
CUDA for Generalizations of Earth Mover’s Distance

Ernest K. Ryu

Joint work with W. Li, Y. Chen, P. Yin, W. Gangbo, W. Yin, and S. Osher

January 23, 2018



Outline

Scalar Generalizations of EMD: Definition and Theory

Algorithms and CUDA

Vector generalization of EMD: Definition and computation

Theory of Vector EMD

Scalar Generalizations of EMD: Definition and Theory 2



Earth mover’s distance

Earth mover’s distance (EMD) is

W (ρ0, ρ1) =


minimize

∫
Ω
‖m(x)‖2 dx

subject to div(m(x)) + ρ1(x)− ρ0(x) = 0

m(x) · n(x) = 0,
x ∈ ∂Ω,
n(x) normal to ∂Ω



Intepretation: Optimally move a pile of sand in ρ0 into ρ1. The cost per
grain is the distance moved.

Scalar Generalizations of EMD: Definition and Theory 3



Example: EMD

Scalar Generalizations of EMD: Definition and Theory 4



Example: EMD

Scalar Generalizations of EMD: Definition and Theory 5



Example: EMD

Scalar Generalizations of EMD: Definition and Theory 6



Unbalanced EMD

Assume ρ0 has less mass than ρ1, i.e.,∫
Ω

ρ0(x) dx ≤
∫

Ω

ρ1(x) dx

Unbalanced EMD is

U(ρ0, ρ1) =

 minimize W (ρ0, ρ̃1)
subject to 0 ≤ ρ̃1(x) ≤ ρ1(x)∫

Ω
ρ0(x) dx =

∫
Ω
ρ̃1(x) dx



Intepretation: Optimally move all of the mass in ρ0 to match part of the
mass of ρ1.

Scalar Generalizations of EMD: Definition and Theory 7



Example: Unbalanced EMD

Plot of flux.
∫
ρ0 = 1 and

∫
ρ1 = 0.8. 128× 128 image.

Scalar Generalizations of EMD: Definition and Theory 8



Example: Unbalanced EMD

Plot of ρ̃0. (The ink spill on the top-left is ignored.)
Scalar Generalizations of EMD: Definition and Theory 9



Partial EMD

Assume we wish to move just γ units of mass

0 < γ ≤ min

{∫
Ω

ρ0(x) dx,

∫
Ω

ρ1(x) dx

}
Partial EMD is

P (ρ0, ρ1) =


minimize W (ρ̃0, ρ̃1)
subject to 0 ≤ ρ̃0(x) ≤ ρ0(x)

0 ≤ ρ̃1(x) ≤ ρ1(x)
γ =

∫
Ω
ρ̃0(x) dx =

∫
Ω
ρ̃1(x) dx



Intepretation: Optimally move part of the mass in ρ0 to match part of
the mass of ρ1.

Scalar Generalizations of EMD: Definition and Theory 10



Example: Partial EMD

Plot of flux with γ = 20%. 256× 256 image.
Scalar Generalizations of EMD: Definition and Theory 11



Example: Partial EMD

Plot of flux with γ = 50%. 256× 256 image.
Scalar Generalizations of EMD: Definition and Theory 12



Example: Partial EMD

Plot of flux with γ = 80%. 256× 256 image.
Scalar Generalizations of EMD: Definition and Theory 13



Example: Partial EMD

Plot of flux with γ = 100%. 256× 256 image.
Scalar Generalizations of EMD: Definition and Theory 14



Theory

I Problem generality: EMD ⊂ Unbalanced EMD ⊂ Partial EMD.

I W (ρ0, ρ1) is a metric. U(ρ0, ρ1) and P (ρ0, ρ1) are not metrics.

I Solution exists.

I Solution not unique for unbalanced and partial EMD.

I All problems are convex optimization problems.

Scalar Generalizations of EMD: Definition and Theory 15



Why not unique?

Unbalanced EMD with ρ0 (blue) of mass 0.5 and ρ1 (yellow) of mass 1.
This solution is not unique.

Scalar Generalizations of EMD: Definition and Theory 16



Nested optimization problem

Basic technique: Collapse a nested optimization into one.

Into

U(ρ0, ρ1) =

 minimize W (ρ0, ρ̃1)
subject to 0 ≤ ρ̃1(x) ≤ ρ1(x)∫

Ω
ρ0(x) dx =

∫
Ω
ρ̃1(x) dx


substitute

W (ρ0, ρ1) =

 minimize
∫

Ω
‖m(x)‖2 dx

subject to div(m(x)) + ρ1(x)− ρ0(x) = 0
m satisfies b.c.



Scalar Generalizations of EMD: Definition and Theory 17



Nested optimization problem

and we get

U(ρ0, ρ1) =


minimize ‖m(x)‖2 dx
subject to div(m(x)) + ρ̃(x)− ρ0(x) = 0

m satisfies b.c.
0 ≤ ρ̃1(x) ≤ ρ1(x)∫

Ω
ρ0(x) dx =

∫
Ω
ρ̃1(x) dx



The same works for the partial EMD.

Scalar Generalizations of EMD: Definition and Theory 18



Outline

Scalar Generalizations of EMD: Definition and Theory

Algorithms and CUDA

Vector generalization of EMD: Definition and computation

Theory of Vector EMD

Algorithms and CUDA 19



Ideal parallel computer

An ideal parallel computer allows:

I Entirely independent threads.

I All threads can talk to each other. (No thread hierarchy.)

I Threads freely access shared memory.

I Each thread has faster local memory.

Shared memory machines, i.e., machines with multiple CPU cores and
lots of memory, are almost like this.

Algorithms and CUDA 20



Restrictions on CUDA

However, CUDA GPU has some limitations.

I 32 threads are grouped and run as a warp. A single warp must “do
the same thing”.

I Threads (warps) form a block. Threads within the same block can
communicate. Threads in different blocks must communicate
through the CPU.

I A warp (but not its individual threads) freely access shared memory.

I Each thread has faster local memory.

If you ignore these hardware limitations, you code will be correct but slow.

For example, you must consider the thread and memory architecture to
effectively compute a vector inner product.

Algorithms and CUDA 21



CUDA operates in SIMT

Not all parallel things are appropriate for CUDA.

CUDA operates in a Single instruction multiple data (SIMD) or Single
instruction multiple thread (SIMT) fashion: A group of threads (a warp)
can do only one thing at a time.

I If thread 1 and 2 needs to do the same thing with different data,
they can work in parallel.

I If thread 1 and 2 needs to do different things, thread 2 needs to wait
for thread 1 to finish and then thread 1 needs to wait for thread 2 to
finish.

Algorithms and CUDA 22



PDHG method

To solve
minimize

x
f(x) + g(Lx)

we use PDHG

xk+1 = argmin
x

{
f(x) + 〈uk, Lx〉+

1

2µ
‖x− xk‖22

}
uk+1 = argmax

u

{
−g∗(u) + 〈u, L(2xk+1 − xk)〉 − 1

2ν
‖u− uk‖22

}
(A.K.A. Chambolle-Pock)

M. Zhu and T. Chan, UCLA CAM Report, 2008.
E. Esser, X. Zhang, and T. F. Chan, SIAM J. Imaging Sci., 2010.
A. Chambolle and T. Pock, J. Math. Imaging Vis., 2011.
T. Pock and A. Chambolle, IEEE Intern. Conf. Comput. Vis., 2011.

Algorithms and CUDA 23



PDHG for EMD

Applying PDHG to (the discretization of) EMD

minimize
m

∑
‖mij‖2

subject to div(m) + ρ1(x)− ρ0(x) = 0

we get

mk+1
ij = shrink(mk

ij + µ(∇Φk)ij , µ)

Φk+1
ij = Φkij + τ((div(2mk+1 −mk))ij + ρ1

ij − ρ0
ij)

Algorithms and CUDA 24



Algorithmic structure of primal-dual EMD

m_temp[i,j] = m[i,j]

m[i,j] = shrink(m[i,j]+mu/dx*(Phi[i+1,j]+Phi[i,j+1]-2Phi[i,j]))

m_temp[i,j] = 2*m[i,j]-m_temp[i,j]

-------------------------------------------------------------

Synchronize over all i,j

-------------------------------------------------------------

divm[i,j] = m_temp_x[i,j]-m_temp_x[i-1,j]

+m_temp_y[i,j]-m_temp_y[i,j-1]

Phi[i,j] = Phi[i,j] + tau*(divm[i,j]/dx+rho1[i,j]-rho0[i,j]);

-------------------------------------------------------------

Synchronize over all i,j

-------------------------------------------------------------

Algorithms and CUDA 25



Algorithmic structure of primal-dual EMD

This algorithmic structure is great for CUDA.

1. Computation splits pixel-by-pixel.

2. All threads do exactly the same thing with different data, except at
the boundary. (Minimal branch divergence)

3. A group of threads, a warp, accesses a block of consecutive memory.
(Coalesced memory access)

Advantage 1 is inherent to PDHG. Advantages 2 and 3 is due to the
regularity of the linear operators ∇ and div.

Compared to sequential CPU code, GPU code is 100x faster.

Algorithms and CUDA 26



PDHG for partial EMD

Cast
minimize
m,ρ̃0,ρ̃1

∑
ij ‖mij‖2

subject to div(m) = ρ̃0 − ρ̃1

0 ≤ ρ̃0 ≤ ρ0

0 ≤ ρ̃1 ≤ ρ1

γ = 〈1, ρ̃0〉 = 〈1, ρ̃1〉

into the standard PDHG form

minimize
x

f(x) + g(Lx)

Algorithms and CUDA 27



PDHG for partial EMD

as

minimize
∑
ij

‖mij‖2 + δS(ρ0,γ)(ρ̃
0) + δS(ρ1,γ)(ρ̃

1)︸ ︷︷ ︸
=f(x)

+ δ{0}(div(m)− ρ̃0 + ρ̃1)︸ ︷︷ ︸
=g(Lx)

with the (convex) constraint set

S(ρ, γ) = {ρ̃ ∈ Rn×n | 0 ≤ ρ̃ ≤ ρ, 〈1, ρ〉 = γ}

Algorithms and CUDA 28



PDHG for partial EMD

PDHG applied to the partial EMD:

mk+1
ij = shrink2(mk

ij + µ(∇Φk)ij , µ)

ρ̃0,k+1 = PS(ρ0,γ)(ρ̃
0,k + νΦk)

ρ̃1,k+1 = PS(ρ1,γ)(ρ̃
1,k − νΦk)

Φk+1
ij = Φkij + τ(div(2mk+1 −mk)ij + 2ρ̃1,k+1

ij − ρ̃1,k
ij − 2ρ̃0,k+1

ij + ρ̃0,k
ij )

m and Φ-updates are efficient on CUDA. What about the projection?

Algorithms and CUDA 29



Parallel computing primitive: Reduce

Given an array
s = (s1, s2, . . . , sn)

and an associative binary operation •, reduce is

Reduce(s, •) = s1 • s2 • · · · • sn.

Examples of •: scalar max, addition, and multiplication.

In parallel computing and in CUDA, reduce takes log n steps.

Algorithms and CUDA 30



Parallel computing primitive: Reduce

Reduce is efficient on CUDA.

Algorithms and CUDA 31



Projection algorithm

Theorem
The projection has a semi-closed-form solution:

PS(ρ,γ)(σ) = ρ̃(θ)

where ρ̃(θ) = min{max{σ − θ1, 0}, ρ}. The parameter θ satisfies
〈1, ρ̃(θ)〉 = γ, and we can compute it with bisection since 〈1, ρ̃(θ)〉 is a
non-increasing function.

Algorithms and CUDA 32



Projection algorithm

Initialize θmin and θmax

//Perform bisection

while θmax − θmin > ε
θmid = (θmax + θmin)/2
if γ < 〈1, ρ̃(θmid)〉 //Reduction with CUDA

θmin = θmid

else
θmax = θmid

end
end
PS(ρ,γ)(σ) = min{max{σ − θmid1, 0}, ρ}

Algorithms and CUDA 33



Computation cost

(a) EMD
256× 256, 10s

(b) Unbalanced EMD
128× 128, 80s

(c) Partial EMD
256× 256, 300s

Experiments on Titan Xp GPU.

Algorithms and CUDA 34



Conclusion

EMD, unbalanced EMD, and partial EMD are tools of applied
mathematics with rich theory and interesting applications.

With GPU acceleration, these are computationally feasible.

The code is available as a “mex”ed Matlab function.

Algorithms and CUDA 35



Outline

Scalar Generalizations of EMD: Definition and Theory

Algorithms and CUDA

Vector generalization of EMD: Definition and computation

Theory of Vector EMD

Vector generalization of EMD: Definition and computation 36



Vector EMD

Sometimes, data has more than one piece of information associated with
each spatial coordinate.

We generalize EMD to vector-valued densities

V (
⇀
ρ0,

⇀
ρ1) =

 minimize
⇀
u,

⇀
w

∫
Ω
‖⇀u(x)‖u + α‖⇀

w(x)‖w dx

subject to divx(
⇀
u)(x) + divG(

⇀
w(x)) =

⇀
ρ0(x)− ⇀

ρ1(x)
⇀
u satisfies zero-flux b.c.


⇀
u represents spatially transporting mass.
⇀
w represents changing channels (color).

Vector generalization of EMD: Definition and computation 37



Example: vector EMD

(a) ⇀
ρ0 (b) ⇀

ρ1

Vector generalization of EMD: Definition and computation 38



Example: vector EMD

(c) Plot of flux.

Vector generalization of EMD: Definition and computation 39



Example: vector EMD

(a) α = 10, moving mass is optimal.

Vector generalization of EMD: Definition and computation 40



Example: vector EMD

(b) α = 0.1, changing color is optimal.

Vector generalization of EMD: Definition and computation 41



CUDA for Vector EMD

PDHG for vector EMD is analogous to PDHG for scalar EMD.

For the same reasons, vector EMD can utilize a CUDA GPU very
effectively.

Vector generalization of EMD: Definition and computation 42



Computation cost

(a) Vector EMD
256× 256, 20s

Experiment on Titan Xp GPU.

Vector generalization of EMD: Definition and computation 43



Outline

Scalar Generalizations of EMD: Definition and Theory

Algorithms and CUDA

Vector generalization of EMD: Definition and computation

Theory of Vector EMD

Theory of Vector EMD 44



Dual problem

Vector EMD has the following dual problem.

V (
⇀
ρ0,

⇀
ρ1) =


maximize

⇀
φ

∫
Ω
〈
⇀

φ(x),
⇀
ρ1(x)− ⇀

ρ0(x)〉 dx

subject to ‖∇x

⇀

φ(x)‖u∗ ≤ 1

‖∇G
⇀

φ(x)‖w∗ ≤ α for all x ∈ Ω


The optimization variable

⇀

φ : Ω→ Rk is a function.

Theory of Vector EMD 45



Theoretical properties

1. V (
⇀
ρ0,

⇀
ρ1) is a metric.

2. Solution exists.

3. Dual solution exists.

4. Strong duality holds.

1 and 3 are relatively simple to verify.

2 and 4 requires more work. Standard techniques for proving scalar EMD
duality do not simply apply to our setup, since we do not have a LP
formulation.

Theory of Vector EMD 46



Fenchel-Rockafellar duality

L : X → Y continuous linear map between locally convex topological
vector spaces X and Y .
f : X → R ∪ {∞} and g : Y → R ∪ {∞} lower-semicontinuous convex
functions.

d? = sup
x∈X
{−f(x)− g(Lx)} p? = inf

y∗∈Y ∗
{f∗(L∗y∗) + g∗(−y∗)}

Theorem
If there is an x ∈ X such that f(x) <∞ and g is bounded above in a
neighborhood of Lx, then p? = d?. Furthermore, if p? = d? <∞, the
infimum of infy∗∈Y ∗{f∗(L∗y∗) + g∗(−y∗)} is attained.

Theory of Vector EMD 47



Duality proof sketch

Define ∇x : C1 → C. This makes ∇x a bounded linear operator.

Define the dual (adjoint) operator ∇∗x :M→ (C1)∗

Theory of Vector EMD 48



Duality proof sketch

We formalize the dual problem as

maximize
⇀
φ∈C1

∫
Ω
〈
⇀

φ(x),
⇀
ρ1(x)− ⇀

ρ0(x)〉 dx

subject to ‖∇x

⇀

φ(x)‖u∗ ≤ 1

‖∇G
⇀

φ(x)‖w∗ ≤ α for all x ∈ Ω,

Assumptions of the theorem are met.

Theory of Vector EMD 49



Duality proof sketch

The Fenchel-Rockafellar dual is

minimize
⇀
u∈M,

⇀
w∈M

∫
Ω
‖⇀u(x)‖u + α‖⇀

w(x)‖w dx

subject to −∇∗x
⇀
u−∇∗G

⇀
w =

⇀
ρ0 − ⇀

ρ1 as members of (C1)∗.

(We view the primal problem as the dual of the dual problem, because
C∗ =M is known, but M∗ is complicated.)

Theory of Vector EMD 50



Zero-flux boundary condition

When
⇀
m is a smooth function,∫

Ω

〈∇x
⇀
ϕ(x),

⇀
m(x)〉 dx = −

∫
Ω

〈⇀ϕ(x),divx
⇀
m(x)〉 dx

∀ smooth
⇀
ϕ if and only if

⇀
m satisfies the zero-flux b.c. I.e., ∇∗x = −divx

holds when the zero-flux b.c. holds.

As a generalization,
⇀
u ∈M satisfies the zero-flux b.c. in the weak sense

if there is a
⇀
g ∈M such that∫

Ω

〈∇x

⇀

φ(x),
⇀
u(dx)〉 = −

∫
Ω

〈
⇀

φ(x),
⇀
g(dx)〉

∀
⇀

φ. In other words,
⇀
u satisfies the zero-flux b.c. if ∇∗x

⇀
u ∈M.

Theory of Vector EMD 51



Duality proof sketch

With the weak definition of the boundary condition, we get

minimize
⇀
u∈M,

⇀
w∈M

∫
Ω
‖⇀u(x)‖u + α‖⇀

w(x)‖w dx

subject to −∇∗x
⇀
u−∇∗G

⇀
w =

⇀
ρ0 − ⇀

ρ1 as members of M
⇀
u satisfies zero-flux b.c

By the duality theorem, a solution exists and strong duality holds.

Theory of Vector EMD 52



Conclusion

Vector EMD are tools of applied mathematics with interesting
applications.

We establish the theory and provide a GPU accelerated algorithm for
vector EMD.

The code is available as a “mex”ed Matlab function.

Theory of Vector EMD 53


	Scalar Generalizations of EMD: Definition and Theory
	Algorithms and CUDA
	Vector generalization of EMD: Definition and computation
	Theory of Vector EMD

