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Image processing via optimization

Consider recovering or denoising an image through the optimization

minimize
x∈Rd

f(x) + γg(x),

I x is image

I f(x) is data fidelity (a posteriori knowledge)

I g(x) is noisiness of the image (a priori knowledge)

I γ ≥ 0 is relative importance between f and g
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Image processing via ADMM

We often use first-order methods, such as ADMM

xk+1 = argmin
x∈Rd

{
σ2g(x) + (1/2)‖x− (yk − uk)‖2

}
yk+1 = argmin

y∈Rd

{
αf(y) + (1/2)‖y − (xk+1 + uk)‖2

}
uk+1 = uk + xk+1 − yk+1

with σ2 = αγ.
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Image processing via ADMM

More concise notation

xk+1 = Proxσ2g(y
k − uk)

yk+1 = Proxαf (x
k+1 + uk)

uk+1 = uk + xk+1 − yk+1.

The proximal operator of h is

Proxαh(z) = argmin
x∈Rd

{
αh(x) + (1/2)‖x− z‖2

}
.

(Well-defined if h is proper, closed, and convex.)
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Interpretations of ADMM subroutines

The subroutine Proxσ2g : Rd → Rd is a denoiser, i.e.,

Proxσ2g : noisy image 7→ less noisy image

Proxαf : Rd → Rd enforces consistency with measured data, i.e.,

Proxαf : less consistent 7→ more consistent with data
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Other denoisers

However, some state-of-the-art image denoisers do not originate from
optimization problems. (E.g. NLM, BM3D, and CNN.) Nevertheless,
such a denoiser Hσ : Rd → Rd still has the interpretation

Hσ : noisy image 7→ less noisy image

where σ ≥ 0 is a noise parameter.

It is possible to integrate such denoisers with existing algorithms such as
ADMM or proximal gradient?
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Plug and play!

To address this question, Venkatakrishnan et al.3 proposed
Plug-and-Play ADMM (PnP-ADMM), which simply replaces the proximal
operator Proxσ2g with the denoiser Hσ:

xk+1 = Hσ(y
k − uk)

yk+1 = Proxαf (x
k+1 + uk)

uk+1 = uk + xk+1 − yk+1.

Surprisingly and remarkably, this ad-hoc method exhibited great empirical
success, and spurred much follow-up work.

3Venkatakrishnan, Bouman, and Wohlberg, Plug-and-play priors for model based
reconstruction, IEEE GlobalSIP, 2013.
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Plug and play!

By integrating modern denoising priors into ADMM or other proximal
algorithms, PnP combines the advantages of data-driven operators and
classic optimization.

In image denoising, PnP replaces total variation regularization with an
explicit denoiser such as BM3D or deep learning-based denoisers.

PnP is suitable when end-to-end training is impossible (e.g. due to
insufficient data or time).
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Example: Poisson denoising

noisy,peak 0.1 ansc p4ip

Corrupted image Other method PnP-ADMM with BM3D

Rond, Giryes, and Elad, J. Vis. Commun. Image R. 2016.



Example: Inpainting

Original image 5% random sampling

Sreehari et al., IEEE Trans. Comput. Imag., 2016.



Example: Inpainting

Other method PnP-ADMM with NLM

Sreehari et al., IEEE Trans. Comput. Imag., 2016.



Example: Super resolution

Low resolution input Other method Other method

Other method Other method Other method PnP-ADMM with BM3D

Chan, Wang, Elgendy, IEEE Trans. Comput. Imag., 2017.



Example: Single photon imaging

Corrupted image other method

other method PnP-ADMM with BM3D

Chan, Wang, Elgendy, IEEE Trans. Comput. Imag., 2017.



Example: Single photon imaging

Corrupted image other method

other method PnP-ADMM with BM3D

Chan, Wang, Elgendy, IEEE Trans. Comput. Imag., 2017.



Contribution of this work

The empirical success of Plug-and-Play (PnP) naturally leads us to ask
theoretical questions: When does PnP converge and what denoisers
can we use?

I We prove convergence of PnP methods under a certain Lipschitz
condition.

I We propose real spectral normalization, a technique for constraining
deep learning-based denoisers in their training to enforce the
proposed Lipschitz condition.

I We present experimental results validating our theory.4

4Code available at: https://github.com/uclaopt/Provable_Plug_and_Play/
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PnP FBS

Plug-and-play forward-backward splitting:

xk+1 = Hσ(I − α∇f)(xk) (PNP-FBS)

where α > 0.

PNP-FBS/ADMM and their fixed points 11



PnP FBS

PNP-FBS is a fixed-point iteration, and x? is a fixed point if

x? = Hσ(I − α∇f)(x?).

Interpretation of fixed points: A compromise between making the image
agree with measurements and making the image less noisy.

PNP-FBS/ADMM and their fixed points 12



PnP ADMM

Plug-and-play alternating directions method of multipliers:

xk+1 = Hσ(y
k − uk)

yk+1 = Proxαf (x
k+1 + uk) (PNP-ADMM)

uk+1 = uk + xk+1 − yk+1

where α > 0.

PNP-FBS/ADMM and their fixed points 13



PnP ADMM

PNP-ADMM is a fixed-point iteration, and (x?, u?) is a fixed point if

x? = Hσ(x
? − u?)

x? = Proxαf (x
? + u?).

PNP-FBS/ADMM and their fixed points 14



PnP DRS

Plug-and-play Douglas–Rachford splitting:

xk+1/2 = Proxαf (z
k)

xk+1 = Hσ(2x
k+1/2 − zk) (PNP-DRS)

zk+1 = zk + xk+1 − xk+1/2

where α > 0.

We can write PNP-DRS as zk+1 = T (zk) with

T =
1

2
I +

1

2
(2Hσ − I)(2Proxαf − I).

PNP-ADMM and PNP-DRS are equivalent. We analyze convergence of
PNP-DRS and translate the result to PNP-ADMM.

PNP-FBS/ADMM and their fixed points 15



PnP DRS

PNP-DRS is a fixed-point iteration, and z? is a fixed point if

x? = Proxαf (z
?)

x? = Hσ(2x
? − z?).

PNP-FBS/ADMM and their fixed points 16
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What we do not assume

If we assume 2Hσ − I is nonexpansive, standard tools of monotone
operator theory tell us that PnP-ADMM converges. However, this
assumption is unrealistic5 so we do not assume it.

We do not assume Hσ is continuously differentiable.

5Chan, Wang, and Elgendy, Plug-and-Play ADMM for Image Restoration:
Fixed-Point Convergence and Applications, IEEE TCI, 2017.
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Main assumption

Rather, we assume Hσ : Rd → Rd satisfies

‖(Hσ − I)(x)− (Hσ − I)(y)‖ ≤ ε‖x− y‖ (A)

for all x, y ∈ Rd for some ε ≥ 0. Since σ controls the strength of the
denoising, we can expect Hσ to be close to identity for small σ. If so ,
Assumption (A) is reasonable.

Convergence via contraction 19



Contractive operators

Under (A), we show PNP-FBS and PNP-DRS are contractive iterations
in the sense that we can express the iterations as xk+1 = T (xk), where
T : Rd → Rd satisfies

‖T (x)− T (y)‖ ≤ δ‖x− y‖

for all x, y ∈ Rd for some δ < 1.

If x? satisfies T (x?) = x?, i.e., x? is a fixed point, then xk → x?

geometrically by the classical Banach contraction principle.

Convergence via contraction 20



Convergence of PNP-FBS

Theorem
Assume Hσ satisfies assumption (A) for some ε ≥ 0. Assume f is
µ-strongly convex, f is differentiable, and ∇f is L-Lipschitz. Then

T = Hσ(I − α∇f)

satisfies

‖T (x)− T (y)‖ ≤ max{|1− αµ|, |1− αL|}(1 + ε)‖x− y‖

for all x, y ∈ Rd. The coefficient is less than 1 if

1

µ(1 + 1/ε)
< α <

2

L
− 1

L(1 + 1/ε)
.

Such an α exists if ε < 2µ/(L− µ).
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Convergence of PNP-DRS

Theorem
Assume Hσ satisfies assumption (A) for some ε ≥ 0. Assume f is
µ-strongly convex and differentiable. Then

T =
1

2
I +

1

2
(2Hσ − I)(2Proxαf − I)

satisfies

‖T (x)− T (y)‖ ≤ 1 + ε+ εαµ+ 2ε2αµ

1 + αµ+ 2εαµ
‖x− y‖

for all x, y ∈ Rd. The coefficient is less than 1 if

ε

(1 + ε− 2ε2)µ
< α, ε < 1.

Convergence via contraction 22



Convergence of PNP-ADMM

Corollary
Assume Hσ satisfies assumption (A) for some ε ∈ [0, 1). Assume f is
µ-strongly convex. Then PNP-ADMM converges for

ε

(1 + ε− 2ε2)µ
< α.

Convergence via contraction 23



PnP-FBS vs. PnP-ADMM

PNP-FBS and PNP-ADMM share the same fixed points 6 7. They are
distinct methods for finding the same set of fixed points.

PNP-FBS is easier to implement as it requires ∇f rather than Proxαf .

PNP-ADMM has better convergence properties as demonstrated by
Theorems 1 and 2 and our experiments.

6Meinhardt, Moeller, Hazirbas, and Cremers, Learning proximal operators: Using
denoising networks for regularizing inverse imaging problems. ICCV, 2017.

7Sun, Wohlberg, and Kamilov, An online plug-and-play algorithm for regularized
image reconstruction. IEEE TCI, 2019.
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Convergence proof sketch

PnP-FBS: The iteration is composition of an expansive operator with a
contractive operator.

PnP-DRS: Proof is based on the notion “negatively averaged” operators
of Giselsson 8.

8Giselsson, Tight global linear convergence rate bounds for Douglas–Rachford
splitting, J. Fix. Point. Theory. Appl., 2017
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Deep learning denoiser: DnCNN

We use DnCNN9, which learns the residual mapping with a 17-layer CNN.

...
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Given a noisy observation y = x+ e, where x is the clean image and e is
noise, the residual mapping R outputs the noise, i.e., R(y) = e so that
y −R(y) is the clean recovery. Learning the residual mapping is a
common approach in deep learning-based image restoration.

9Zhang, Zuo, Chen, Meng, and Zhang, Beyond a Gaussian Denoiser: Residual
Learning of Deep CNN for Image Denoising, IEEE TIP, 2017.



Deep learning denoiser: SimpleCNN

We also construct a simple convolutional encoder-decoder model for
denoising and call it SimpleCNN.
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We use SimpleCNN to show realSN is applicable to any CNN denoiser.
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Lipschitz constrained deep denoising

Note
(I −Hσ)(y) = y −Hσ(y) = R(y),

with denoiser Hσ, residual R, and identity I.

Enforcing
‖(I −Hσ)(x)− (I −Hσ)(y)‖ ≤ ε‖x− y‖ (A)

is equivalent to constraining the Lipschitz constant of R. We propose a
variant of the spectral normalization for this.

Real spectral normalization: Enforcing Assumption (A) 29



Spectral normalization

Miyato et al.10 proposed spectral normalization (SN), which controls the
Lipschitz constant of a network’s layers through controlling the spectral
norm of the layer’s weight. If we use 1-Lipschitz nonlinearities (such as
ReLU), the Lipschitz constant of a layer is upper-bounded by the spectral
norm of its weight, and the Lipschitz constant of the full network is
bounded by the product of spectral norms of all layers.

While this basic methodology suits our goal, Miyato et al.’s SN uses an
inexact implementation that underestimates the true spectral norm.

10Miyato, Kataoka, Koyama, and Yoshida, Spectral Normalization for Generative
Adversarial Networks, ICLR, 2018.
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Real Spectral Normalization

Real Spectral Normalization (realSN) accurately constrains the network’s
Lipschitz constant through a power iteration with the convolutional linear
operator Kl : RCin×h×w → RCout×h×w, where h,w are input’s height
and width, and its conjugate (transpose) operator K∗l . The iteration
maintains Ul ∈ RCout×h×w and Vl ∈ RCin×h×w to estimate the leading
left and right singular vectors respectively. During each forward pass of
the neural network, realSN conducts:

1. Apply one step of the power method with operator Kl:

Vl ← K∗l (Ul) / ‖K∗l (Ul)‖2,
Ul ← Kl(Vl) / ‖Kl(Vl)‖2.

2. Normalize the convolutional kernel Kl with estimated spectral norm:

Kl ← Kl/σ(Kl), where σ(Kl) = 〈Ul,Kl(Vl)〉
We can view realSN as an approximate projected gradient enforcing the
Lipschitz continuity constraint.



Implementation details

We train SimpleCNN and DnCNN in the setting of Gaussian denoising
with 40× 40 patches of the BSD500 dataset, natural images. RealSN
constrains the Lipschitz constant to no more than 1.

BSD500
original images

40× 40
(clean) patches

40× 40 patches
corrupted with
Gaussian noise

On an Nvidia GTX 1080 Ti, DnCNN took 4.08 hours and realSN-DnCNN
took 5.17 hours to train, so the added cost of realSN is mild.
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Poisson denoising

Given a true image xtrue ∈ Rd, we observe Poisson random variables

yi ∼ Poisson((xtrue)i)

for i = 1, . . . , d. We use the negative log-likelihood

f(x) =

d∑
i=1

−yi log(xi) + xi.

For further details of the experimental setup, see the main paper or 11.

11Rond, Giryes, and Elad, Poisson inverse problems by the plug-and-play scheme, J.
Vis. Commun. Image R. 2016.
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Poisson denoising

Corrupted 3.36dB Recovery 20.28dB

Experimental validation 35



Poisson denoising

=1.198

0.95 1 1.05 1.1 1.15 1.2

(a) BM3D

=0.96

0.86 0.88 0.9 0.92 0.94 0.96

(b) SimpleCNN

=0.758

0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76

(c) RealSN-SimpleCNN

=0.484

0.43 0.44 0.45 0.46 0.47 0.48

(d) DnCNN

=0.464

0.4 0.41 0.42 0.43 0.44 0.45 0.46

(e) RealSN-DnCNN

We run PnP iterations, calculate ‖(I −Hσ)(x)− (I −Hσ)(y)‖/‖x− y‖
between the iterates and the limit, and plot the histogram. The maximum
value, the red bar, lower-bounds ε of (A). Convergence of PnP-ADMM
requires ε < 1. The results prove BM3D violates this assumption and
illustrate that RealSN indeed controls (reduces) the Lipschitz constant.



Poisson denoising

BM3D RealSN-DnCNN RealSN-SimpleCNN

PNP-ADMM 23.4617 23.5873 18.7890

PNP-FBS 18.5835 22.2154 22.7280

PSNR of the PnP methods with BM3D, RealSN-DnCNN, and
RealSN-SimpleCNN plugged in. In both PnP methods, one of the two
denoisers using RealSN, for which we have theory, outperforms BM3D.
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Single photon imaging

The measurement model of quanta image sensors is

z = 1(y ≥ 1), y ∼ Poisson(αsgGxtrue)

where xtrue ∈ Rd is the true image, G : Rd → RdK duplicates each pixel
to K pixels, αsg ∈ R is sensor gain, K is the oversampling rate,
z ∈ {0, 1}dK is the observed binary photons. (y is not measured.) The
likelihood function is

f(x) =

n∑
j=1

−K0
j log(e

−αsgxj/K)−K1
j log(1− e−αsgxj/K),

where K1
j is the number of ones in the j-th unit pixel, K0

j is the number
of zeros in the j-th unit pixel.

For further details of the experimental setup, see the main paper or 12.

12Elgendy and Chan, Image reconstruction and threshold design for quanta image
sensors, IEEE ICIP, 2016.



Single photon imaging

Corrupted 17.32dB Recovery 36.02dB

Measurement pixels take integer values between 0 and K = 64.
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Single photon imaging

PnP-ADMM with RealSN-DnCNN provides best PSNR. We also observe
that RealSN makes PnP converge more stably.

PnP-FBS, α = 0.005
Average PSNR BM3D RealSN- RealSN-

DnCNN SimpleCNN

Iteration 50 28.7933 27.9617 29.0062
Iteration 100 29.0510 27.9887 29.0517
Best Overall 29.5327 28.4065 29.3563

PnP-ADMM, α = 0.01
Average PSNR BM3D RealSN- RealSN-

DnCNN SimpleCNN

Iteration 50 30.0034 31.0032 29.2154
Iteration 100 30.0014 31.0032 29.2151
Best Overall 30.0474 31.0431 29.2155
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Compressed sensing MRI

PnP is useful in medical imaging when we do not have enough data for
end-to-end training: train the denoiser Hσ on natural images, and “plug”
it into the PnP framework to be applied to medical images.

Given a true image xtrue ∈ Cd, CS-MRI measures

y = Fpxtrue + εe,

where Fp is the Fourier k-domain subsampling (partial Fourier operator),
and εe ∼ N(0, σeIk) is measurement noise. We use the objective function

f(x) = (1/2)‖y −Fpx‖2.

For further details of the experimental setup, see the main paper or 13.

13Eksioglu, Decoupled algorithm for MRI reconstruction using nonlocal block
matching model: BM3D-MRI, J. Math. Imaging Vis., 2016.



Compressed sensing MRI

Radial sampling k-space Recovery 19.09dB

k-space measurement is complex-valued so we plot the absolute value.
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Compressed sensing MRI

PSNR (in dB) for 30% sampling with additive Gaussian noise σe = 15.
RealSN generally improves the performance.

Sampling approach Random Radial Cartesian
Image Brain Bust Brain Bust Brain Bust

Zero-filling 9.58 7.00 9.29 6.19 8.65 6.01

TV14 16.92 15.31 15.61 14.22 12.77 11.72

RecRF15 16.98 15.37 16.04 14.65 12.78 11.75

BM3D-MRI16 17.31 13.90 16.95 13.72 14.43 12.35

PnP-FBS

BM3D 19.09 16.36 18.10 15.67 14.37 12.99
DnCNN 19.59 16.49 18.92 15.99 14.76 14.09

RealSN-DnCNN 19.82 16.60 18.96 16.09 14.82 14.25
SimpleCNN 15.58 12.19 15.06 12.02 12.78 10.80

RealSN-SimpleCNN 17.65 14.98 16.52 14.26 13.02 11.49

PnP-ADMM

BM3D 19.61 17.23 18.94 16.70 14.91 13.98
DnCNN 19.86 17.05 19.00 16.64 14.86 14.14

RealSN-DnCNN 19.91 17.09 19.08 16.68 15.11 14.16
SimpleCNN 16.68 12.56 16.83 13.47 13.03 11.17

RealSN-SimpleCNN 17.77 14.89 17.00 14.47 12.73 11.88

14Lustig, Santos, Lee, Donoho, and Pauly, SPARS, 2005.
15Yang, Zhang, and Yin, IEEE JSTSP, 2010.
16Eksioglu, J. Math. Imaging Vis., 2016.



Conclusion

1. PnP-FBS and PnP-ADMM converges under a Lipschitz assumption
on the denoiser.

2. Real spectral normalization enforces the Lipschitz condition in
training deep learning-based denoisers.

3. The experiments validate the theory.

Paper available at:
http://proceedings.mlr.press/v97/ryu19a.html

Code available at:
https://github.com/uclaopt/Provable_Plug_and_Play/

Link to paper Link to code

http://proceedings.mlr.press/v97/ryu19a.html
https://github.com/uclaopt/Provable_Plug_and_Play/
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