+1} &= x^k - M^+ A^T u^k \\ u^{k+1} &= \mathbf{Prox}_{\alpha g^*} (u^k + \alpha (A(2x^{k+1} - x^k) - b)) \end{aligned}$$

converges for $M \succeq \alpha A^T A$.

 $M = \alpha A^T A$ gives us ADMM.

 $M = \beta I$ gives us PDHG.

Motivation and algorithm

NCS

$$\begin{aligned} x^{k+1} &= x^k - M^+ A^T u^k \\ u^{k+1} &= \mathbf{Prox}_{\alpha g^*} (u^k + \alpha (A(2x^{k+1} - x^k) - b)) \end{aligned}$$

Choose

$$M = \beta I + C$$

where $C \approx \alpha A^T A$ is circulant and $\beta > 0$ is small.

Motivation and algorithm

Prior work

- Deng and Yin, JSC, 2016. (Posted 2012.) Briefly discusses a similar idea.
- O'Connor and Vandenberghe, SIIMS, 2014.
 Starts with a similar motivation and presents a variety of primal-dual methods.
- Bredies and Sun, J. Math. Imag. Vis. and SINUM, 2015.
 Starts with a similar motivation and presents "Preconditioned DRS".
- O'Connor and Vandenberghe, 2017.
 Presented a reduction, which this work uses for the analysis.

Outline

Motivation and algorithm

Theory

Applications

Experiments

Conclusion

Theory

Assumptions

$$g$$
 is convex and $\mathbf{Prox}_{\alpha g^*}$ is well defined. (A1)
A primal-dual solution pair exists and strong duality holds. (A2)
 $M \succeq \alpha A^T A$ (A3)

(A1) and (A2) are very standard.

Theory

Convergence

Theorem Assume (A1) and (A2). Then $x^k \to x^*$ and $u^k \to u^*$, where x^* and u^* are primal and dual solutions.

Rate of convergence

Theorem *Assume* (A1) *and* (A2). *Assume* g *is* L-Lipschitz. Then

$$g(Ax^{k+1} - b) - g(Ax^{\star} - b)$$

$$\leq \frac{1}{\alpha\sqrt{k+1}} \left(\|u^0 - u^{\star} - \alpha A(x^0 - x^{\star})\| + \|u^{\star}\| + L + \|x^0 - x^{\star}\|_{(\alpha M - \alpha^2 A^T A)} \right)^2$$

where x^* and u^* are primal and dual solutions.

Theory

Outline

Motivation and algorithm

Theory

Applications

Experiments

Conclusion

Total variation CT

In CT imaging with TV regularization, we solve

minimize
$$(1/2)||y||^2 + \lambda ||z||_1$$

subject to $\begin{bmatrix} R\\ D \end{bmatrix} x - \begin{bmatrix} b\\ 0 \end{bmatrix} = \begin{bmatrix} y\\ z \end{bmatrix}$

Total variation CT

Use the circulant approximation,

$$M = F^{-1} \operatorname{diag}(h) F \approx \alpha R^T R + \alpha D^T D$$

where $\mathrm{diag}(h) \in \mathbb{R}^{N^2 \times N^2}$ corresponds to the $N \times N$ mask defined by

$$H_{(j+1)(k+1)} = \gamma + C\alpha \left(\min\{j, N-j\}^2 + \min\{k, N-k\}^2 \right)^{-1/2} + 4\beta^2 / \alpha \left(\sin^2 \left(\frac{j\pi}{N}\right) + 4\sin^2 \left(\frac{k\pi}{N}\right) \right)$$

2nd term corresponds to the Radon transform's ramp filter and 3rd term corresponds to the periodic Laplacian's eigenvalues.

Total variation CT

The method becomes

$$\begin{aligned} x^{k+1} &= x^k - F^{-1} \text{diag}(h)^{-1} F(R^T u^k + D^T v^k) \\ u^{k+1} &= \frac{1}{1+\alpha} (u^k + \alpha R(2x^{k+1} - x^k) - \alpha b) \\ v^{k+1} &= \Pi_{[-\lambda,\lambda]} \left(v^k + \alpha D(2x^{k+1} - x^k) \right) \end{aligned}$$

The computational bottleneck is multiplication by R and R^{T} .

Stastical Recon PET

In statistical reconstruction PET with TV regularization, we solve

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad \sum_{i=1}^n \ell((Ex)_i; b_i) + \lambda \|Dx\|_1$$

 $\ell(\mu;b)$ is the negative log-likelihood for the Poisson distribution with mean μ and observation $b\in\mathbb{Z}.$

Stastical Recon PET

The log-likelihood function is

$$\ell(y;b) = y - b\log y$$

Although ℓ is a differentiable convex function, its domain is not closed and its gradient is not Lipschitz continuous. This makes gradient methods difficult to apply.

However, $\mathbf{Prox}_{\alpha\ell}$ has a closed-form solution.

Stastical Recon PET

The main method becomes

$$\begin{aligned} x^{k+1} &= x^k - F^{-1} \text{diag}(h)^{-1} F(E^T u^k + D^T v^k + s^k) \\ u^{k+1} &= S(u^k + \alpha E(2x^{k+1} - x^k); \alpha b_i) \\ v^{k+1} &= \Pi_{[-\lambda,\lambda]}(v^k + \alpha D(2x^{k+1} - x^k)) \end{aligned}$$

where

$$S(u;c) = 1 + \frac{u - 1 - \sqrt{(u-1)^2 + 4c}}{2}.$$

Outline

Motivation and algorithm

Theory

Applications

Experiments

Conclusion

CT: PDHG

 $1024\times1024,\ 300$ and 1,000 iterations, 4.67s and 15.4s on TITAN Xp

CT: NCS

 $1024\times1024,\,30$ and 100 iterations, 0.51s and 1.59s on TITAN Xp

PET: PDHG and NCS

 $512\times512,\,300$ iterations for PDHG and 30 iterations for NCS, 2.99s and 0.33s on TITAN Xp

Objective value suboptimality vs. iteration count

Experiments

GPU acceleration

	Intel Core i7-990X	TITAN Xp	Speedup
CT (128×128)	2.41s	3.86s	0.62x
CT (256×256)	8.51s	4.49s	1.90x
CT (512×512)	38.92s	5.32s	7.32x
CT (1024×1024)	198.53s	14.99s	13.2x
$PET (128 \times 128)$	27.57s	4.07s	6.77x
PET (256×256)	109.68s	5.09s	21.5x
PET (512×512)	452.8s	9.39s	48.2x

Outline

Motivation and algorithm

Theory

Applications

Experiments

Conclusion

Conclusion

Conclusion

NCS is a method that efficiently solves

minimize g(Ax - b)

by leveraging a circulant approximation to $A^T A$.

Although the optimization problem and the approximate inverse assumption is seemingly very specific, it fits imaging applications very well.

Experiments on synthetic data are promising.

Conclusion