Splitting with Near-Circulant Linear Systems: Applications to Total Variation CT and PET

Ernest K. Ryu S. Ko J.-H. Won

Outline

Motivation and algorithm

Theory

Applications

Experiments

Conclusion

Motivation and algorithm

Imaging through optimization

Many medical imaging problems are solved via

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} g(A x-b)
$$

- g convex function
- $A \in \mathbb{R}^{m \times n}$ contains something like the Radon transform
- b measurement
- x image to recover

PDHG and ADMM/DRS are popular methods for solving large instances of this problem.

ADMM/DRS

ADMM/DRS

$$
\begin{aligned}
& x^{k+1}=x^{k}-\alpha^{-1}\left(A^{T} A\right)^{+} A^{T} u^{k} \\
& u^{k+1}=\operatorname{Prox}_{\alpha g^{*}}\left(u^{k}+\alpha\left(A\left(2 x^{k+1}-x^{k}\right)-b\right)\right)
\end{aligned}
$$

converges for $\alpha>0$.

ADMM/DRS often requires relatively fewer iterations to converge, but the cost of computing $\left(A A^{T}\right)^{+}$can be prohibitively expensive.
Can't perform even a single iteration.

This isn't the usual form of ADMM. We performed a few change of variables. Motivation and algorithm

Why can't we invert?

The $n \times n$ matrix

$$
A^{T} A
$$

is difficult to directly (pseudo) invert when, say, $n \geq 512^{2}$

If $A^{T} A$ were circulant (spatially invariant) we could use the FFT for the (pseudo) inversion. However, $A^{T} A$ is not circulant.

PDHG

PDHG

$$
\begin{aligned}
& x^{k+1}=x^{k}-\beta^{-1} A^{T} u^{k} \\
& u^{k+1}=\operatorname{Prox}_{\alpha g^{*}}\left(u^{k}+\alpha\left(A\left(2 x^{k+1}-x^{k}\right)-b\right)\right)
\end{aligned}
$$

converges for $\beta / \alpha \geq \lambda_{\max }\left(A A^{T}\right)$.

While PDHG has small cost per iteration, it often requires prohibitively many iterations to converge to a good solution.
Requires too many iterations.

Near-circulant matrix

Although $A^{T} A$ is not circulant, it is near-circulant.

In imaging applications, R is a discretization of \mathcal{R}, a linear operator on a continuous image.

$$
\mathcal{R} \xrightarrow{\text { discretize }} R
$$

$\mathcal{R}^{*} \mathcal{R}$ is a linear spatially invariant operator, so the Fourier transform diagonalizes it:

$$
\mathcal{R}^{*} \mathcal{R} f=F^{-1}[\hat{k}(\omega) \hat{f}(\omega)]
$$

for some $\hat{k}(\omega)$ where $\hat{f}=\mathcal{F}[f]$.

Near-circulant matrix

However, the discretization of $\mathcal{R}^{*} \mathcal{R}$ (in the Fourier domain) is only approximately equal to $R^{T} R$.

$$
\mathcal{R}^{*} \mathcal{R} \xrightarrow{\text { discretize }} F^{-1} \operatorname{diag}(h) F \neq R^{T} R
$$

Discretize then transpose \neq Transpose then discretize.

(The diagram doesn't commute.)

Near-circulant matrix

Nevertheless,

$$
\underbrace{F^{-1} \operatorname{diag}(h) F}_{\text {circulant }} \approx R^{T} R
$$

and $R^{T} R$ is a near-circulant matrix.

We can use

$$
F^{-1} \operatorname{diag}(h)^{+} F \approx\left(R^{T} R\right)^{+}
$$

as a computationally efficient approximation to $\left(R^{T} R\right)^{+}$.

Why not circulant?

$A^{T} A$ is not circulant for 2 reasons.

Reason 1: Boundary conditions.

When we discretize, we move to a bounded domain. Since we do not use periodic boundary conditions, $A^{T} A$ is not circulant.

Reason 1 is less important. There are ways to resolve the issue (e.g. zero-padding).

Why not circulant?

Reason 2: Spatial invariance is not preserved in the discretization.
The Radon transform \mathcal{R} maps from Cartesian to polar coordinates, and \mathcal{R}^{*} maps back to Cartesian coordinates. In continuous space, $\mathcal{R}^{*} \mathcal{R}$ is spatially invariant.

However, when discretized, the Cartesian \rightarrow polar \rightarrow Cartesian change of coordinates breaks spatial invariance.

There's no easy way to resolve this issue.

Motivation of main algorithm

Leverage computationally efficient approximate (pseudo) inverse of $A^{T} A$. ADMM uses the exact inverse. PDHG uses no inverse.

We want something in between.

Main method NCS

Near-Circulant Splitting (NCS)

$$
\begin{aligned}
& x^{k+1}=x^{k}-M^{+} A^{T} u^{k} \\
& u^{k+1}=\operatorname{Prox}_{\alpha g^{*}}\left(u^{k}+\alpha\left(A\left(2 x^{k+1}-x^{k}\right)-b\right)\right)
\end{aligned}
$$

converges for $M \succeq \alpha A^{T} A$.
$M=\alpha A^{T} A$ gives us ADMM.
$M=\beta I$ gives us PDHG.

NCS

$$
\begin{aligned}
& x^{k+1}=x^{k}-M^{+} A^{T} u^{k} \\
& u^{k+1}=\operatorname{Prox}_{\alpha g^{*}}\left(u^{k}+\alpha\left(A\left(2 x^{k+1}-x^{k}\right)-b\right)\right)
\end{aligned}
$$

Choose

$$
M=\beta I+C
$$

where $C \approx \alpha A^{T} A$ is circulant and $\beta>0$ is small.

Prior work

- Deng and Yin, JSC, 2016. (Posted 2012.) Briefly discusses a similar idea.
- O'Connor and Vandenberghe, SIIMS, 2014. Starts with a similar motivation and presents a variety of primal-dual methods.
- Bredies and Sun, J. Math. Imag. Vis. and SINUM, 2015. Starts with a similar motivation and presents "Preconditioned DRS".
- O'Connor and Vandenberghe, 2017.

Presented a reduction, which this work uses for the analysis.

Outline

Motivation and algorithm

Theory

Applications

Experiments

Conclusion

Assumptions

$$
g \text { is convex and } \operatorname{Prox}_{\alpha g^{*}} \text { is well defined. }
$$

A primal-dual solution pair exists and strong duality holds.

$$
\begin{equation*}
M \succeq \alpha A^{T} A \tag{A3}
\end{equation*}
$$

(A1) and (A2) are very standard.

Convergence

Theorem
Assume (A1) and (A2). Then $x^{k} \rightarrow x^{\star}$ and $u^{k} \rightarrow u^{\star}$, where x^{\star} and u^{\star} are primal and dual solutions.

Rate of convergence

Theorem
Assume (A1) and (A2). Assume g is L-Lipschitz. Then

$$
\begin{aligned}
& g\left(A x^{k+1}-b\right)-g\left(A x^{\star}-b\right) \\
& \leq \frac{1}{\alpha \sqrt{k+1}}\left(\left\|u^{0}-u^{\star}-\alpha A\left(x^{0}-x^{\star}\right)\right\|+\left\|u^{\star}\right\|+L\right. \\
& \\
& \left.\quad+\left\|x^{0}-x^{\star}\right\|_{\left(\alpha M-\alpha^{2} A^{T} A\right)}\right)^{2}
\end{aligned}
$$

where x^{\star} and u^{\star} are primal and dual solutions.

Outline

Motivation and algorithm

Theory

Applications

Experiments

Conclusion

Applications

Total variation CT

In CT imaging with TV regularization, we solve

$$
\begin{array}{ll}
\text { minimize } & (1 / 2)\|y\|^{2}+\lambda\|z\|_{1} \\
\text { subject to } & {\left[\begin{array}{l}
R \\
D
\end{array}\right] x-\left[\begin{array}{l}
b \\
0
\end{array}\right]=\left[\begin{array}{l}
y \\
z
\end{array}\right]}
\end{array}
$$

Total variation CT

Use the circulant approximation,

$$
M=F^{-1} \operatorname{diag}(h) F \approx \alpha R^{T} R+\alpha D^{T} D
$$

where $\operatorname{diag}(h) \in \mathbb{R}^{N^{2} \times N^{2}}$ corresponds to the $N \times N$ mask defined by

$$
\begin{aligned}
& H_{(j+1)(k+1)}=\gamma+C \alpha\left(\min \{j, N-j\}^{2}+\min \{k, N-k\}^{2}\right)^{-1 / 2} \\
&+4 \beta^{2} / \alpha\left(\sin ^{2}\left(\frac{j \pi}{N}\right)+4 \sin ^{2}\left(\frac{k \pi}{N}\right)\right)
\end{aligned}
$$

2nd term corresponds to the Radon transform's ramp filter and 3rd term corresponds to the periodic Laplacian's eigenvalues.

Total variation CT

The method becomes

$$
\begin{aligned}
x^{k+1} & =x^{k}-F^{-1} \operatorname{diag}(h)^{-1} F\left(R^{T} u^{k}+D^{T} v^{k}\right) \\
u^{k+1} & =\frac{1}{1+\alpha}\left(u^{k}+\alpha R\left(2 x^{k+1}-x^{k}\right)-\alpha b\right) \\
v^{k+1} & =\Pi_{[-\lambda, \lambda]}\left(v^{k}+\alpha D\left(2 x^{k+1}-x^{k}\right)\right)
\end{aligned}
$$

The computational bottleneck is multiplication by R and R^{T}.

Stastical Recon PET

In statistical reconstruction PET with TV regularization, we solve

$$
\underset{x \in \mathbb{R}^{z}}{\operatorname{minimize}} \quad \sum_{i=1}^{n} \ell\left((E x)_{i} ; b_{i}\right)+\lambda\|D x\|_{1}
$$

$\ell(\mu ; b)$ is the negative log-likelihood for the Poisson distribution with mean μ and observation $b \in \mathbb{Z}$.

Stastical Recon PET

The log-likelihood function is

$$
\ell(y ; b)=y-b \log y
$$

Although ℓ is a differentiable convex function, its domain is not closed and its gradient is not Lipschitz continuous. This makes gradient methods difficult to apply.

However, $\operatorname{Prox}_{\alpha \ell}$ has a closed-form solution.

Stastical Recon PET

The main method becomes

$$
\begin{aligned}
x^{k+1} & =x^{k}-F^{-1} \operatorname{diag}(h)^{-1} F\left(E^{T} u^{k}+D^{T} v^{k}+s^{k}\right) \\
u^{k+1} & =S\left(u^{k}+\alpha E\left(2 x^{k+1}-x^{k}\right) ; \alpha b_{i}\right) \\
v^{k+1} & =\Pi_{[-\lambda, \lambda]}\left(v^{k}+\alpha D\left(2 x^{k+1}-x^{k}\right)\right)
\end{aligned}
$$

where

$$
S(u ; c)=1+\frac{u-1-\sqrt{(u-1)^{2}+4 c}}{2} .
$$

Outline

Motivation and algorithm

Theory

Applications

Experiments

Conclusion

Experiments

CT: PDHG

$1024 \times 1024,300$ and 1,000 iterations, 4.67 s and 15.4 s on TITAN Xp

CT: NCS

$1024 \times 1024,30$ and 100 iterations, 0.51 s and 1.59 s on TITAN Xp

PET: PDHG and NCS

$512 \times 512,300$ iterations for PDHG and 30 iterations for NCS, 2.99s and 0.33 s on TITAN Xp

Objective value suboptimality vs. iteration count

GPU acceleration

	Intel Core i7-990X	TITAN Xp	Speedup
CT (128×128)	2.41 s	3.86 s	0.62 x
CT (256×256)	8.51 s	4.49 s	1.90 x
CT (512×512)	38.92 s	5.32 s	7.32 x
CT (1024×1024)	198.53 s	14.99 s	13.2 x
PET (128×128)	27.57 s	4.07 s	6.77 x
PET (256×256)	109.68 s	5.09 s	21.5 x
PET (512×512)	452.8 s	9.39 s	48.2 x

Outline

Motivation and algorithm
Theory
Applications
Experiments

Conclusion

Conclusion

NCS is a method that efficiently solves

$$
\text { minimize } g(A x-b)
$$

by leveraging a circulant approximation to $A^{T} A$.
Although the optimization problem and the approximate inverse assumption is seemingly very specific, it fits imaging applications very well.

Experiments on synthetic data are promising.

