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Chapter 1

Introduction

In Monte Carlo simulations it is often essential that a method is accompanied by

an appropriate variance reduction method. Reducing the variance of a Monte Carlo

method is, at least conceptually, an optimization problem, and mathematical opti-

mization has indeed been used as a theoretical and conceptual tool in this pursuit.

However, traditional Monte Carlo methods have only used numerical optimiza-

tion sparingly, and convex optimization even less. Numerical optimization is study

of algorithms for finding a solution to an optimization problem, as opposed to the

study of analytical solutions of an optimization problem. Convex optimization is the

study of convex optimization problems, a subclass of optimization problems for which

efficient algorithms for finding the global optimum exists.

In this work we present a framework for using convex optimization for Monte

Carlo. More specifically, we present a framework for using stochastic convex op-

timization for adaptive importance sampling, self-normalized importance sampling,

and what-if simulations.

The main idea is to perform importance sampling and numerical optimization

simultaneously. In particular, the numerical optimization does not rely on black-

box optimization solvers, and this allows the computational cost of each iteration to

remain cheap. Because the optimization is performed on a convex problem, we can

establish convergence and optimality.

1
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Previous work. The earliest uses of Monte Carlo simulations are attributed to

Enrico Fermi, Stanislaw Ulam, and John von Neumann in the 1930s and 1940s [51] and

the earliest formal publication to Metropolis and Ulam in 1949 [52]. In the early 1950s,

importance sampling was discovered and studied by Herman Kahn. [40, 41, 42]. In

1956, Hale Trotter and John Tukey generalized the idea to self-normalized importance

sampling and what-if simulations [72]. Since then there has been a large body of work

on Monte Carlo methods and importance sampling. Adaptive importance sampling

was first studied in the 1970s [71, 66, 32, 57].

Some previous work on adaptive importance sampling have used stochastic op-

timization methods such as stochastic subgradient descent without much regard to

convexity [1, 2, 3, 28]. While these methods are applicable to a more general class of

candiate sampling distributions, they have little theoretical guarantees on the vari-

ances of the estimators; this is not surprising since in nonconvex optimization it is

difficult to prove anything beyond mere convergence to a stationary point, such as a

rate of convergence or convergence to the global optimum.

Other previous work on adaptive importance sampling solves an optimization

subproblem to update the sampling parameter each time, either with an off-the-

shelf deterministic optimization algorithm or, especially in the case of the cross-

entropy method, by focusing on special cases with analytic solutions [57, 25, 26, 49,

64, 65, 24, 23, 59, 27, 19, 21, 36]. While some these methods do exploit convexity to

establish that the subproblems can be solved efficiently, these subproblems and the

storage requirement to represent these subproblems grow in size with the number of

iterations. One could loosely argue that the inefficiency is a consequence of separating

the optimization and the importance sampling.

That convex optimization problems are the subset of optimization problems for

which we can find efficient and reliable solution methods is well-known and is the

basis of the field of convex optimization [54, 60, 8, 15, 56, 11, 18].

The optimization methods presented in this work are relatively standard within

the field of optimization. However, we occasionally show convergence results as the

standard results are not exactly in the form we need. (Sub)gradient descent was

first studies by Augustin-Louis Cauchy in the 1840s and and stochastic (sub)gradient
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descent by Hertbert Robbins and Sutton Monro in the 1950s. [20, 62]. Since then

there has been a large body of work on this method [68, 60, 44, 14]. Mirror descent

was introduced by Arkadi Nemirovski and David Yudin [54]. Since then there has

been a large body of work on this method [7, 53]. The origins of sample average

approximation can be traced back to maximum likelihood estimation, but was first

studied as a stochastic optimization algorithm by Alexander Shapiro [67]. Stochastic

saddle point subgradient descent was first studied by Kenneth Arrow, Leonid Hurwicz,

and Arkadi Nemirovski [4, 55], and the generalization to stocahstic saddle point mirror

descent was done by Nemirovski et al. [53]. Stochastic optimization with biased

gradients was first studied by Boris Polyak [60].

Contributions. In this work we present a framework for using stochastic convex

optimization for adaptive importance sampling, self-normalized importance sampling,

and what-if simulations. In sections 2.3 and 2.4, we present the insight that log-

concave families paired with a Rényi divergence results in a convex setup. How

exactly these notions relate to importance sampling is illustrated in later sections.

The connection between the Rényi divergence and importance sampling was first was

discussed in [50]. The Rényi divergence was first introduced by Alfréd Rényi [61] as

an information theoretic quantity, and a comprehensive analysis of its properties can

be found in [73].

In Sections 3 and 4 (more specifically Sections 3.4 and 4.4) we present adaptive

importance sampling and adaptive self-normalized importance sampling algorithms,

accompanied by a theoretical analysis of their performance. Because of the algorithms

use stochastic optimization, their iterations are computationally simple. Because

of convexity we can theoretically establish convergence rates and make claims on

optimality.

In Section 5 we extend this approach to what-if simulations. We present adap-

tive algorithms that take advantage of convexity and stochastic optimization, which

estimates asymptotically have minimum maximum variance.
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Outline. In Section 2, we introduce preliminary concepts not immediately related

to Monte Carlo simulation. In Section 3, 4, 5 we respectively introduce importance

sampling, self-normalized importance sampling, and what if simulations and show how

the material of Section 2 and convex optimization can be applied to obtain adaptive

methods with theoretical guarantees. In Section 6, we discuss topics omitted during

Sections 3, 4, and 5.



Chapter 2

Preliminaries

2.1 Convexity, subgradients, and stochastic sub-

gradients

A set Θ ⊆ Rp is convex if ηθ1 + (1 − η)θ2 ∈ Θ for all θ1, θ2 ∈ Θ and η ∈ [0, 1]. A

function U : Θ → R ∪ {∞} is convex on Θ if Θ is a convex set and

U(ηθ1 + (1− η)θ2) ≤ ηU(θ1) + (1− η)U(θ2)

for all θ1, θ2 ∈ Θ and η ∈ [0, 1]. We use the convention that ∞ ≤ ∞. We say a

function U is concave if −U is convex and log-concave if logU is concave.

An optimization problem

minimize U(θ)

subject to θ ∈ Θ,

where θ ∈ Rp is the optimization variable, is convex if the constraint set Θ is a convex

set and the objective function U is a convex function. Loosely speaking, convex

optimization problems can be solved efficiently while most non-convex optimization

problems cannot.

5
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Let U : Θ → R∪{∞} be a convex function on Θ. If U is differentiable at θ0, then

U(θ) ≥ U(θ0) +∇U(θ0)T (θ − θ0)

for all θ ∈ Θ [63, Theorem 25.1]. If U is not differentiable at θ0, we use subgradients,

a generalization of gradients to non-differentiable functions.

We call g a subgradient of U at θ0 if it satisfies

U(θ) ≥ U(θ0) + gT (θ − θ0)

for all θ ∈ Θ. If (and only if) U is differentiable at θ0, there is exactly one subgradient

of U at θ0, namely ∇U(θ0). When U is not differentiable at θ0, there can be more

than one subgradient at a given point, and we write ∂U(θ0) for the set of subgradients

of U at θ0. Roughly speaking, ∂U(θ0) is usually nonempty, i.e., a subgradient of U

at θ0 usually exists, provided U(θ0) <∞ [63, Theorem 23.4].

Let g be a random variable on Rp. If U is differentiable at θ0 and

Eg = ∇U(θ0)

we say g is a stochastic gradient of U at θ0. If

Eg ∈ ∂U(θ0)

then we say g is a stochastic subgradient of U at θ0.

Remark. All of the actual algorithms presented in this work do not explicitly use

subgradients. In fact, simply assuming differentiability throughout and mentally

replacing the notation ∂ with ∇ should cause little if any problems.

However, the use of subgradients are actually necesary for a rigorous discussion

for the following reasons. First, derivatives are not defined on the boundary of a

function’s domain, and not all convex functions are differentiable. However, these

are not serious issues. One could generalize the standard definition of derivatives to
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address this technical detail on the boundary, and the non-differentiable functions we

deal with turns out to be almost surely differentiable (c.f. Lemma 12).

The most important reason is that the expectation of a subgradient is a subgradi-

ent, but the expectation of a gradient need not be a gradient. Specifically, if u(θ; x)

is a convex function of θ for all x, then the assertion

∫

∇θu(θ; x) dµ(x) = ∇θ

∫

u(θ; x) dµ(x)

is usually true but requires justification. On the other hand, if g(x) ∈ ∂θu(θ; x), then

∫

g(x) dµ(x) ∈ ∂θ

∫

u(θ; x) dµ(x)

is always true so long as the integrals are well-defined. See Section 8.1 for further

discussion.

So by using subgradients, we can avoid the burden of establishing differentiability

altogether. In any case, mulling over differentiability is entirely unnecessary as none

of our results depend on differentiability.

2.2 Stochastic optimization

Consider the convex optimization problem

minimize U(θ)

subject to θ ∈ Θ.
(2.1)

Roughly speaking, one can efficiently find a global minimum of problem (2.1) through

standard methods if one can compute U(θ), a subgradient in ∂U(θ), and the projection

onto the set Θ. In later sections, however, we will encounter optimization problems

where evaluating U(θ) or a subgradient for any given θ is not feasible.

For such problems, we use stochastic optimization methods, which only require

stochastic information such as stochastic subgradients. Because U is convex, these

methods find the global minimum with reasonable rates of convergence.
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2.2.1 Stochastic subgradient descent

The stochastic optimization method stochastic subgradient descent solves problem

(2.1) with the algorithm

θn+1 = ΠΘ(θn − αngn), (2.2)

where θ1 ∈ Θ is some starting point, gn is a stochastic subgradient of U at θn, αn > 0

is a sequence of step sizes, and ΠΘ is the projection onto Θ. (Since θn is random, we

mean E[gn|θn] ∈ ∂U(θn) when we say gn is a subgradient.) The intuition is that −gn,
although noisy, generally points towards a descent direction of U at θn, and therefore

each step reduces the function value of U in expectation.

The method requires us to choose the step size αn. There is a large body of

research investigating the choices of step sizes that ensure convergence and their

rates of convergence. For the sake of simplicity, we will only consider the choice

αn = C/
√
n.

This still leaves us with us to choose the parameter C and the starting point θ1.

In general, there is no good way to choose these parameters. They should be chosen

through several informal iterations of trying what works well.

As we will see later, the convergence result we need for the stochastic optimization

method is
1

n

n
∑

i=1

EU(θi) → U(θ⋆). (2.3)

One may be tempted to first establish one of the usual notions of convergence such

as

θn → θ⋆ (2.4)

or

EU(θn) → U(θ⋆), (2.5)

and then use these to establish (2.4). However, it is often better to show (2.3) directly.

In fact, (2.4) and (2.3) are different notions of convergence that do not necessarily

imply each other. Also, the rate we obtain by working with (2.3) directly is better

than the rate one would obtain by showing rate on (2.5) first. See [44] for a discussion
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on the different notions of convergence of stochastic gradient descent.

Convergence proof. Let us establish when stochastic subgradient descent con-

verges.

Lemma 1. Assume Θ is a nonempty convex compact set and U has a subgradient

for all θ ∈ Θ. Also assume E[‖gn‖22|θn] ≤ G2 <∞ for n = 1, 2, . . . . (Also assume we

use stepsize αn = C/
√
n.) Then algorithm (2.2) converges with rate

1

n

n
∑

i=1

EU(θi) ≤ U(θ⋆) +O(1/
√
n).

Proof. The assumption that U has a subgradient on all of Θ implies U is finite

on all of Θ by definition of subgradients. The assumption also implies that U is

lower-semicontinuous [63, Corollary 23.5.2], and a lower-semicontinuous function with

compact domain always has a minimizer [10, Proposition 3.2.1]. We write θ⋆ for a

minimizer, and D for the diameter of Θ.

Then we have

‖θi+1 − θ⋆‖22 = ‖Π(θi − C/
√
igi)− Π(θ⋆)‖22

≤ ‖θi − C/
√
igi − θ⋆‖22

= ‖θi − θ⋆‖22 +
C2

i
‖gi‖22 − 2

C√
i
gTi (θi − θ⋆),

where the first inequality follows from nonexpansivity of Π (c.f. Lemma 13 of the

appendix). We take expectation conditioned on θi on both sides to get

E
[

‖θi+1 − θ⋆‖22 | θi
]

≤ ‖θi − θ⋆‖22 +
C2

i
E
[

‖gi‖22 | θi
]

− 2
C√
i
E[gi|θi]T (θi − θ⋆)

≤ ‖θi − θ⋆‖22 +
C2

i
G2 − 2

C√
i
E[gi|θi](θi − θ⋆)

≤ ‖θi − θ⋆‖22 +
C2

i
G2 − 2

C√
i
(U(θi)− U(θ⋆)),

where the second inequality follows from the definition of G and the third inequality
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follows from re-arranging the following consequence of gi being a stochastic subgra-

dient

U(θ⋆) ≥ U(θi) + E[gi|θi]T (θ⋆ − θi).

We take the full expectation on both sides and re-arrange to get

EU(θi)− U(θ⋆) ≤
√
i

2C
(E‖θi − θ⋆‖22 − E‖θi+1 − θ⋆‖22) +

C

2
√
i
G2.

We take a summation to get an “almost telescoping” series:

2
n
∑

i=1

(EU(θi)− U(θ⋆)) ≤
1

C

n
∑

i=1

(
√
i−

√
i− 1)E‖θi − θ⋆‖22 + CG2

n
∑

i=1

1√
i

≤ D2

C

n
∑

i=1

(
√
i−

√
i− 1) + CG2

n
∑

i=1

1√
i

≤ D2

C

√
n+ 2CG2

√
n,

where the second inequality follows from the definition of D and the third inequality

follows from
n
∑

i=1

1√
i
≤
∫ n

0

1√
i
di.

Finally, we divide both sides by 2n to get

1

n

n
∑

i=1

EU(θi) ≤ U(θ⋆) +

(

D2

2C
+ CG2

)

1√
n
.

Discussion of assumptions. That U has a subgradient on all of Θ is not a strong

assumption so long as U < ∞ on Θ [63, Theorem 23.4] and is made to rule out

pathologies. That Θ is closed is necessary for the projection to be well-defined but

that Θ is bounded is usually unnecessary in practice. That the subgradients are

bounded E‖gi‖2 ≤ G < ∞ is necessary, but this assumption will almost always hold

in practice.



CHAPTER 2. PRELIMINARIES 11

Loosely speaking, the only real assumption is that U <∞ on Θ. We will see later

that this corresponds to the assumption that the importance sampling estimator has

finite variance. There is no simple way to prevent this problem, but all importance

sampling methods face this same issue.

Batching. One common variation of stochastic subgradient descent is batching,

which key insight is that an average of stochastic subgradients is a stochastic sub-

gradient itself. Stochastic subgradient descent with batch size m solves Problem 2.1

with

gn =
1

m

m
∑

i=1

gni

θn+1 = ΠΘ(θn − αngn),

where gn1, . . . , gnm are stochastic subgradients of U at θn. One could say that plain

stochastic gradient descent has batch size 1.

Batching is essential in practice; not only does it make parallelization easier, but

it also makes the stochastic optimization method more stable, loosely speaking. In

fact, all numerical examples in this work use batching. There is a trade-off in choosing

batch sizes. Given the same computational resources, a small batch size results in

many inaccurate updates while a large batch size results in few accurate updates. In

this work, we do not address where the best point within this trade-off is and refer

interested readers to [48].

2.2.2 Stochastic mirror descent

A scrutiny of stochastic gradient descent and its convergence analysis reveals that

the Euclidean norm plays a special role in it. Because of this, the performance of

stochastic gradient descent can be poor when the geometry of the problem is not very

Euclidean, loosely speaking.

Stochastic mirror descent is a generalization of stochastic gradient descent that

can adapt to the geometry of the problem better than stochastic subgradient descent,
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roughly speaking. Here we avoid an in depth discussion of stochastic mirror descent

and merely present two versions of mirror descent that we later use.

An instance of stochastic mirror descent solves the problem

minimize U(θ)

subject to 1T θ = 1, θ � 0,
(2.6)

where θ ∈ Rp is the optimization variable and 1 ∈ Rp is the vector containing all

ones, with the algorithm

θ∗n+1 = θ∗n − αngn

θn+1 ∝ exp(θ∗n+1)

where θ∗1 ∈ Rp is some starting point, gn is a stochastic subgradient of U at θn, and

αn > 0 is a sequence of step sizes. The operation exp(θ∗n+1) is evaluated element-wise,

and the ∝ notation means

θn+1 =
1

1T exp(θ∗n+1)
exp(θ∗n+1).

The variables θ∗1, θ
∗
2, . . . are called the mirrored variables of θ1, θ2, . . . .

Also consider the optimization problem

minimize U(θ)

subject to θ ≻ 0,

where θ ∈ S
p
++ is the optimization variable and S

p
++ denotes the set of p×p symmetric

positive definite matrices. (So the optimization variable θ is a matrix.) An instance

of stochastic mirror descent solves this problem with

θ∗n+1 = θ∗n − αngn

θn+1 = exp(θ∗n+1),

where exp denotes the matrix exponential [34, §9.3].
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Convergence proof. Let us prove that the the first algorithm solves problem (2.6).

Lemma 2. Assume U has a subgradient at θ for all θ that satisfies 1T θ = 1 and

θ � 0. Also assume E[‖gn‖2∞|θn] ≤ G2 < ∞ for n = 1, 2, . . . , where ‖ · ‖∞ denotes

the ℓ∞ norm [39, §5.2]. Then (2.6) converges with rate

1

n

n
∑

i=1

U(θi) = U(θ⋆) +O(log n/
√
n).

Proof. As discussed in Section 2.2.1, that U has subgradients on all of Θ implies that

U is finite within the constraint set and that a solution θ⋆ exists.

We can rewrite the algorithm as

θn+1(j) = θn(j) exp(−αngn(j)),

where j = 1, . . . , p corresponds to the p entries of the vectors. Define

B(a‖b) =
n
∑

j=1

a(j) log(a(j)/b(j)),

which is an instance of the Bregman divergence [16]. (We use the convention 0 log 0 =

0.)

The following facts are easy to verify: B(a‖b) ≥ 0, B(a‖b) = 0 if and only if a = b,

and B(θ⋆‖θ1) <∞ since all entries of θ1 are positive. It is not easy to verify

B(a‖b) ≥ ‖a− b‖21,

where ‖ · ‖1 denotes the ℓ1 norm, but it is true [7, Proposition 5.1].

After some algebra we get

B(θ⋆‖θi+1) = B(θ⋆‖θi)− αi(θi − θ⋆)
Tgi − αi(θi+1 − θi)

Tgi −B(θi+1‖θi)

≤ B(θ⋆‖θi)− αi(θi − θ⋆)
T gi +

α2
i

4
‖gi‖2∞ + ‖θi+1 − θi‖21 − B(θi+1‖θi)

≤ B(θ⋆‖θi)− αi(θi − θ⋆)
T gi +

α2
i

4
‖gi‖2∞
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The first line can be verified through straightforward algebra, the second line follows

from an instance of Young’s inequality [74, 30]

aT b ≤ ‖a‖21 +
1

4
‖b‖2∞,

and the third line follows from the inequality previously discussed.

We take conditional expectations on both sides to get

E[B(θ⋆‖θi+1) | θi] ≤ B(θ⋆‖θi)− αi(U(θi)− U(θ⋆)) +
α2
i

4
G2.

We take the full expectations on both sides to get

EB(θ⋆‖θi+1) ≤ EB(θ⋆‖θi)− αi(EU(θi)− U(θ⋆)) +
α2
i

4
G2.

We sum both sides to get

EB(θ⋆‖θn+1) ≤ B(θ⋆‖θ1)− C
n−1
∑

i=1

1√
i
(EU(θi)− U(θ⋆)) + C2G2

n
∑

i=1

1

i

≤ B(θ⋆‖θ1) + C2G2(1 + log n)

We take “almost telescoping” series in a similar way as before to get

n
∑

i=1

(EU(θi)− U(θ⋆)) ≤
1

C

n
∑

i=1

(
√
i−

√
i− 1)B(θ⋆‖θi) +

CG2

4

n
∑

i=1

1√
i

≤ 1

C

n
∑

i=1

1√
i
B(θ⋆‖θi) +

CG2

4

√
n

≤
n
∑

i=1

1√
i
(B(θ⋆‖θ1)/C + CG2 + CG2 log i) +

CG2

4

√
n

≤ 2B(θ⋆‖θ1)
C

√
n+ 2CG2

√
n log n+

CG2

4

√
n.
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The second inequality follows from the

(
√
x−

√
x− 1)(

√
x+

√
x− 1) = 1 ≤ 1 +

√

1− 1/x =
1√
x
(
√
x+

√
x− 1)

⇒ √
x−

√
x− 1 ≤ 1√

x
,

for x ≥ 1. The third is line follows from the inequality we just established. The

fourth line follows from the inequalities

n
∑

i=1

1√
i
≤ 2

√
n

and
n
∑

i=1

log i√
i

≤
∫ n

0

log x√
x
dx = 2

√
n(log n− 2).

Finally, we conclude

1

n

n
∑

i=1

(EU(θi)− U(θ⋆)) ≤
(

2B(θ⋆‖θ1)
C

+
CG2

4

)

1√
n
+ 2CG2 log n√

n
.

2.2.3 Sample average approximation

The stochastic optimization method sample average approximation solves problem

(2.1) with the algorithm

θn+1 = argmin
θ∈Θ

1

n

n
∑

i=1

ui(θ),

where u1, u2, . . . are random functions that satisfy

Eui(θ) = U(θ)

for all θ ∈ Θ and i = 1, 2, . . . . In other words, u are unbiased estimates of U . If

the minimizer is not unique, then θn+1 is chosen to be any minimizer. Convergence



CHAPTER 2. PRELIMINARIES 16

and its rate of convergence of sample average approximation can be established with

techniques similar to those used to analyze the behavior of the maximum likelihood

estimator.

The computational cost of the minimization is a significant disadvantage of sample

average approximation. Sometimes, however, the minimization has a closed form

solution and the computational cost per iteration of sample average approximation

becomes comparable to that of stochastic subgradient descent or stochastic mirror

descent.

The theoretical and empirical performance of sample average approximation is

often much better than that of stochastic subgradient descent and stochastic mirror

descent. In fact, under mild assumptions one can show

1

n

n
∑

i=1

EU(θi) = U(θ⋆) +O(1/n)

when using sample average approximation [67, 31]. (This is related to the fact that

the maximum likelihood estimator attains the Cramér-Rao lower bound.)

So when the specific problem structure at hand allows the minimization step to be

performed efficiently, sample average approximation should be chosen over stochastic

subgradient descent or stochastic mirror descent.

2.3 Families with log-concave parameterization

Let F be a collection of probability measures on X . We say F has a log-concave

parameterization if F can be written as

F = {fθdµ | θ ∈ Θ},

where dµ is some common base measure, Θ is convex, and fθ(x) is log-concave in θ

for µ-almost all x ∈ X . This should not be confused with the convexity properties of

fθ as a function x. We write Fθ for the distribution that satisfies dFθ = fθdµ.

Mixtures. Let p1, p2, . . . , pp be probability densities with respect to dµ. The family
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of their mixtures can be written as F = {fθdµ | θ ∈ Θ}, where

fθ = θ1p1 + θ2p2u+ · · ·+ θppp, Θ = {θ ∈ Rp | θ1, . . . , θp ≥ 0, θ1 + · · ·+ θp = 1}.

The mixture fθ is linear and therefore log-concave in θ on Θ.

Exponential families. Define the function T : X → Rp and a nonempty convex

set Θ ⊆ Rp. Then we have the p-dimensional exponential family F = {fθdµ | θ ∈ Θ},
where

fθ(x) = exp(θTT (x)− A(θ))

and

A(θ) = log

∫

exp(θTT (x)) dµ(x)

normalizes fθ into a probability distribution.

Exponential families are extensively studied throughout the statistics literature,

and it is well known that A is a convex function of θ on Θ [17, 46, 43]. Since

log fθ(x) = θTT (x)− A(θ)

the parameterization is is log-concave.

Affine transformations of log-concave continuous distributions. Let p(x) be

a log-concave density of a continuous random variable in Rk. (So log p(x) is a concave

function of x.) If X ∼ p(x)dx then

A−1(X − b) ∼ p(Ax+ b) det(A)dx.

Since concavity is preserved under affine transformations, log p(Ax+ b) is concave

in (A, b) ∈ Sk×Rk, where Sk denotes the set of k×k symmetric matrices. Restricted

to Sk
++, the set of k × k positive definite matrices, log detA is concave.

We write θ = (A, b) ∈ Sk ×Rk. The family of scalings with respect to a positive

definite matrix and translations of X ∼ p(x)dx is given by F = {fθ | θ ∈ Θ}, where

fθ = p(Ax+ b) detA
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and Θ = Sk
++ ×Rk. As discussed, this parameterization is log-concave.

2.4 Rényi generalized divergence

Let P and Q be probability measures and α a parameter in [1,∞). When P ≪ Q,

i.e., P is absolutely continuous with respect to Q, we define the Rényi divergence of

order α of Q from P as

Dα(P‖Q) =



















∫

log

(

dP

dQ

)

dP α = 1

1

α− 1
log

∫ (

dP

dQ

)α−1

dP 1 < α <∞.

If P 6≪ Q, then Dα(P‖Q) = ∞ for all α ∈ [1,∞). For our purposes, we shall view

Dα(P‖Q) as a measure of distance between the probability distributions P and Q,

just like the KL-divergence. In fact, Dα is the KL-divergence when α = 1. We list a

few properties of Dα:

• 0 ≤ Dα(P‖Q) ≤ ∞.

• Dα(P‖Q) = 0 if and only if P = Q.

• Dα(P‖Q) is nondecreasing in α for fixed P and Q.

• Dα(P‖Q) is continuous on {α ∈ [1,∞) | Dα(P‖Q) < ∞} for fixed P and Q,

i.e., it is continuous where finite.

• Dα(P‖Q) is not symmetric in P and Q.

2.4.1 Convexity of Rényi divergence

In later sections, we encounter the optimization problem

minimize Dα(P‖Fθ)

subject to θ ∈ Θ
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for some P and α. This can be interpreted as finding the distribution Fθ closest

(measured by Dα) to a target distribution P . Here we look at a sufficient condition

that allows us to solve this problem via convex optimization.

Lemma 3. Assume F has a log-concave parameterization. Then D1(P‖Fθ) and

exp((α− 1)Dα(P‖Fθ)) for α ∈ (1,∞) are convex in θ on Θ.

We note that Dα(P‖Q) is convex in Q, but this is not why this lemma is true.

Rather, we establish convexity by building up the function of interest from known

convex functions with operations that perserve convexity [15, §3.2].

Proof. With the parameterization, we can write

D1(P‖Fθ) =

∫ (

log
dP

dµ
− log fθ

)

dP.

Since − log fθ is convex in θ and since a nonnegative weighted integral of convex

functions is convex, D1(P‖Fθ) is convex in θ.

Now let’s look at the α > 1 case. Since composition of a convex increasing function

with a convex function preserves convexity, 1/fα−1
θ = exp(−(α− 1) log fθ) is convex.

Therefore

exp((α− 1)Dα(p‖fθ)) =
∫

1

fα−1
θ

(

dP

dµ

)α−1

dP

is convex.

Since exp((α−1)Dα(p‖fθ)) is a monotone transformation ofDα(p‖fθ) when α > 1,

minimizing one is equivalent to minimizing the other. Therefore we work with the

convex one.

Stochastic subgradients. The convex functionsD1(P‖Fθ) and exp((α−1)Dα(P‖Fθ))

are useful not only becuase they are convex, but also because we have access to

their stochastic subgradients. Let us see how to get a stochastic subgradient of

expD2(P‖Fθ). Stochastic subgradients of D1(P‖Fθ) and exp((α − 1)Dα(P‖Fθ)) for

α 6= 2 can be obtained in a similar fashion.
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For simplicity, assume differentiability throughout. Let X ∼ Fθ0 and

g = − 1

fθ0(X)

(

dP

dFθ0

(X)

)2

∇θfθ0(X).

Then g is a subgradient of expD2(P‖Fθ), i.e.,

Eg ∈ ∇θ expD2(P‖Fθ).

To see why, assume we can evaluate the gradient under the integral. Then we have

∇θ expD2(P‖Fθ) =

∫

∇θ
dP

dFθ

(x) dP (x)

= −
∫

1

f 2
θ (x)

dP

dµ
(x)∇θfθ(x) dP (x)

= −
∫

1

fθ(x)

(

dP

dFθ

(x)

)2

∇θfθ(x) dFθ(x)

= EFθ

[

− 1

fθ(X)

(

dP

dFθ

(X)

)2

∇θfθ(X)

]

.

While this is not a rigorous argument, it does illustrate the main idea. We show a

more general and rigorous version of this as Lemma 11 of the appendix.

2.4.2 Rényi divergence and moments

We note that Dα(P‖Q) < ∞ if and only if the α-th moment of (dP/dQ)(X), where

X ∼ Q, is finite. In fact, one could say Dα(P‖Q) is a measure of how large the α-th

moment of (dP/dQ)(X) is. So we will write Dα(P‖Q) <∞ as a shorthand for saying

that the α-th moment of (dP/dQ)(X) is finite.
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Adaptive importance sampling

Consider the problem of approximating the expected value (or integral)

I = Eφ(X) =

∫

φ(x) dF (x),

where X ∼ F is a random variable on X and φ : X → R. To avoid pathologies, we

assume 0 < E|φ(X)| <∞; if E|φ(X)| = 0 the problem is trivial and if E|φ(X)| = ∞,

the problem is not well defined. We call F the nominal distribution.

The plain Monte Carlo algorithm computes I with the algorithm

Xn ∼ F

În =
1

n

n
∑

i=1

φ(Xi).

The analysis of this method is straightforward:

EÎn =
1

n

n
∑

i=1

Eφ(Xi) = I

21
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and

VarÎn = E(În − I)2

=
1

n2

n
∑

i=1

E(φ(Xi)− I)2 +
2

n

∑

1≤i<j≤n

E(φ(Xi)− I)(φ(Xj)− I)

=
1

n
VarFφ(X).

So the estimator is unbiased, i.e., EÎn = I, and has variance

VarÎn =
1

n
VarFφ(X) =

1

n

(∫

φ2(x) dF (x)− I2
)

.

În is guaranteed to converge to I as n → ∞ (in L2 as long as VarFφ(X) < ∞).

Sometimes this approach is good enough to compute I to necessary precision for the

problem at hand. If so there is no need to seek improved algorithms.

Often, however, this method is not fast enough, i.e., VarÎn is not small enough,

and one must employ a variance reduction technique to compute I to necessary pre-

cision in a practical amount of computation time. The variance VarÎn contains the

factors 1/n and VarFφ(X). Loosely speaking, the factor 1/n is considered hard to

improve upon when using a Monte Carlo method. So we explore approaches to reduce

VarFφ(X).

3.1 Importance sampling

One variance reduction technique is called importance sampling, which is based on

the following key insight:

I =

∫

φ(x) dF (x) =

∫

φ(x)
dF

dF̃
(x) dF̃ (x) = EF̃

[

φ(X)
dF

dF̃
(X)

]

,
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where φdF ≪ dF̃ and dF/dF̃ denotes the Radon-Nokodym derivative. This re-

casting of I as an expectation under F̃ motivates importance sampling:

Xn ∼ F̃

În =
1

n

n
∑

i=1

φ(Xi)
dF

dF̃
(Xi).

The distribution F̃ is called a sampling or importance distribution and has to satisfy

φdF ≪ dF̃ .

The analysis of this algorithm is similar to what we had before:

EÎn =
1

n

n
∑

i=1

EF̃φ(Xi)
dF

dF̃
(Xi) =

1

n

n
∑

i=1

EFφ(Xi) = I

and

VarÎn = E(În − I)2

=
1

n2

n
∑

i=1

EF̃

(

φ(Xi)
dF

dF̃
(Xi)− I

)2

+
2

n

∑

1≤i<j≤n

E

(

φ(Xi)
dF

dF̃
(Xi)− I

)(

φ(Xj)
dF

dF̃
(Xj)− I

)

=
1

n
VarF̃

(

φ(Xi)
dF

dF̃
(X)

)

.

So again the estimator is unbiased, i.e., EÎn = I, and has variance

VarÎn =
1

n
VarF̃

(

φ(X)f(X)

f̃(X)

)

=
1

n

(

∫

φ2(x)

(

dF

dF̃
(x)

)2

dF̃ (x)− I2

)

.

Note that importance sampling reduces to plain Monte Carlo when F̃ = F .
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Per-sample variance. We call

VarF̃

(

φ(X)
dF

dF̃
(X)

)

the per-sample variance of the sampling distribution F̃ , as it is the variance con-

tributed by each sample from F̃ . When the per-sample variance of F̃ is smaller

than the per-sample variance of F , importance sampling indeed provides variance

reduction. To extract the most variance reduction, we should choose a sampling

distribution F̃ with the smallest per-sample variance.

Define the distribution F⋆ such that

dF⋆ =
1

J
|φ|dF,

where

J =

∫

|φ(x)|dF (x)

is a normalizing factor. Simple algebra gives us

VarF̃

(

φ(X)
dF

dF̃
(X)

)

= J2 expD2(F⋆‖F̃ )− I2.

Since J2 > 0 and exp is a monotone transformation, reducing the per-sample variance

is equivalent to reducing D2(F⋆‖F̃ ).
So given a family of probability distributions F , a solution to the optimization

problem

minimize D2(F⋆‖F̃ )
subject to F̃ ∈ F

has the smallest per-sample variance among distributions in F . (The constraint

φdF ≪ dF̃ is implicitly enforced since D2(F⋆‖F̃ ) = ∞ if F⋆ 6≪ F̃ .) This also tells us

that F⋆ has the smallest per-sample variance among all distributions, although there

is no good way to generate samples from F⋆ in practice. This optimization problem

formalizes the well-known notion that sampling distributions “close to F⋆” have small

variance.
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If F has a log-concave parameterization, then the distribution with smallest per-

sample variance among F can be found by the convex optimization problem

minimize expD2(F⋆‖Fθ)

subject to θ ∈ Θ.
(3.1)

A suboptimal approach. At this point, one might consider the following ap-

proach.

1. Choose F with a log-concave parameterization.

2. Find a solution θ⋆ of the convex optimization problem (3.1).

3. Perform importance sampling with sampling distribution Fθ⋆ .

Indeed, convexity makes solving optimization problem (3.1) feasible. Furthermore,

we have an optimality statement: the importance sampling with Fθ⋆ achieves the

smallest variance among all choices within F .

Unfortunately, performing step 2, solving problem (3.1), is usually no more easier

than computing I, the unknown quantity of iterest. In fact, evaluating the objective

expD2(F⋆‖Fθ) at a given point θ requires a Monte Carlo simulation of its own. One

could could try solving problem (3.1) approximately before moving on to the impor-

tance sampling. However, this creates a trade-off of how much time one should spend

on step 2 before moving on to step 3. Furthermore, the optimality statement is lost,

although one could argue that this is only of theoretical interest.

In the next section, we will present a method that performs step 2 and step 3 si-

multaneously. By performing optimization and importance sampling simultaneously,

we eliminate the trade-off and retain the optimality statement.

3.2 Adaptive importance sampling

Adaptive importance sampling is based on the key insight that the sampling distri-

bution need not be the same for all iterations. The adaptive importance sampling
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algorithm computes I with

Xn ∼ F̃n

În =
1

n

n
∑

i=1

φ(Xi)
dF

dF̃i

(Xi)

F̃n+1 = update with X1, . . . , Xn, F̃1, . . . , F̃n.

As we show soon, the estimator is unbiased, i.e., EÎn = I, and has variance

VarÎn =
1

n

(

1

n

n
∑

i=1

EVarF̃i

(

φ(X)
dF

dF̃i

(X)

)

)

.

Since F̃n is determined based on the past random information, F̃n, a probability

distribution, is itself random. The variance of În may look different from that of

importance sampling, but they are similar in spirit: VarÎn is 1/n times the average

expected per-sample variance of F̃1, . . . , F̃n. If F̃1 = · · · = F̃n = F̃ , this algorithm

reduces to importance sampling.

Analysis of adaptive importance sampling. The analysis is essentially the same

as before when we must diligently handle the conditionally dependencies. The con-

ditional dependencies of our sequences F̃1, F̃2, . . . and X1, X2, . . . are

F̃1 F̃2 F̃3 F̃4

X1 X2 X3

· · ·

So Xn is independent of the entire past conditioned on F̃n for all i. With this we have

EÎn =
1

n

n
∑

i=1

E

[

φ(Xi)
dF

dF̃i

(Xi)

]

=
1

n

n
∑

i=1

E

[

E

[

φ(Xi)
dF

dF̃i

(Xi)
∣

∣

∣F̃i

]]

=
1

n

n
∑

i=1

E [I] = I
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and

VarÎn = E(În − I)2

=
1

n2

n
∑

i=1

E

(

φ(Xi)
dF

dF̃i

(Xi)− I

)2

+
2

n2

∑

1≤i<j≤n

E

(

φ(Xi)
dF

dF̃i

(Xi)− I

)

(

φ(Xj)
dF

dF̃j

(Xj)− I

)

=
1

n2

n
∑

i=1

E

[

E

[

(

φ(Xi)
dF

dF̃i

(Xi)− I

)2 ∣
∣

∣

∣

F̃i

]]

+
2

n2

∑

1≤i<j≤n

E

[

E

[

(

φ(Xi)
dF

dF̃i

(Xi)− I

)

(

φ(Xj)
dF

dF̃j

(Xj)− I

)

∣

∣

∣

∣

Xi, F̃i, F̃j

]]

=
1

n2

n
∑

i=1

EVarF̃i

(

φ(X)
dF

dF̃i

(X)

)

.

This gives the stated result.

3.2.1 Main framework

In a sense, adaptive importance sampling is a meta algorithm; determining how to

update F̃n fully specifies the method and its performance. The specific adaptive im-

portance sampling methods we consider in this work are determined by the following

3 choices:

• Choose a family of distributions.

• Choose an objective to minimize.

• Choose a stochastic optimization method to perform the minimization.



CHAPTER 3. ADAPTIVE IMPORTANCE SAMPLING 28

So using the parameterization, the algorithm will be of the form:

Xn ∼ Fθn

În =
1

n

n
∑

i=1

φ(Xi)
dF

dFθi

(Xi) (3.2)

θn+1 = Stochastic optimization with X1, . . . , Xn, θ1, . . . , θn.

Write V⋆ for the minimum per-sample variance for the family F , i.e., V⋆ is the

optimal value for

minimize VarFθ

(

φ(X) dF
dFθ

(X)
)

subject to θ ∈ Θ.

Then
1

n
V⋆ ≤ VarÎn.

If algorithm (3.2) is run with a stochastic optimization algorithm such that

1

n

n
∑

i=1

EVarFθi

(

φ(X)
dF

dFθi

(X)

)

≤ V⋆ + o(1),

then

VarÎn ≤ 1

n
V⋆ + o

(

1

n

)

.

Putting the two together, we can say

VarÎn ≈ 1

n
V⋆,

i.e., the variance of În is asymptotically optimal with respect to the family F .

3.3 Central limit theorem

In the previous section, we established a condition under which the asymptotic vari-

ance of În becomes optimal. In this section, we establish a sufficient condition under

which În is asymptotically normally distributed.
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Lemma 4. Assume algorithm (3.2) uses a stochastic optimization method that yields

performance

VarÎn =
1

n
V⋆ + o

(

1

n

)

.

Furthermore, assume there is a ε > 0 such that D2+ε(F⋆‖Fθ) is bounded for all θ ∈ Θ.

(So the (2 + ε)-th moments of the estimators are bounded.) Then we have

√
n(În − I)

D→ N (0, V⋆).

Proof. First define

Yni =







1√
n

(

φ(Xi)f(Xi)
fθi (Xi)

− I
)

for i ≤ n

0 otherwise

and

Jnm =
m
∑

i=1

Yni.

Also define the σ-algebras

Gm = σ(θ1, θ2, . . . , θm+1, X1, X2, . . . , Xm)

for all m. Then for any given n, the process Jn1, Jn2, . . . is a martingale with respect

to G1,G2, . . . and to we have to prove

Jnn =
n
∑

i=1

Yni =
∞
∑

i=1

Yni
D→ N (0, V⋆).

Define

σ2
ni = E

[

Y 2
ni | Gi−1

]

=







1
n
VarFθi

(

φ(X) dF
dFθi

(X)
)

for i ≤ n

0 otherwise.
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Then a form of the Martingale CLT, c.f., Theorem 35.12 of [12], states that if

n
∑

i=1

σ2
ni

P→ V⋆

and
n
∑

i=1

EY 2
niI{|Yni|≥δ} → 0

for each δ > 0, then Jnn
D→ N (0, V⋆).

Since
n
∑

i=1

σ2
ni =

1

n

n
∑

i=1

VarFθi

(

φ(X)
dF

dFθi

(X)

)

,

and since, by assumption, we have

1

n

n
∑

i=1

(

EVarFθi

(

φ(X)
dF

dFθi

(X)

)

− V⋆

)

= E

∣

∣

∣

∣

∣

1

n

n
∑

i=1

VarFθi

(

φ(X)
dF

dFθi

(X)

)

− V⋆

∣

∣

∣

∣

∣

= o(1) → 0,

i.e.,
∑n

i=1 σ
2
ni converges to V⋆ in L1, we have

n
∑

i=1

σ2
ni

P→ V ∗.

The second condition follows from the fact that the (2+ε)-th monent is bounded:

n
∑

i=1

EY 2
niI{|Yni|≥δ} =

1

n

n
∑

i=1

E

(

φ(Xi)
dF

dFθi

(Xi)− I

)2

I{|φ(Xi)dF/dFθi
(Xi)|ε≥δεnε/2}

≤ 1

n1+ε/2δε

n
∑

i=1

E

(

φ(Xi)
dF

dFθi

(Xi)− I

)2+ε

≤ B

nε/2δε
→ 0.

So the 2 conditions are met and we have the desired CLT.
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3.4 Examples

3.4.1 Stochastic subgradient descent with exponential family

In this section, we consider the adaptive importance sampling algorithm we get when

we choose an exponential family for the family F (as defined in Section 2.3), the per-

sample variance, D2(F⋆‖Fθ), for the objective to minimize, and stochastic subgradient

descent for the stochastic optimization algorithm.

Assume Θ is compact and Θ ⊂ int{θ | D4(F⋆‖Fθ) <∞}. (So Θ is in the interior

of the set for which the estimators have finite 4th moments.)

The adaptive importance sampling method with these choices is

Xn ∼ Fθn

În =
1

n

n
∑

i=1

φ(Xi)
dF

dFθi

(Xi)

gn = φ2(Xn)

(

dF

dFθ0

)2

(Xn)(∇A(θ)− T (Xn))

θn+1 = ΠΘ(θn − (C/
√
n)gn).

The estimator În is unbiased, and has performance

1

n
V⋆ ≤ VarÎn ≤ 1

n
V⋆ +O

(

1

n3/2

)

and
√
n(În − I)

D→ N (0, V⋆).
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The adaptive importance sampling method with batch size m is

Xn1, Xn2, . . . , Xnm ∼ Fθn

În =
1

n

n
∑

i=1

1

m

m
∑

j=1

φ(Xij)
dF

dFθi

(Xij)

gn =
1

m

m
∑

j=1

φ2(Xnj)

(

dF

dFθ

)2

(Xnj)(∇A(θ)− T (Xnj))

θn+1 = ΠΘ(θn − (C/
√
n)gn).

The estimator În is unbiased, and has performance

1

nm
V⋆ ≤ VarÎn ≤ 1

nm
V⋆ +O

(

1

n3/2m

)

and
√
nm(În − I)

D→ N (0, V⋆).

Discussion of assumptions. While one can find realistic setups for D4(F⋆‖Fθ)

is not bounded, this assumption is not unreasonable; any adaptive importance sam-

pling method would require that the second moments their estimators are finite, i.e.,

D2(F⋆‖Fθ) < ∞, and that their fourth moments are finite, i.e., D4(F⋆‖Fθ) < ∞, is

not asking for too much more.

The assumption impliesD2+ε(F⋆‖Fθ) ≤ B1 <∞, which is necessary for the central

limit theorem. It also implies expD2(F⋆‖Fθ), the function we wish to minimize, is

finite on all of Θ. Finally, it implies that E‖gi‖22 ≤ G2 < ∞ by Lemma 6, which we

show below.

Lemma 5 (Theorem 2.7.1 of [47]). Let ψ(x) be any function on X . Then the function

f(θ) =

∫

ψ(x) exp(θTT (x)) dµ(x)

is smooth (infinitely differentiable) on int{θ | f(θ) <∞}.

A direct consequence of this lemma is thatA(θ), exp(D2(F⋆‖Fθ)), and exp(3D4(F⋆‖Fθ))
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are smooth and all derivatives can be evaluated under their integrals on the interiors

of the sets on which they are finite.

Lemma 6. That Θ ⊆ int{θ | D4(F⋆‖Fθ) < ∞} implies E‖gi‖22 is bounded for i =

1, 2, . . . .

Proof. For all i ∈ {1, 2, . . . , p},

∂

∂θi
exp(3D4(F⋆‖Fθ))/J

4 = 3

∫ (

∂

∂θi
A(θ)− Ti(x)

)

φ4(x)

(

dF

dFθ

)3

dF (x)

= 3 exp(3D4(F⋆‖Fθ))/J
4 ∂

∂θi
A(θ)− 3

∫

Ti(x)

(

dF

dFθ

)3

dF (x)

exists and is and smooth on int{θ | D4(F⋆‖Fθ) < ∞}. by Lemma 5. As we already

know the first term is smooth by Lemma 5, this tells us the second term is smooth.

Repeating this, we have

∂2

∂θ2i

exp(3D4(F⋆‖Fθ))

J4
=

∫

(

3
∂2

∂θ2i
A(θ) + 9

(

∂

∂θi
A(θ)

)2

− 18Ti(x)
∂

∂θi
A(θ) + 9T 2

i (x)

)

φ4(x)

(

dF

dFθ

)3

dF (x)

We know the first 3 terms are smooth from what we just proved and Lemma 5. So

we conclude that
∫

T 2
i (x)φ

4(x)

(

dF

dFθ

)3

dF (x)

is a smooth function of θ on int{θ | D4(F⋆‖Fθ) <∞}.
Finally, we conclude that

EFθ

∥

∥

∥

∥

∥

(∇A(θ)− T (X))φ2(X)

(

dF (X)

dFθ(X)

)2
∥

∥

∥

∥

∥

2

2

= ‖∇A(θ)‖22 exp(3D4(F⋆‖Fθ))/J
4 − 2∇A(θ)T

∫

T (X)φ4(x)

(

dF

dFθ

)3

dF (x)

+

∫

‖T (X)‖22φ4(x)

(

dF

dFθ

)3

dF (x)
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is a continuous function on the compact set Θ. So the supremum over the compact

set Θ is finite.

3.4.2 Cross-entropy method

In this section, we show that the cross-entropy method, a widely used adaptive im-

portance sampling method, is a special case of our adaptive importance sampling

framework. Cross-entropy method is the adaptive importance sampling algorithm we

get when we choose exponential family for the family F (as defined in Section 2.3),

D1(F⋆‖Fθ), not D2(F⋆‖Fθ), for the objective to minimize, and sample average ap-

proximation for the stochastic optimization algorithm.

We first note that

D1(F⋆‖Fθ) =

∫

log

(

dF⋆

dµ

)

dF⋆ +
1

J

∫

|φ| dF
dFθ0

(− log fθ) dFθ0

=

∫

log

(

dF⋆

dµ

)

dF⋆ +
1

J
EFθ0

[

−|φ(X)| dF
dFθ0

(X) log fθ(X)

]

.

Since constants can be ignored, we can view

−|φ(X)| dF
dFθ0

(X) log fθ(X)

with X ∼ Fθ0 as an unbiased estimate of the function D1(F⋆‖Fθ).

The adaptive importance sampling method with these choices is

Xn ∼ Fθn

În =
1

n

n
∑

i=1

φ(Xi)
dF

dFθi

(Xi)

θn+1 = argmax
θ∈Θ

n
∑

i=1

|φ(Xi)|
dF

dFθi

(Xi) log fθ(Xi).
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Since F is an exponential family, the maximization is

argmax
θ∈Θ

n
∑

i=1

|φ(Xi)|
dF

dFθi

(Xi)(θ
TT (Xi)− A(θ)).

Since A is differentiable (Lemma 5), the maximizer satisfies

∇A(θn+1) =

(

n
∑

i=1

|φ(Xi)|
dF

dFθi

(Xi)T (Xi)

)

/

(

n
∑

i=1

|φ(Xi)|
dF

dFθi

(Xi)

)

.

Quite often, the function ∇A is easily invertible and θn+1 can computed via an ana-

lytical solution [43].

Putting these together the method simplifies to the cross-entropy method

Xn ∼ Fθn

wn = |φ(Xn)|
dF

dFθn

(Xn)

În =
1

n

n
∑

i=1

wi

θn+1 = (∇A)−1

((

n
∑

i=1

wiT (Xi)

)

/

(

n
∑

i=1

wi

))

.

That the cross-entropy method uses sample average approximation is both an ad-

vantage and disadvantage. When the minimization has a closed-form solution (i.e.,

when ∇A is invertible) sample average approximation is a superior method compared

to stochastic subgradient descent or stochastic mirror descent as discussed in Sec-

tion 2.2.3. However, the minimization often does not have a closed-form solution,

and sample average approximation becomes inefficient.

The cross-entropy method inherits these strength and limitation. When using

certain exponential families for the sampling distributions, the cross-entropy method

will work well. In the sense of having minimum asymptotic variance, the cross-

entropy method is suboptimal. The θ⋆ that minimizes D1(F⋆‖Fθ) does not necessarily

minimize D2(F⋆‖Fθ), the per-sample variance. In practice, however, the difference
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between D1(F⋆‖Fθ) and D2(F⋆‖Fθ) should be small and the faster convergence rate

of sample average approximation should matter more when the iteration count n is

not too large.

Finally, we point out that batching can also be used with the cross-entropy

method. In practice, it is necessary to withold updating θn for the first few iterations.

Batching is a way to accomplish this. Also, if one is using a numerical optimization

solver to compute θn in the absense of an analytical solution, batching is a good way

to reduce the computational cost of the optimization.

3.4.3 Option pricing

Consider the pricing of an arithmetic Asian call option on an underlying asset under

standard Black-Scholes assumptions [33]. We write S0 for the initial price of the

underlying asset, r and σ for the interest rate and volatility of the Black-Scholes

model, and T for the maturity time. Under the Black-Scholes model, the price of the

asset at time jT/k is

Sj(X) = S0 exp

[

(r − 1

2
σ2)j

T

n
+ σ

√

T

n

j
∑

i=1

X(i)

]

for j = 1, . . . , k, where X ∈ Rk is random with independent standard normal entries

X(1), . . . , X(k). The discounted payoff of the option with strike K is given by

φ(X) = exp−rT max

{

1

k

k
∑

j=1

Sj(X)−K, 0

}

,

and we wish to compute I = Eφ(X).

For this problem, we compare the performance of four different methods. The first

method is plain Monte Carlo where the samples are taken from the nominal distribu-

tion. The second method performs adaptive importance sampling with multivariate

Gaussians with their means as the parameters for the family F , the per-sample vari-

ance, D2(F⋆‖Fθ), for the objective to minimize, and stochastic mirror descent for the

stochastic optimization algorithm. The third method performs adaptive importance
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sampling with multivariate Gaussians with their means and covariance for the pa-

rameters for the family F , the per-sample variance, D2(F⋆‖Fθ), for the objective to

minimize, and stochastic mirror descent for the stochastic optimization algorithm.

The fourth method is the Cross-entropy method with multivariate Gaussians with

their means for the parameters for the family F .

The first method, plain Monte Carlo, has the form

Xn ∼ N (0, I)

În =
1

n

n
∑

i=1

φ(Xn).

The third method, adaptive importance sampling with the mean and covariance as

the parameters, has the form

LnL
T
n = Σn (Cholesky factorization)

Yn1, Yn2, . . . , Ynm ∼ N (0, I)

Xnj = LT
nYnj + µn, j = 1, . . . ,m

wnj =
φ(Xnj)
√

det(Sn)
exp(−‖Xnj‖22/2 + (Xnj − µn)

TSn(Xnj − µn)/2) j = 1, . . . ,m

În =
1

n

n
∑

i=1

1

m

m
∑

j=1

wij

gSn =
1

2m

m
∑

j=1

w2
ij(XnjX

T
nj − µnµ

T
n − Σn)

gbn =
1

m

m
∑

j=1

w2
ij(µn −Xnj)

S∗
n+1 = S∗

n − (C1/
√
n)gSn

Sn+1 = expS∗
n+1

bn+1 = ΠCb
(bn − (C2/

√
n)gbn)

Σn+1 = S−1
n+1

µn+1 = S−1
n+1bn+1.
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with Cb = [−2, 2]k. The second method, adaptive importance sampling with the

mean but not the covariance as the paramter, is similar to the third method, but has

Sn fixed as the identity matrix and does not spend time computing gSn and updating

Sn. The fourth method, cross entropy with the mean as the paramter, has the form

Yn1, Yn2, . . . , Ynm ∼ N (0, I)

Xnj = Ynj + µn, j = 1, . . . ,m

wnj = φ(Xnj) exp(−‖Xnj‖22/2 + (Xnj − µn)
T (Xnj − µn)/2) j = 1, . . . ,m

În =
1

n

n
∑

i=1

wij

µn =

(

n
∑

i=1

m
∑

j=1

wijXij

)

/

(

n
∑

i=1

m
∑

j=1

wij

)

.

We use the parameters n = 105, m = 103, S0 = 50, K = 70, r = 0.5, σ = 0.3, k = 64,

T = 1, and C1 = C2 = 0.03. The computations give us I ≈ 0.1807.

Figure 3.1 shows the average per-sample variance for each method. As we can

expect, the first method has a large constant per-sample variance. The third method

has the smallest asymptotic per-sample variance, since it has an additional parameter

Σ to optimize the per-sample variance over. The fourth method has fast convergence

to its optimum, but the third method eventually catches up. Since third methods

optimum actually minimizes the per-sample variance, it is better than the fourth

method’s optimum, but the difference is negligeable, which can be detected only

when the plot is inspected carefully.

Figure 3.2 shows VarÎn for the four methods wit the x-axis now in units of com-

putation time. Really, Figures 3.1 and 3.2 are presenting the same data with different

scalings. When computation time is factored in, the third method does worse than

the second method; the extra computation cost the third method pays compared to

the second method is more than the benefit the reduced per-sample variance brings.

The computation cost of the second and fourth methods are comparable, and we can

see that the second method eventually catches up as expected by the theory, although

the fourth method is better non-asymptotically.



CHAPTER 3. ADAPTIVE IMPORTANCE SAMPLING 39

Sample count ×107

0 1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 p
er

-s
am

pl
e 

va
ria

nc
e

10-1

100

Plain Monte Carlo
Adaptive IS with mean
Adaptive IS with mean and Sigma
Cross-entropy

Figure 3.1: Average per-sample variances for the option pricing.
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Figure 3.2: Estimator’s variance as a function of runtime for the option pricing.
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3.4.4 Stochastic mirror descent with mixtures

In this section, we consider the adaptive importance sampling algorithm we get when

we choose a mixture of distributions for the family F (as defined in Section 2.3), the

per-sample variance, D2(F⋆‖Fθ), for the objective to minimize, and stochastic mirror

descent for the stochastic optimization algorithm.

Assume
∫

φ4(x)

f 2
θ (x)

(

dF

dFθ

)3
(

p
∑

i=1

p2i (x)

)

dF (x) <∞ (3.3)

for all θ ∈ Θ.

The adaptive importance sampling method with these choices is

Xn ∼ Fθn

În =
1

n

n
∑

i=1

φ(Xi)
dF

dFθi

(Xi)

gn = − φ2(Xn)

fθn(Xn)

(

dF

dFθn

)2

(Xn)









p1(Xn)
...

pp(Xn)









θ∗n+1 = θ∗n − (C/
√
n)gn

θn+1 ∝ exp(θ∗n+1).

The estimator În is unbiased, and has performance

1

n
V⋆ ≤ VarÎn ≤ 1

n
V⋆ +O

(

log n

n3/2

)

and
√
n(În − I)

D→ N (0, V⋆).
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The adaptive importance sampling method with batch size m is

Xn1, Xn2, . . . , Xnm ∼ Fθn

În =
1

n

n
∑

i=1

1

m

m
∑

j=1

φ(Xij)
dF

dFθi

(Xij)

gn = − 1

m

m
∑

j=1

φ2(Xnj)

fθn(Xnj)

(

dF

dFθn

)2

(Xnj)









p1(Xnj)
...

pp(Xnj)









θ∗n+1 = θ∗n − (C/
√
n)gn

θn+1 ∝ exp(θ∗n+1).

The estimator În is unbiased, and has performance

1

nm
V⋆ ≤ VarÎn ≤ 1

nm
V⋆ +O

(

log n

n3/2m

)

and
√
nm(În − I)

D→ N (0, V⋆).

Discussion of assumptions. Assumption (3.3) implies all the conditions neces-

sary for the stochastic optimization and central limit theorem to work as shown in

Lemma 7.

However, one can reasonably argue that assumption (3.3) is too strong. In par-

ticular, it forbids setups that require defensive importance sampling; if φdF 6≪ pidµ

for any i ∈ {1, 2, . . . , p} the assumption is violated.

Lemma 7. Assumption (3.3) implies that E‖gi‖22 is bounded, that D2+ε(F⋆‖Fθ) is

bounded for all θ ∈ Θ, and that D2(F⋆‖Fθ) is finite for all θ ∈ Θ.

Proof. Let us define

K(θ) =

∫

φ4(x)

f 2
θ (x)

(

dF

dFθ

)3
(

p
∑

i=1

p2i (x)

)

dF (x).
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By the same argument as Lemma 3, K is a convex function on Θ. Since Θ =

conv{e1, . . . , ep}, where ei denotes the ith unit vector for i = 1, . . . , p and conv

denotes the convex hull,

sup
θ∈Θ

K(θ) = max
i=1,...,p

K(θi) = B <∞

by Theorem 32.2 of [63]. In other words, K is not only finite but also bounded on Θ.

We immediately get E‖gi‖22 is bounded since

K(θ) = EFθ
‖g‖2.

By the Cauchy-Schwartz inequality and the equivalence of the ℓ1 and ℓ2 norms,

we have

f 2
θ (x) ≤ ‖θ‖22

p
∑

i=1

pi(x) ≤ p

p
∑

i=1

pi(x).

(Note that p is an integer and pi is a probability density function.) So

1

pJ4
D4(F⋆‖Fθ) =

1

p

∫

φ4(x)

(

dF

dFθ

)3

dF (x)

≤
∫

φ4(x)

f 2
θ (x)

(

dF

dFθ

)3
(

p
∑

i=1

p2i (x)

)

dF (x) ≤ B <∞.

This further implies that D2+ε(F⋆‖Fθ) and D2(F⋆‖Fθ) are bounded for all θ ∈ Θ.

Comparison with stochastic subgradient descent and defensive importance

sampling. Had we chosen stochastic subgradient descent instead for our stochastic
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optimization algorithm, the method would be

Xn ∼ Fθn

În =
1

n

n
∑

i=1

φ(Xi)
dF

dFθi

(Xi)

gn = − φ2(Xn)

fθn(Xn)

(

dF

dFθn

)2

(Xn)









p1(Xn)
...

pp(Xn)









θn+1 = Π∆p(θn − (C/
√
n)gn).

The projection onto ∆p is computationally simple c.f. Lemma 14 of the appendix.

When assumption (3.3) is satisfied, this method converges as well.

Implementing the few lines of code for the projection onto ∆p can be cumbersome.

This is a trivial issue but it can be a reason to prefer stochastic mirror descent over

stochastic subgradient descent.

There is, however, a good reason to use stochastic mirror descent in this setting.

When using stochastic subgradient descent, it is likely that some entries of θn will

be 0 for some n, by nature of the projection. When using stochastic mirror descent,

however, all entries of θn remain positive for all finite n.

In the context of importance sampling with mixtures of p1, p2, . . . , pp, it may often

be the case that

φdF ≪ (p1 + p2 + · · ·+ pp)dµ

but φdF 6≪ pidµ for some i. In this case, if θ does not have all positive entries, it is

possible φdF 6≪ fθdµ, and the importance sampling fails.

If, say, φdF ≪ ppdµ and ppdµ has finite per-sample variance, then one can use

defensive importance sampling which requires that θ ∈ Θp satisfies θ(p) ≥ ε for some

ε > 0. This ensures that φdF ≪ fθdµ and the per-sample variance of fθdµ is finite

[37, 38, 36]. One can perform defensive adaptive importance sampling with stochastic
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subgradient descent since the projection onto

{θ ∈ Rp | 1T θ = 1, θ1, . . . , θp−1 ≥ 0, θp ≥ ε}

is also computationally simple. Modifying the proof of Lemma 14 of the appendix

leads to an algorithm.

In most cases, however, it is probably simpler to use stochastic mirror descent.

Since θn ≻ 0 for all n, all iterations are well-defined, i.e., φdF ≪ fθndµ and that per-

sample variance of fθdµ is finite, when using stochastic mirror descent, even though

we do not have a rigorous proof of convergence.

Example. Consider the problem of computing

I = E

[

exp(2|X|)
√

|X|

]

=

∫ ∞

0

exp(2x)√
x

√
2 exp(−x2/2)√

π
dx,

where X is a standard normal. Plain Monte Carlo on this setup will not work well

since the random variable exp(2|X|)/
√

|X| has infinite variance. (Even though the

estimate will converge to I by strong law of large numbers.)

For this problem, we consider the adaptive importance sampling algorithm we

get when we choose a mixture of distrubutions P1, P2, and P3 for the family F , the

per-sample variance, D2(F⋆‖Fθ), for the objective to minimize, and stochastic mirror

descent for the stochastic optimization algorithms. The distributions to mix are

dP1(x) =
1

2
√
x
I[0,1](x)dx

dP2(x) = exp(−x)I[0,∞)(x)dx

dP3(x) =
1

5
exp(−x/5)I[0,∞)(x)dx.

As a comparison, we also consider non-adaptive importance sampling with the param-

eter θ = (1/3, 1/3, 1/3). We run the simulation with paramters n = 103, m = 103,

and C = 10−3. We get I ≈ 11.7874, and the estimators’ variances are shown in

Figure 3.3. The optimal mixture weights turn out to be θ⋆ = (0.01, 0.53, 0.46).
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Figure 3.3: Estimator’s variance as a function of runtime for the mixture example.

This is an example where we observe convergence without meeting assumption (3.3).

In particular, φdF 6≪ p1dx and if θ(1) = 0 the per-sample variance of fθdx is infinite.

Nevertheless, the method works well for reasons we have discussed.

3.4.5 Error rate of a communication channel

Consider the problem of finding the error rate of a communication channel using

8-PSK (phase-shift keying) subject to addative white Gaussian noise (AWGN). We

simply provide a terse description and refer interested readers to [5, 70, 35, 45].

The digital modulation scheme 8-PSK sends 3 bits of information (so cases n =

1, 2, . . . , 8) via sending

sn(t) =

√

2E

T
cos
(

2πfct+ n
π

4

)

,

from time t = 0 to t = T . Here E is the energy per symbol (i.e., energy per 3 bits),
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n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

n = 7

n = 8

Figure 3.4: Constellation diagram for 8PSK. When n = 8 is sent, the decoding
succeeds if the random variable X lands within the shaded region.

T is the symbol duration, and fc is the carrier wave frequency (such that fcT is a

positive integer). This signal is sent through a channel and is corrupted by additive

white Gaussian noise:

ds̃n(t) = dsn +

√

N0

2
dWt,

where dWt is white noise or Brownian motion and N0/2 is the noise level. The decoder

receives this corrupted signal and performs integration (say via an integrator circuit)

to obtain

X(1) =

√

E

2

∫ T

0

√

2

T
cos(2πfct)s̃(t) dt

D
= cos

(

n
π

4

)

+

√

N0

E
Z1

X(2) =

√

E

2

∫ T

0

√

2

T
sin(2πfct)s̃(t) dt

D
= sin

(

n
π

4

)

+

√

N0

E
Z2,

where Z1 and Z2 are independent standard normals. Finally, the decoder uses the

nearest neighbor decoding rule, i.e., it reports the n for which the angle nπ/8 is closest

to the angle of the coordinate (X(1), X(2)).
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Assume the signal n = 8 is transmitted. Then the decoder receives a 2D Gaussian

X ∼ N
(

(1, 0),
√

N0/EI
)

.

Let

φ(X) =

{

0 if − π/8 ≤ angle(X) ≤ π/8 (decoding correct)

1 otherwise (decoding fail).

In other words, φ(X) = 1 if the random variable X lies outside the shaded region of

Figure 3.4. We define I = Eφ(X) as the error rate. (The error rates when the signal

n = 1, 2, . . . , 7 are sent are the same by symmetry.)

We consider the adaptive importance sampling algorithm we get when we choose

multivariate Gaussians for the family F , the per-sample variance, D2(F⋆‖Fθ), for the

objective to minimize, and stochastic mirror descent for the stochastic optimization
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algorithm. The adaptive importance sampling method with batch size m is

LnL
T
n = Σn (Cholesky factorization)

Yn1, Yn2, . . . , Ynm ∼ N (0, I)

Xnj = LT
nYnj + µn, j = 1, . . . ,m

wnj =
φ(Xnj)
√

det(Sn)
exp(−‖Xnj − (1, 0)‖22/2 + (Xnj − µn)

TSn(Xnj − µn)/2) j = 1, . . . ,m

În =
1

n

n
∑

i=1

1

m

m
∑

j=1

wij

gSn =
1

m

m
∑

j=1

w2
ij(XnjX

T
nj − µnµ

T
n − Σn)

gbn =
1

m

m
∑

j=1

w2
ij(µn −Xnj)

S∗
n+1 = S∗

n − (C1/
√
n)gSn

Sn+1 = expS∗
n+1

bn+1 = ΠCb
(bn − (C2/

√
n)gbn)

Σn+1 = S−1
n+1

µn+1 = S−1
n+1bn+1,

with Cb = [−10, 10]k.

We run this simulation with n = 103, m = 103, N0/E = 0.01, and C1 = C2 = 10.

For comparison, we also run plain Monte Carlo. We get I ≈ 1.2866 × 10−4. The

results are shown in Figures 3.5 and 3.6.
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Figure 3.5: Average per-sample variance for the error rate problem.
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Figure 3.6: Variance of the estimator as a function of time for the error rate problem.



Chapter 4

Self-normalized importance

sampling

Let F be an unnormalized probability measure, i.e., the normalizing factor 0 <
∫

dF <∞ is unknown and not necessarily 1. (F is a nonnegative measure.) Consider

the problem of computing

I = EF/
∫
dFφ(X) =

∫

φ dF
∫

dF
,

where X ∼ F/
∫

dF is a random variable on X and φ : X → R. Again we assume

0 < E|φ(X)| <∞.

In this setting, generating random samples X ∼ F/
∫

dF is often inefficient. So

although one could employ the plain Monte Carlo method to compute I, its compu-

tational cost per iteration may be unappealing.

Self-normalized importance sampling circumvents this difficulty, in addition to

possibly providing variance reduction. The method computes I with

Xn ∼ F̃

În =

(

n
∑

i=1

φ(Xi)
dF

dF̃
(Xi)

)

/

(

n
∑

i=1

dF

dF̃
(Xi)

)

,

52
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where the sampling distribution F̃ satisfies dF ≪ dF̃ . The idea is that the numerator

of În converges to n
∫

φ dF while the denominator converges to n
∫

dF . The estimator

În is no longer unbiased, i.e., EÎn 6= I, but it is asymptotically consistent and has

asymptotic variance

E(În − I)2 ≈ 1

n

J2 expD2(F⋆‖F̃ )
(
∫

dF )2
. (4.1)

Like before, we call
J2 expD2(F⋆‖F̃ )

(
∫

dF )2

the asymptotic per-sample variance of F̃ . Here F⋆ is the distribution such that

dF⋆ =
1

J
|φ− I| dF

with normalizing factor

J =

∫

|φ(x)− I| dF (x).

Asymptotic variance. Since

1

n

n
∑

i=1

dF

dF̃
(Xi) →

∫

dF

almost surely by the law of large numbers, we have

E(În − I)2 =
1

n2(
∫

dF )2
E





∑n
i=1(φ(Xi)− I)dF

dF̃
(Xi)

1 +
(

1
n
∫
dF

∑n
i=1

dF
dF̃

(Xi)− 1
)





2

≈ 1

n2(
∫

dF )2
E

(

n
∑

i=1

(φ(Xi)− I)
dF

dF̃
(Xi)

)2

=
1

n(
∫

dF )2
EF̃

(

(φ(X)− I)
dF

dF̃
(X)

)2

=
1

n(
∫

dF )2
J2 expD2(F⋆‖F̃ ).
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Although this argument is not rigorous, it does illustrate the main idea and should

be good enough in practice.

Central limit theorem. If dF ≪ dF̃ ,

VarF̃

(

dF

dF̃
(X)

)

<∞, VarF̃

(

φ(X)
dF

dF̃
(X)

)

<∞,

then one can rigorously establish

√
n(În − I)

D→ N
(

0,
1

(
∫

dF )2
J2 expD2(F⋆‖F̃ )

)

via the delta method.

Outline. In this section we show how the adaptive importance sampling method

presented in Section 3 extends to adaptive self-normalized importance sampling. The

material is presented in a way to emphasize the parallels between the two setups.

In this section, however, much of the theoretical analysis, such as the derivation

of (4.1), is not rigorous. Rather, the analysis should be intepreted as heuristic justi-

fications of why the methods of this section work as well as the methods of Section 3.

4.1 Adaptive self-normalized importance sampling

Adaptive self-normalized importance sampling computes I with

Xn ∼ F̃i

În =

(

n
∑

i=1

φ(Xi)
dF

dF̃i

(Xi)

)

/

(

n
∑

i=1

dF

dF̃i

(Xi)

)

F̃n+1 = update with X1, . . . , Xn, F̃1, . . . , F̃n,

where the sampling distributions satisfy dF ≪ dF̃n for n = 1, 2, . . . .

As in the non-adaptive case, we can argue that În is asymptotically consistent
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with asymptotic variance

E(În − I)2 ≈ 1

n

(

1

n

n
∑

i=1

J2 expD2(F⋆‖F̃i)

(
∫

dF )2

)

.

Asymptotic consistency. Assume

VarF̃n

(

dF

dF̃n

(Xn)

)

, VarF̃n

(

φ(Xn)
dF

dF̃n

(Xn)

)

are bounded for n = 1, 2, . . . . This means the sampling distributions F̃1, F̃2, . . .

cannot get worse indefinitely.

Then the strong law of large numbers for Martingales [29, §VII.9 Theorem 3] give

us
1

n

n
∑

i=1

dF

dF̃i

(Xi) →
∫

dF

and
1

n

n
∑

i=1

φ(Xi)
dF

dF̃i

(Xi) →
∫

φ dF

almost surely. This gives us În → I almost surely.

Asymptotic variance. Assume

VarF̃n

(

dF

dF̃n

(Xn)

)

is bounded for n = 1, 2, . . . . Then

1

n

n
∑

i=1

dF

dF̃i

(Xi) →
∫

dF,

almost surely, as discussed before.
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Then we can say

E(În − I)2 =
1

n2(
∫

dF )2
E





∑n
i=1(φ(Xi)− I) dF

dF̃i
(Xi)

1 +
(

1
n
∫
dF

∑n
i=1

dF
dF̃i

(Xi)− 1
)





2

≈ 1

n2(
∫

dF )2
E

(

n
∑

i=1

(φ(Xi)− I)
dF

dF̃i

(Xi)

)2

=
1

n(
∫

dF )2

(

1

n

n
∑

i=1

EEF̃i

(

(φ(X)− I)
dF

dF̃i

(X)

)2
)

=
1

n(
∫

dF )2

(

1

n

n
∑

i=1

EJ2 expD2(F⋆‖F̃i)

)

,

where we use the same conditional dependency argument as in Section 3.2. Again,

this argument is not rigorous, but is made to illustrate the main idea.

4.1.1 Main framework

As in Section 3, determining how to update F̃n fully specifies the method and its

performance, and we will do so by making following 3 choices:

• Choose a family of distributions.

• Choose an objective to minimize.

• Choose a stochastic optimization method to perform the minimization.

Again, if we choose a family F with a log-concave parameterization, the asymp-

totic per-sample variance
J2 expD2(F⋆‖Fθ)

(
∫

dF )2
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is a convex function of θ. Using the parameterization, the algorithm will be of the

form:

Xn ∼ Fθn

În =

(

n
∑

i=1

φ(Xi)
dF

dFθi

(Xi)

)

/

(

n
∑

i=1

dF

dFθi

(Xi)

)

(4.2)

θn+1 = Stochastic optimization with X1, . . . , Xn, θ1, . . . , θn.

Write V⋆ for the mimumum asymptotic per-sample variance for the family F , i.e.,

V⋆ is the optimal value for

minimize (J/
∫

dF )2 expD2(F⋆‖Fθ)

subject to θ ∈ Θ.

If algorithm (4.2) is run with a stochastic optimization algorithm such that

1

n

n
∑

i=1

E
J2 expD2(F⋆‖Fθi)

(
∫

dF )2
= V⋆ + o(1),

then we have
1

n
V⋆ / VarÎn /

1

n
V⋆ + o

(

1

n

)

.

So we can say

VarÎn ≈ 1

n
V⋆

and the variance of Î is asymptotically optimal with respect to the family F .

As in Section 3, we can use stochastic subgradient descent or stochastic mirror

descent for this. Unfortunately, however, there is a complication for self-normalized

adaptive importance sampling: we do not have access to stochastic gradients the same

way we did in adaptive importance sampling.
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4.2 Biased stochastic subgradients

As discussed in Section 2.4, when Xn ∼ Fθn

gn = −(φ(Xn)− I)2

fθn(X)

(

dF

dFθn

(X)

)2

∇θfθn(X)

is a (constant multiple of a) stochastic subgradient of the asymptotic per-sample

variance at θn:
1
∫

dF
Eg ∈ ∂θ

(

J2 expD2(F⋆‖Fθ)

(
∫

dF )2

)

(θn)

That we do not know
∫

dF is not a problem; we can absorb the fixed unknown constant

into the step size in our stochastic optimization methods.

However, it is a problem that g uses I, the unknown quantity of interest. So

instead of g, we use

g̃n = −(φ(Xn)− În−1)
2

fθn(X)

(

dF

dFθn

(X)

)2

∇θfθn(X),

and we say g̃n is a biased stochastic subgradient.

Stochastic subgradient descent or stochastic mirror descent can use biased stochas-

tic subgradients, as long as the bias or error diminishes to 0 as n→ ∞. For example,

the algorithm

θn+1 = ΠΘ(θn − αng̃n) (4.3)

with αn = C/
√
n solves problem (2.1) with rate

1

n

n
∑

i=1

EU(θi) ≤ U(θ⋆) +O
(

1√
n

)

+O
(

1

n

n
∑

i=1

E‖g̃i − gi‖2
)

.

So
1

n

n
∑

i=1

EU(θi) → U(θ⋆)

provided that E‖g̃n − gn‖2 → 0.
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Convergence proof. With appropriate assumptions, we can establish În → I al-

most surely, as discussed. However, this does not necessarily imply E‖g̃n − gn‖ → 0.

Nevertheless, the assumption E‖g̃n − gn‖ → 0 seems reasonable, and the following

lemma based on it should reasonably explain the behavior of the stochastic optimiza-

tion we use in our methods.

Lemma 8. Assume that Θ is nonempty compact convex, that U has a subgradient

for all θ ∈ Θ, that E[‖gn‖22|θn] ≤ G2 < ∞ for n = 1, 2, . . . , If gn is a stochastic

subgradient of U at θn then (4.3) converges with rate

1

n

n
∑

i=1

EU(θi) ≤ U(θ⋆) +O(1/
√
n) +

D

n

n
∑

i=1

E‖g̃i − gi‖2.

So if E‖g̃n − gn‖2 → 0 then

1

n

n
∑

i=1

EU(θi) → U(θ⋆).

Proof. Here we simply outline the key steps that are different from the analysis of

Section 2.2.1. The initial inequalities change to

E
[

‖θi+1 − θ⋆‖22 | θi
]

≤ ‖θi − θ⋆‖22 +
C2

i
G2 − 2

C√
i
(U(θi)− U(θ⋆))

+ 2
C√
i
E[(gi − g̃i)

T (θi − θ⋆) | θi]

≤ ‖θi − θ⋆‖22 +
CG2

i
− 2

C√
i
(U(θi)− U(θ⋆))

+ 2
C√
i
E[‖g̃i − gi‖2 | θi]‖θi − θ⋆‖2

≤ ‖θi − θ⋆‖22 +
CG2

i
− 2

C√
i
(U(θi)− U(θ⋆))

+ 2
CD√
i
E[‖g̃i − gi‖2 | θi],

where the second inequality follows from Cauchy-Schwartz. Following the same steps
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as before we get

1

n

n
∑

i=1

EU(θi) ≤ U(θ⋆) +

(

D2

2C
+ CG2

)

1√
n
+
D

n

n
∑

i=1

E‖g̃i − gi‖2.

4.3 Central limit theorem

Lemma 9. Assume algorithm (4.2) uses a stochastic optimization with performance

1

n

n
∑

i=1

E
J2 expD2(F⋆‖Fθi)

(
∫

dF )2
= V⋆ + o(1).

Furthermore, assume D2(F/
∫

dF‖Fθ) and D2+ε(F⋆‖Fθ) are bounded for all θ ∈ Θ.

Then we have
√
n(În − I)

D→ N (0, V⋆).

Proof. With the same Martingale CLT argument as in Section 3.3, we have

1√
n
∫

dF

n
∑

i=1

(φ(Xi)− I)
dF

dFθi

(Xi)
D→ N (0, V⋆).

Since the 2nd moments are bounded we have

1

n

n
∑

i=1

dF

dFθi

(Xi) →
∫

dF

in probability. Since

În − I =
1

n
∫

dF

(

1 +

(

1

n
∫

dF

n
∑

i=1

dF

dFθi

(Xi)− 1

))−1 n
∑

i=1

(φ(Xi)− I)
dF

dFθi

(Xi)

we apply Slutsky’s lemma to get the desired result.
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4.4 Examples

4.4.1 Stochastic gradient descent with exponential family

In this section, we consider the adaptive importance sampling algorithm we get

when we choose an exponential family for the family F (as defined in Section 2.3),

D2(F⋆‖Fθ), the asymptotic per-sample variance, for the objective to minimize, and

stochastic subgradient descent (with biased stochastic subgradients) for the stochastic

optimization algorithm.

The adaptive importance sampling method with these choices is

Xn ∼ Fθn

wn =
dF

dFθn

(Xn)

În =

(

n
∑

i=1

φ(Xi)wi

)

/

(

n
∑

i=1

wi

)

gn = (φ(Xn)− În−1)
2w2

n(∇A(θ)− T (Xn))

θn+1 = ΠΘ(θn − (C/
√
n)gn).

We expect În to have performance

E(În − I)2 ≈ 1

n
V⋆

and
√
n(În − I)

D→ N (0, V⋆).

4.4.2 Bayesian estimation

Consider the Bayesian setup where Z1, Z2, . . . , Zℓ ∼ N (µ, I) and µ is given the prior

π(µ) ∝







(

∏k
i=1 µ(i)

)

exp
(

−∏k
i=1 µ(i)

)

if µ ≻ 0

0 otherwise.
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Write

Z̄ =
1

ℓ

ℓ
∑

i=1

Zi.

Then the unnormalized posterior distribution of µ is

f(µ) =
ℓk

(2π)k/2
exp(−ℓ‖µ− Z̄‖22/2)π(µ).

We wish to estimate

I = E[1Tµ|Z1, . . . , Zℓ].

We consider the adaptive importance sampling algorithm we get when we choose

affine transformations of the continuous random variable with density

p(y) =
1

2k
exp(−‖y‖1)

for the family F , D2(F⋆‖Fθ), the asymptotic per-sample variance, for the objective

to minimize, and stochastic mirror descent for the stochastic optimization algorithm.
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The adaptive self-normalized importance sampling algorithm with batch size m is

Yn1, . . . , Ynm ∼ p(x)

Xnj ∼ A−1
n (Ynj − bn), j = 1, . . . ,m

wnj =
f(Xnj)

p(Ynj) det(An)

În =

(

n
∑

i=1

m
∑

j=1

φ(Xij)wij

)

/

(

n
∑

i=1

m
∑

j=1

wij

)

hnj = sign(Ynj)

gAn =
1

2m

m
∑

j=1

(φ(Xnj)− În−1)
2w2

nj(hnjX
T
nj +Xnjh

T
nj − 2A−1

n )

gbn =
1

m

m
∑

j=1

(φ(Xnj)− În−1)
2w2

njhnj

A∗
n+1 = A∗

n − (C1/
√
n)gAn

An+1 = expA∗
n+1

bn+1 = bn − (C2/
√
n)gbn.

For comparison, we also consider the non-adaptive importance sampling method

where X = Y + Z̄ and Y ∼ p(x)dx.

We use the parameters n = 103, m = 103, k = 3, ℓ = 20, and C1 = C2 = 0.3. The

computations give us I ≈ 4.5203. Figures 4.1 and 4.2 show the performance.
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Figure 4.1: Asymptotic per-sample variance for the Bayes estimation problem.
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Figure 4.2: Variance of the estimator for the Bayes estimation problem.



Chapter 5

What-if simulation

Consider the problem of computing the function

I(a) = EF (a)φ(X; a) =

∫

φ(x; a) dF (x; a)

for a ∈ A. Here F (a) is a probability measure on X for each a and X ∼ F (a) is

a random variable on X . The integrand is φ : X × A → R. Again, we assume

0 < EF (a)|φ(X; a)| <∞.

One approach is to perform separate Monte Carlo simulations on I(a) for each

a ∈ A. However, it is often better to compute I(a) for all a ∈ A simulatneously via

importance sampling:

Xn ∼ F̃ (a)

În(a) =
1

n

n
∑

i=1

φ(Xi; a)
dF (a)

dF̃
(Xi).

The sampling distribution has to satisfy φ(x; a)dF (x; a) ≪ dF̃ (x) for all a ∈ A. As

before, În(a) is unbiased, i.e., I(a) = EÎn(a), and

max
a∈A

VarÎn(a) =
1

n
max
a∈A

VarF̃

(

φ(X; a)
dF (a)

dF̃
(X)

)

.
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Adaptive importance sampling for what-if simulations has the form

Xn ∼ F̃i

În =
1

n

n
∑

i=1

φ(Xi; a)
dF (a)

dF̃i

(Xi)

F̃n+1 = update with X1, . . . , Xn, F̃1, . . . , F̃n,

where φ(x; a)dF (a) ≪ F̃i for all a ∈ A and i = 1, 2, . . . . Again, În is unbiased, i.e.,

EÎn(a) = I, and

max
a∈A

VarÎn(a) =
1

n
max
a∈A

(

1

n

n
∑

i=1

EVarF̃i

(

φ(X; a)
dF (a)

dF̃i

(X)

)

)

.

In this section, we explore adaptive importance sampling methods that minimize the

maximum variance of the estimator.

5.1 Primal-dual formulation

Often, A, the set of parameters, is continuous, and therefore |A| = ∞. For now,

however, let us assume A = {a1, a2, . . . , aℓ}.
We write ∆ℓ for the ℓ-dimensional probability simplex, i.e.,

∆ℓ = {λ ∈ Rℓ | 1Tλ = 1, λ1, . . . , λℓ ≥ 0}.

Then it is simple to verify

max
a∈A

VarF̃

(

φ(Xi; a)
dF (a)

dF̃
(X)

)

= max
λ∈∆ℓ

ℓ
∑

k=1

λ(k)VarF̃

(

φ(X; ak)
dF (ak)

dF̃
(X)

)

.

Now let F be a family with log-concave parameterization, where φ(x; a)dF (x; a) ≪
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dFθ(x) for all θ ∈ Θ and a ∈ A. Then define

K(θ, λ) =
ℓ
∑

k=1

λ(k)VarFθ

(

φ(X; ak)
dF (ak)

dFθ

(X)

)

,

which is convex in θ and concave in λ.

Finding the sampling distribution within F with minimum maximum variance is

equivalent to finding a saddle point of K, i.e., the sampling dsitribution Fθ⋆ has the

minimum maximum variance if

θ⋆ = argmin
θ∈Θ

max
λ∈∆ℓ

K(θ, λ).

We write K⋆ for the minimum maximum variance, i.e.,

K⋆ = inf
θ∈Θ

max
λ∈∆ℓ

K(θ, λ) = max
λ∈∆ℓ

inf
θ∈Θ

K(θ, λ).

The order of min and max can be swapped due to Sion’s minimax theorem [69].

Stochastic subgradients. For a function K(θ, λ) that is convex in θ and concave

in λ, we say (g, h) is a subgradient of K at (θ0, λ0) if

Eg ∈ ∂θK(θ0, λ0)

Eh ∈ −∂λ(−K)(θ0, λ0).

If K is differentiable with respect to λ at (θ0, λ0), then

Eh = ∇λK(θ0, λ0).
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Let X1, . . . , Xm ∼ Fθ be independent, and let the parameterization of F be log-

concave. Then by a similar argument as Section 2.4.1,

wj(a) = φ(Xj; a)
dF (a)

dFθ0

(Xj), j = 1, . . . ,m

g =
1

m

m
∑

j=1

ℓ
∑

k=1

λ(k)γ2kwj(ak)
2

(

− 1

fθn(Xj)
∇θfθ0(Xj)

)

h(k) = Sample variance of {γkwj(ak) | j = 1, . . . ,m} , k = 1, . . . , ℓ

provides stochastic subgradients of K at (θ0, λ0). We note that sample variance must

use Bessel’s correction, i.e., divide by m− 1, for it to be an unbiased estimate.

5.1.1 Main framework

As in Section 3, determining how to update F̃n fully specifies the adaptive importance

sampling method and its performance, and we will do so by making following 3 choices:

• Choose a family of distributions.

• Choose an objective to minimize.

• Choose a stochastic optimization method to perform the minimization.

As mentioned, if we choose a family F with a log-concave parameterization, K(θ, λ)

is convex in θ and concave in λ. Using the parameterization, the algorithm will be of

the form:

Xn ∼ Fθn

În =
1

n

n
∑

i=1

φ(Xi; a)
dF (a)

dFθi

(Xi)

(θn+1, λn+1) = Stochastic optimization with X1, . . . , Xn, θ1, . . . , θn,

where the stochastic optimization method seeks a saddle point of K.
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5.2 Stochastic optimization for convex-concave sad-

dle functions

The stochastic optimization method stochastic saddle point subgradient descent solves

min
θ∈Θ

max
λ∈∆ℓ

K(θ, λ)

with

θn+1 = ΠΘ(θn − (C1/
√
n)gn) (5.1)

λn+1 = Π∆ℓ
(λn + (C2/

√
n)hn),

where C1and C2 are positive constants, ΠΘ and Π∆ℓ
are the projections onto Θ and

∆ℓ, respectively, and gn and hn are subgradients of K at (θn, λn).

Convergence proof.

Lemma 10. Assume K has a subgradient for all θ ∈ Θ and λ ∈ ∆ℓ. Assume

E[‖gn‖22|θn] ≤ G2
1 and E[‖hn‖22|θn] ≤ G2. Also assume Θ is nonempty compact convex.

Then (5.1) converges with rate

max
λ∈∆ℓ

1

n

n
∑

i=1

EK(θi, λi) ≤ K⋆ +O
(

1√
n

)

.

Proof. Write D1 and D2 for the diameters of Θ and ∆ℓ, respectively. As discussed in

Section 2.2.1 that K has a subgradient on all of Θ×∆ℓ implies −∞ < K(θ, λ) <∞
on Θ×∆ℓ.

By convexity and concavity of K, we have

K(θi, λi)−K(θ, λi) ≤ gTi (θi − θ)

−K(θi, λi) +K(θi, λ) ≤ hTi (λ− λi).
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Adding these two inequalities we get

K(θi, λ)−K(θ, λi) ≤ gTi (θi − θ)− hTi (λi − λ).

We sum and take the expectation to get

n
∑

i=1

EK(θi, λ)−
n
∑

i=1

EK(θ, λi) ≤
n
∑

i=1

EgTi (λ− λi)−
n
∑

i=1

EhTi (θi − θ).

Using the nonexpansivity of the projection (c.f. Lemma 13 of the appendix), we

have
1

2
‖θi+1 − θ‖22 ≤

1

2
‖θi − θ‖22 −

C1√
i
gTi (θi − θ) +

C2
1

2i
‖gi‖22.

Take the full expectation and reorganize to get

EgTi (θi − θ) ≤
√
i

2C1

E‖θi − θ‖22 −
√
i

2C1

E‖θi+1 − θ‖22 +
C1

2
√
i
G2

1.

With the same “almost telescoping” series argument as before, we get

n
∑

i=1

EgTi (θi − θ) ≤ D2
1

2C1

√
n+ C1G

2
1

√
n.

Repeating the same argument with λ, we get

−
n
∑

i=1

EhTi (θi − θ) ≤ D2
2

2C2

√
n+ C2G

2
2

√
n.

We put these inequalities together to get

n
∑

i=1

EK(θi, λ)−
n
∑

i=1

EK(θ, λi) ≤
(

D2
1

2C1

+
D2

2

2C2

+ C1G
2
1 + C2G

2
2

)√
n.
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Since K(θ, λ) is linear in λ, we have

min
θ∈Θ

ℓ
∑

k=1

EK(θ, λk) = nmin
θ∈Θ

K

(

θ,E
1

n

ℓ
∑

k=1

λk

)

≤ nK⋆,

we we conclude

max
λ∈∆ℓ

n
∑

i=1

(EK(θi, λ)−K⋆) ≤ max
λ∈∆ℓ

n
∑

i=1

EK(θi, λ)−min
θ∈Θ

n
∑

i=1

EK(θ, λi)

≤
(

D2
1

2C1

+
D2

2

2C2

+ C1G
2
1 + C2G

2
2

)√
n.

5.3 Examples

5.3.1 Stochastic saddle point subgradient descent with expo-

nential family

In this section, we consider the algorithm we get when we choose an exponential

family for the family F (as defined in Section 2.3), the maximum per-sample variance

for the objective to minimize, and stochastic saddle point subgradient descent for the

stochastic optimization algorithm.

Assume Θ is nonempty convex compact and

Θ ⊂ int

{

θ

∣

∣

∣

∣

∫ (

φ(x; a)
dF (a)

dFθ

)4

dFθ <∞, for all a ∈ A
}

,

So Θ is in the interior of the set for which the estimators have finite 4th moments for

all a ∈ A.
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The adaptive importance sampling method with these choices is

Xn1, Xn2, . . . , Xnm ∼ Fθn

wnj(a) = φ(Xnj; a)
dF (a)

dFθn

(Xnj), j = 1, . . . ,m

În(a) =
1

nm

n
∑

i=1

m
∑

j=1

wnj(a)

gn =
1

m

m
∑

j=1

(

ℓ
∑

k=1

λn(k)w
2
nj(ak)

)

(∇A(θ)− T (Xnj))

hn(k) = Sample variance of {wnj(ak) | j = 1, . . . ,m} , k = 1, . . . , ℓ

θn+1 = ΠΘ(θn − (C1/
√
n)gn)

λn+1 = Π∆ℓ
(λn + (C2/

√
n)hn)

The estimator is unbiased, i.e., EÎn(a) = I(a), and has maximum variance

1

nm
K⋆ ≤ max

a∈A
VarÎn(a) ≤

1

nm
K⋆ +O

(

1

n3/2m

)

.

We note that batching is necessary as the sample variance is undefined when m = 1.

Discussion of assumptions. The assumptions do in fact imply the assumptions

necessary to ensure stochastic saddle point subgradient descent converges. The jus-

tification is essentially the same as that of Section 3.4.1, so we omit it.

5.3.2 Stochastic saddle point mirror descent

Just as stochastic subgradient descent generalizes to stochastic mirror descent, stochas-

tic saddle point subgradient descent generalizes to stochastic saddle point mirror de-

scent. Instead of explaining the generalization, we merely point out that replacing

the update

λn+1 = Π∆ℓ
(λn + (C2/

√
n)hn)
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with

λ∗n+1 = λ∗n + (C2/
√
n)hn

λn+1 ∝ exp(λ∗n+1)

yields an instance of stochastic saddle point mirror descent.

5.3.3 Order statistic

Let X ∈ Rk be IID standard normals. We sort the entries of X to get its order

statistic

X(1) ≤ X(2) ≤ · · · ≤ X(k).

We define φ(X; j) = X(j) for j = 1, . . . , k. The goal is to compute

I(j) = Eφ(X; j),

i.e., we wish to compute the means of the order statistic.

We consider the adaptive importance sampling algorithm we get when we choose

multivariate Gaussians with zero mean for the family F , the maximum per-sample

variance, for the objective to minimize, and stochastic saddle point mirror descent

for the stochastic optimization algorithm.
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The algorithm with batch size m is

LnL
T
n = Σn (Cholesky factorization)

Yn1, Yn2, . . . , Ynm ∼ N (0, I)

Xnj = LT
nYnj, j = 1, . . . ,m

wnj(a) = φ(Xnj; a)
dF (a)

dFθn

(Xnj), j = 1, . . . ,m

În(a) =
1

nm

n
∑

i=1

m
∑

j=1

wnj(a)

gn =
1

m

m
∑

j=1

(

ℓ
∑

k=1

λn(k)w
2
nj(ak)

)

(XnjX
T
nj − Σn)

hn(k) = Sample variance of {wnj(ak) | j = 1, . . . ,m} , k = 1, . . . , ℓ

S∗
n+1 = S∗

n − (C1/
√
n)gn

Sn+1 = expS∗
n+1

λ∗n+1 = λ∗n + (C2/
√
n)hn

λn+1 ∝ exp(λ∗n+1)

Σn+1 = S−1
n+1.

As a comparison, we also consider the what-if simulation via plain Monte Carlo.

We run this simulation with n = 103, m = 103, k = 10, C1 = 0.3, and C2 = 3. We

get

(EX(1),EX(2), . . . ,EX(10))

≈ (−1.539,−1.002,−0.657,−0.376,−0.123, 0.122, 0.375, 0.655, 1.001, 1.538).

Figure 5.1 and 5.2 shows the performance of the two methods. We can see that

although the adaptive method has better maximum per-sample variance, but worse

performance when measured computation time.
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Figure 5.1: Maximum per-sample variance for the order statistic problem.
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Figure 5.2: Maximum variance of the estimator for the order statistic problem.
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5.3.4 Weighted maximum variance

So far, we considered the maximum per-sample variance for the objective to minimize.

However, we can infact generalize this approach to consider the weighted maximum

variance

max
k=1,...,ℓ

γ2kVarÎn(ak)

with γ ∈ Rk, for the objective to minimize. If we can choose γk ≈ 1/I(ak) then the

objective becomes the approximate maximum coefficient of variation.

Without going into detail, we simply point out that the stochastic subgradients

for the weighted per-sample variance becomes

wnj(a) = φ(Xnj; a)
dF (a)

dFθn

(Xnj), j = 1, . . . ,m

gn =
1

m

m
∑

j=1

ℓ
∑

k=1

λn(k)γ
2
kwnj(ak)

2

(

− 1

fθn(Xnj)
∇θfθn(Xnj)

)

hn(k) = Sample variance of {γkwnj(ak) | j = 1, . . . ,m} , k = 1, . . . , ℓ.



Chapter 6

Other topics

6.1 When adaptive importance sampling fails

Importance sampling fails in a practical sense when the per-sample variance of F̃ is

too large. Unfortunately, the adaptive importance sampling method presented in this

work suffers from the same problem.

Consider the problem of estimating

I = Eφ(X) = P(X ≥ 1010)

where X is an exponential random variable with mean 1 and φ(X) = Î{X≥1010}.

For our family with log-concave parameterization, we choose Gaussians with mean

θ and Θ = [−10−100, 10100]. The optimal parameter θ⋆ will provide a decent per-

sample variance. Moreover, one can verify that all the technical assumptions are met

and thereby conclude that the adaptive importance sampling method (minimizing

the per-sample variance with stochastic subgradient descent) will have the optimal

asymptotic variance.

However, if we were to use the starting point θ1 = 0, the method will fail miserably.

On average, the algorithm will make no progress for the first e10
10

iterations, which of

course is way too many. So even though the theory guarantees asymptotic optimality

and even though we know the asymptotic optimum is good, the method is useless

79
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under any practical criterion.

So in a sense, the adaptive importance sampling method inherits the same difficul-

ties from importance sampling. If the starting point θ1 is decent adaptive importance

sampling will take you to the optimal parameter θ⋆, but if the starting point is bad

adaptive importance sampling does not offer much help.

We can make this statement more precise in the case of using exponential families

for F . In the convergence proofs, we saw that the constants of the higher order terms

are related to D4(F⋆‖Fθ). So the constants are reasonably small when D4(F⋆‖Fθ)

is small. However, when θ1 is bad, meaning the per-sample variance D2(F⋆‖Fθ1) is

large, D4(F⋆‖Fθ1) ≥ D2(F⋆‖Fθ1) is also large. So a starting point with reasonable per-

sample variance is necessary for the adaptive method to make progress in a reasonable

number of iterations.

In conclusion, we should view adaptive importance sampling as an approach to im-

prove importance sampling, not an approach to fix importance sampling. In a setting

where one cannot make importance sampling work, adaptive importance sampling

will not work either.

6.2 Non-uniform weights

So far we have only considered uniform weights for our estimator În, but this is not

necessary. So instead of using

În =
1

n

n
∑

i=1

φ(Xi)
dF

dFθi

(Xi),

we could use

În =

(

n
∑

i=1

ηiφ(Xi)
dF

dFθi

(Xi)

)

/

(

n
∑

i=1

ηi

)

for a positive sequence of weights η1, η2, . . . . It is easy to see În is unbiased. We can

do likewise in self-normalized importance sampling and what-if simulations as well.

For why non-uniform weights might be better, one can argue that the initial

iterates should have smaller weights as they have larger variance. Another argument
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comes from [58, Theorem 4]. To analyze the performance of În with non-uniform

weights, we would need a convergence rate on

(

n
∑

i=1

ηiEU(θi)

)

/

(

n
∑

i=1

ηi

)

→ U(θ⋆)

instead of (2.3). This can be done by modifying the convergence proof of Section 2.2.1.

6.3 Confidence intervals

It is well known that the sample variance of n IID random variables provide an

unbiased estimate of their variance when Bessel’s correction (dividing by n − 1) is

used. We can do the same to obtain an unbiased estimate of VarIn in our adaptive

importance sampling method.

For notational simplicity, write

Zn = φ(Xn)
dF

dFθn

(Xn), Zn =
1

n

n
∑

i=1

Zi.

Then

În =
1

n

n
∑

i=1

Zn

and EZi = EZn = I for i = 1, . . . , n.

We adapt the standard argument to our setup and use the conditional dependency

argument of Section 3.2 to get

E

[

n
∑

i=1

Z2
i − 2ZiZn + Z

2

n

]

= E

n
∑

i=1

Z2
i − nEZ

2

n

=
n
∑

i=1

EVarFθi

(

φ(Xn)
dF

dFθn

(Xn)

)

+ nI2

− 1

n

n
∑

i=1

EVarFθi

(

φ(Xn)
dF

dFθn

(Xn)

)

− nI2.
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Finally, we reorganize to get

E
1

n(n− 1)

n
∑

i=1

(Zi − Zn)
2 =

1

n

n
∑

i=1

EVarFθi

(

φ(Xn)
dF

dFθn

(Xn)

)

= VarÎn.

So we can establish a confidence interval around În with

VarÎn ≈ 1

n
Sample variance of

{

φ(Xi)
dF

dFθi

(Xi)

∣

∣

∣

∣

i = 1, . . . , n

}

.

6.4 Optimal rates

Using step sizes αn = C/
√
n, we showed that stochastic subgradient descent converges

with rate O(1/
√
n). This translates to

VarÎn =
1

n
V⋆ +O

(

1

n3/2

)

.

As discussed, V⋆/n is optimal with respect to the family F . However, the higher-order

term 1/n3/2 need not be optimal. Under certain assumptions, different step sizes can

make stochastic subgradient descent to converge at a rate faster than O(1/
√
n). This

will translate to an improved higher-order term for VarÎn.

This discussion, however, goes beyond the scope of this work. The body of research

investigating what assumptions and what step sizes yield what rates is vast and

nuanced [13, 6]. In this work, we only considered step sizes αn = C/
√
n, because this

choice is simple and is known to be robust, both in a theoretical and empirical sense

[53].
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Conclusion

In this work, we presented a framework for performing adaptive importance sampling

with stochastic convex optimization. When the family of sampling distributions in

consideration has a log-concave parameterization, the objectives of interest become

convex functions of the parameters. This allows us to use stochastic convex opti-

mization methods that are computationally simple, and this allows us to use tools

from convex analysis to analyze the performance of the methods. The resulting

method performs importance sampling and stochastic optimization simultaneously,

and has optimal asymptotic performance with respect to the family of sampling dis-

tributions in consideration. We also showed how this approach can be extended to

self-normalized importance sampling and what-if simulations. For what-if simulations

the method asymptotically achieves the minimum maximum variance, which, to the

best of our knowledge, is a novel approach.

The proposed method, however, does have some practical drawbacks. First, the

proposed adaptive importance sampling method will not be effective in setups where

non-adaptive importance sampling is infeasible, even if the theory states asymptotic

optimality. Also, the variance reduction may not be large enough to justify the addi-

tional cost of the adaptive update, compared to non-adaptive importance sampling.

Finally, tuning the optimization parameters, an issue we did not explore, does add to

cost in terms of human effort and computation time.
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Nevertheless, there are setups where this method does bring a practical improve-

ment, and the framework’s generality allows a broad applicability. Furthermore, we

believe this work is interesting from a theoretical standpoint.

In a borad sense, that adaptive importance sampling is an optimization problem

that can benefit from convexity is a useful viewpoint that lead to this work. We

are hopeful that future work in Monte Carlo simulations can also benefit from this

approach.
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Appendix

8.1 Stochastic subgradients

Let X(ω) be a random variable under a probability space (Ω,F , P ), where Ω is a

sample space, F is a σ-algebra of Ω, and P is a probability measure on F . We say

f(θ;X) is a random function of θ if f(θ;X) is a measurable function of X for all fixed

θ.

Assume f(θ; x) is convex in θ on Θ for P -almost all x. Then Ef(θ;X) is a convex

function of θ because

Ef(ηθ1 + (1− η)θ2;X) ≤ ηEf(θ1;X) + (1− η)Ef(θ2;X).

for any η ∈ [0, 1] and θ1, θ2 ∈ Θ. (We assume the expectation is never −∞.)

If f(θ; x) is differentiable in θ for P -almost all x, then∇f(θ; x) is σ(X)-measurable

and E∇θf(θ;X) is well-defined if E‖∇θf(θ;X)‖1 < ∞. When f(θ; x) is not neces-

sarily differentiable in θ, one might be tempted to consider

E [∂θf(θ;X)]

in the discussion of stochastic subgradients. While making sense of this expectation

of random sets is possible, we avoid this complication [9].
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Rather, consider a F -measurable random variable g such that

g(ω) ∈ ∂θf(θ0;X(ω)).

We say g is a measurable selection of ∂θf(θ0;X). By definition Eg(X) is well-defined

provided that E‖g(X)‖1 <∞. Furthermore,

Eg ∈ ∂Ef(θ0;X)

because

f(θ;X) ≥ f(θ0;X) + gT (θ − θ0)

Ef(θ;X) ≥ Ef(θ0;X) + EgT (θ − θ0).

This is convenient because the assertion

∇Ef(θ;X) = E∇f(θ;X)

is, technically speaking, not always true. However, we can, in a sense, swap the order

of ∂ and E.

Throughout this work, the requirement that a stochastic subgradient should be

measurable, i.e., that the selection g ∈ ∂f(θ;X) be measurable, is omitted. We

consider this technical detail to be implied, since any real-world implementation of a

stochastic subgradient will be measurable.

Lemma 11. Assume dFθ = fθdµ where fθ(x) is log-concave in θ on Θ for µ-almost

all x. Let X ∼ Fθ0, and h ∈ ∂(− log fθ0(X)). Then

g =

(

dF

dFθ0

(X)

)2

h

is a stochastic subgradient of the convex function

∫

dF

dFθ

dF
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at θ0.

Proof. We first show a result similar to the chain rule for derivatives. Let U(θ) be

a convex function on Θ, and let g ∈ ∂U(θ0). Then by definition of subgradients, we

have

U(θ) ≥ U(θ0) + gT (θ − θ0)

for all θ ∈ Θ. Then

expU(θ) ≥ exp(U(θ0) + gT (θ − θ0))

≥ expU(θ0) + expU(θ0)g
T (θ − θ0).

The first and inequality follows from monotoncity and convexity of exp, respectively.

(From this one could conclude exp(h(θ))∂h(θ) ⊆ ∂ exp(h(θ)), but we just need the

inequality.)

Now we have

exp(− log fθ)h ∈ ∂ exp(− log fθ)

1

fθ
h ∈ ∂

1

fθ
dF

dµ

1

fθ
h ∈ ∂

dF

dµ

1

fθ

EF

[

dF

dFθ

h

]

∈ ∂EF

[

dF

dFθ

]

When differentiable, the random variable

−h(X) = ∇θ log fθ(X)

with X ∼ Fθ is called the score function [22, 47]. Score functions are known to

have zero mean under certain regularity conditions. Here we repeat the standard
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argument:

EFθ
− h(X) = EFθ

∇θ(log fθ(X)) =

∫

1

fθ
(∇θfθ)fθ dµ

=

∫

∇θfθ dµ = ∇θ

∫

fθ dµ = ∇1 = 0.

Although this fact is not directly related to this work, it is often useful as a debugging

tool.

Let us see Lemma 11 applied to the 3 families with log-concave parameterizations.

With an exponential family, we get

g =

(

dF

dFθ

)2

(∇A(θ)− T (x)).

With a mixture, we get

g = −
(

dF

dFθ

)2
1

fθ















p1

p2
...

pp















.

With affine transformations of a continuous log-concave variable, we get

Y ∼ p(x)dx

X = A−1(Y − b)

h = ∇(− log p)(Y )

gA =
1

2

(

dF (X)

p(Y ) det(A)dx

)2
(

hXT +XhT − 2A−1
)

gb =

(

dF (X)

p(Y ) det(A)dx

)2

h,

where we use Lemma 12.

Lemma 12. Let Y ∼ p(x)dx. Then the convex function − log p is almost surely

differentiable at Y , and we can write ∂(− log p)(Y ) = ∇(− log p)(Y ).
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Proof. A convex function on a finite dimensional Euclidean space is differentiable

almost everywhere (with respect to the Lebesgue measure) on its domain [63, Theo-

rem 25.5].

Since p(x)dx≪ dx and since − log p(Y ) <∞ (i.e., Y is in the domain of − log p)

almost surely, − log p is differentiable almost surely.

8.2 Projection

The projection of x onto a nonempty closed convex set C is defined as

ΠC(x) = argmin
z∈C

‖z − x‖2,

which always exists and is unique. We can interpret ΠC as the point in C closest

to x. In general, the projection onto any nonempty closed convex set is a convex

optimization problem, and as such could be solved with a convex optimization solver.

Usually, however, projection is a useful subroutine only when it has a analytical or

semi-analytical solution.

Lemmas 13 and 14 are well-known, but we prove them anyways for the sake of

completeness.

Lemma 13. If C is a nonempty closed convex set, ΠC is nonexpansive.

Proof. Reorganizing the optimality condition for the optimization problem [15, p.

139], we get that for any u ∈ Rn and v ∈ C we have

(v − ΠCu)
T (ΠCu− u) ≥ 0. (8.1)

Now for any x, y ∈ Rn, we get

(ΠCy − ΠCx)
T (ΠCx− x) ≥ 0

(ΠCx− ΠCy)
T (ΠCy − y) ≥ 0
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using (8.1), and by adding these two we get

(ΠCx− ΠCy)
T (x− y) ≥ ‖ΠCx− ΠCy‖22.

Finally, we apply the Cauchy-Schwartz inequality to conclude

‖ΠCx− ΠCy‖2 ≤ ‖x− y‖2.

Lemma 14. Let

∆k = {x ∈ Rk | x1, . . . , xk ≥ 0, x1 + · · ·+ xk = 1},

define the function (·)+ : Rk → Rk as ((z)+)i = max{zi, 0} for i = 1, . . . , k. Then

Π(z) = (z − ν1)+,

where ν is a solution of the equation

1T (z − ν1)+,ε = 1.

The left-hand side is a nonincreasing function of ν, so ν can be obtained efficiently

via bisection on with the starting interval [maxi zi − 1,maxi zi].

Proof. By definition of the projection, x = Π(z) is the solution of

minimize 1
2
‖x− z‖22

subject to 1Tx = 1

x ≥ 0.

This problem is equivalent to

minimize 1
2
‖x− z‖22 + ν(1Tx− 1)

subject to x ≥ 0
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for an optimal dual variable ν ∈ R. This follows from dualizing with respect to the

constraint 1Tx = 1 (and not the others), applying strong Lagrange duality, and using

fact that the objective is strictly convex [10]. This problem is in turn equivalent to

minimize 1
2
‖x− (z − ν1)‖22

subject to x ≥ 0,

which has the analytic solution

x⋆ = (z − ν1)+.

An optimal dual variable ν must satisfy

1T (z − ν1)+ = 1,

by the KKT conditions. Write h(ν) = (z−ν1)+. Then h(ν) a continuous nonincreas-

ing function with

h(max
i
zi − 1) ≥ 1, h(max

i
zi) = 0.

So a solution of h(ν) = 1 is in the interval [maxi zi − 1,maxi zi].
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