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Acceleration of first-order convex minimization

Consider
minimize

x∈Rn
f(x)

where f is L-smooth convex.

Gradient descent

xk+1 = x+
k

def
= xk − 1

L
f(xk)

converges with the rate f(xk)− f⋆ ≤ O(1/k).

Nesterov’s celebrated fast gradient method (FGM):

xk+1 = x+
k +

θk − 1

θk+1
(x+

k − x+
k−1),

with θ0 = 1, θi =
1+

√
1+4θ2

i−1

2 for i = 1 . . . , N , converges with the
accelerated rate f(xk)− f⋆ ≤ O(1/k2).

Nesterov, A method for unconstrained convex minimization problem with the rate
of convergence O(1/k2), Proceedings of the USSR Academy of Sciences, 1983.



OGM beats FGM

Surprisingly, it was discovered (via the PEP) that FGM is suboptimal.

The optimized gradient method (OGM)#:

xk+1 = x+
k +

θk − 1

θk+1
(x+

k − x+
k−1) +

θk
θk+1

(x+
k − xk)

with θi =
1+

√
1+4θ2

i−1

2 for i = 1 . . . , N − 1, and θN =
1+

√
1+8θ2

N−1

2 beats
FGM by a factor of 2.

Recently, several new acceleration mechanisms, distinct from Nesterov’s,
were discovered using the computer-assisted methodology called the PEP.

#Drori and Teboulle, Performance of first-order methods for smooth convex
minimization: a novel approach. MPA, 2014.

#Kim and Fessler, Optimized first-order methods for smooth convex
minimization, MPA, 2016.

3



Optimal methods via PEP

Conceptually, the problem of finding the best first-order method is an
optimization problem.

Surprisingly, this optimization problem can be posed as a
finite-dimensional convex SDP# or a non-convex QCQP†.

The following new acceleration mechanisms were designed with the PEP.

The BnB-PEP† is the most recent development of the tool, and this
vastly expands the applicability of the computer-assisted methodology.
( Talk here at SIOpt.)

#Drori and Teboulle, Performance of first-order methods for smooth convex
minimization: a novel approach. MPA, 2014.
#Taylor, Hendrickx, and Glineur. Smooth strongly convex interpolation and exact
worst-case performance of first-order methods, MPA, 2017.
†Das Gupta, Van Parys, and Ryu, Branch-and-bound performance estimation
programming: A unified methodology for constructing optimal optimization methods,
MPA, 2023.
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Smooth convex-concave minimax optimization

Consider

minimize
x∈Rn

maximize
y∈Rm

L(x, y),

where L is convex-concave and R-smooth. Recently, minimax
optimization has gained popularity in machine learning.

(x⋆, y⋆) solves the minimax problem if it is a saddle point, i.e., if

L(x⋆, y) ≤ L(x⋆, y⋆) ≤ L(x, y⋆), ∀x ∈ Rn, y ∈ Rm.

Saddle operator is

G(x, y)
∆
=

[
∇xL(x, y)
−∇yL(x, y)

]
.

L is R-smooth of G is R-Lipschitz continuous. z = (x, y) is a saddle
point of L if and only if G(z) = 0.

Question) Can we accelerate first-order minimax algorithms?



Classical results in minimax optimization

Analogue of gradient descent (simultaneous gradient descent-ascent)

zk+1 = zk − αG(zk),

does not converge in general. (Write zk = (xk, yk).)

zk

zk+1

zk+1/2

−αG(zk+1/2)

−αG(zk)

−αG(zk+1/2)

Extragradient (EG) algorithm1

zk+1/2 = zk − αG(zk)

zk+1 = zk − αG(zk+1/2)

does converge.

Theorem (Informal)
EG and several other known methods exhibit the rate

min
i=0,...,k

∥∇L(zi)∥2 ≤ O
(
R2∥z0 − z⋆∥2

k

)
.

1Korpelevich, The extragradient method for finding saddle ..., Matekon, 1976.



Extra anchored gradient (EAG) algorithm

zk+1/2 = zk +
1

k + 2
(z0 − zk)− αG(zk)

zk+1 = zk +
1

k + 2
(z0 − zk)− αG(zk+1/2)

α > 0 is the step-size and 1
k+2 are anchoring coefficients.

Anchor term pulls zk towards the initial point z0.

Theorem
With α ≤ 1

8R , EAG exhibits the rate

∥∇L(zk)∥2 ≤ O
(
R2∥z0 − z⋆∥2

k2

)
.

Yoon and Ryu, Accelerated algorithms for smooth convex-concave minimax
problems with O(1/k2) rate on squared gradient norm, ICML long talk, 2021.
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EAG is optimal up to a constant

Theorem (Informal)
EAG is optimal up to a constant among algorithms satisfying:

xi ∈ x0 + span{∇xL(x0, y0), . . . ,∇xL(xi−1, yi−1)}
yi ∈ y0 + span{∇yL(x0, y0), . . . ,∇yL(xi−1, yi−1)}

for i = 1, . . . , k.

Yoon and Ryu, Accelerated algorithms for smooth convex-concave minimax
problems with O(1/k2) rate on squared gradient norm, ICML long talk, 2021.

Acceleration for minimax optimization 9



Related follow-up work

• Lee, D. Kim, Fast extra gradient methods for smooth structured
nonconvex-nonconcave minimax problems, NeurIPS, 2021.

• Tran-Dinh, Luo, Halpern-type accelerated and splitting algorithms
for monotone inclusions, arXiv, 2021.

• Yoon, Ryu, Accelerated minimax algorithms flock together, arXiv,
2022.

• Bot, Csetnek, Nguyen, Fast OGDA in continuous and discrete time,
arXiv, 2022.

• Sedlmayer, Nguyen, Boţ A fast optimistic method for monotone
variational inequalities, ICML, 2023.

: Talks given here in SIOpt.
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Fixed-point iteration

Fixed-point iteration with 𝕋 : Rn → Rn computes

xk+1 = 𝕋xk

with some starting point x0 ∈ Rn.

Surprisingly, the classical fixed-point iteration is suboptimal.

Question) What is the optimal (accelerated) iteration complexity
of fixed-point iterations?

Acceleration for fixed-point iterations 12



Accelerated fixed-point iteration

Optimal Contractive Halpern (OC-Halpern) was discovered by the PEP:

yk =

(
1− 1

φk

)
𝕋yk−1 +

1

φk
y0 (OC-Halpern)

where 𝕋 is 1/γ-contractive, φk =
∑k

i=0 γ
2i, and y0 is a starting point.

Theorem
(OC-Halpern) exhibits the rate

∥yN − 𝕋yN∥2 ≤
(
1 +

1

γ

)2
(

1∑N
k=0 γ

k

)2

∥y0 − y⋆∥2.

Faster than plain fixed-point iteration. When γ = 1, the rate

∥yN − 𝕋yN∥2 ≤ O(1/N2)

is faster than the O(1/N) rate for plain (KM) fixed-point iteration.

O(1/N2) rate due to Lieder and Kim. Rate for γ > 1 due to Park and Ryu.
Lieder, On the convergence rate of the Halpern-iteration. OPTL, 2021.
Kim, Accelerated proximal point method ..., MPA, 2021.
Park and Ryu, Exact optimal accelerated complexity for ..., ICML long talk, 2022.



Optimality

Theorem (Informal)
OC-Halpern is exactly among algorithms satisfying:

yk ∈ y0 + span{y0 − 𝕋y0, y1 − 𝕋y1, . . . , yk−1 − 𝕋yk−1}

for k = 1, . . . , N .

Diakonikolas, Halpern iteration for near-optimal and parameter-free ..., COLT, 2020.
Park and Ryu, Exact optimal accelerated complexity for ..., ICML long talk, 2022.



Anchored value iteration: Upper bound

Let T be the Bellman optimality operator. Anchored Value Iteration is

Uk =
1

φk
U0 +

(
1− 1

φk

)
TUk−1, (Anc-VI)

same as OC-Halpern. (T is γ-contractive in the ∥ · ∥∞-norm.)

Theorem
Let 0 < γ < 1 be the discount factor. Let T be the Bellman optimality
operator. If U0 ≤ TU0, then Anc-VI exhibits the rate

∥∥TUk − Uk
∥∥
∞ ≤

(
γ−1 − γ

) (
1 + γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥U0 − U⋆
∥∥
∞

=

(
1

k + 1
+

k

k + 1
ϵ+O(ϵ2)

)∥∥U0 − U⋆
∥∥
∞

where γ = 1− ϵ.

Lee and Ryu, Accelerating value Iteration with anchoring, arXiv, 2023.
Acceleration for fixed-point iterations 15



Anchored value iteration: Lower bound

Theorem
Let k ≥ 0, n ≥ k + 2, 0 < γ ≤ 1, and U0 ∈ Rn. Then there exists an
MDP with |S| = n and |A| = 1 such that T has a fixed point U⋆

satisfying U0 ≤ U⋆ and

∥∥TUk − Uk
∥∥
∞ ≥ γk∑k

i=0 γ
i

∥∥U0 − U⋆
∥∥
∞

for any iterates {U i}ki=0 satisfying the span condition

U i ∈ U0 + span{TU0 − U0, TU1 − U1, . . . , TU i−1 − U i−1}.

Since

γk∑k
i=0 γ

i
≤
(
γ−1 − γ

) (
1 + γ − γk+1

)
(γk+1)

−1 − γk+1
≤ 4γk∑k

i=0 γ
i

∀ 0 < γ < 1,

upper bound is optimal up to a constant of factor 4.

Lee and Ryu, Accelerating value Iteration with anchoring, arXiv, 2023.
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Composite optimization and FISTA

Composite minimization

minimize
x∈Rd

f(x) + h(x),

f is L-smooth convex and h is convex proximable.

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA):

yi+1 = Prox 1
Lh

(
xi −

1

L
∇f(xi)

)
,

xi+1 = yi+1 +
θi − 1

θi+1
(yi+1 − yi) ,

with θ0 = 1, θi =
(1+

√
1+4θ2

i−1)
2 for i = 1, . . . , N − 1. Convergence rate:

f(yN ) + h(yN )− f(x⋆)− h(x⋆) ≤
L∥x0 − x⋆∥2

2θ2N−1

≤ 2L∥x0 − x⋆∥2

(N + 1)2
.

Beck, Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse
problems, SISC, 2009



Exact optimal method: OptISTA

Optimal Iterative Shrinkage Thresholding Algorithm

yi+1 = Prox γi
L h

(
yi −

γi
L
∇f(xi)

)
,

zi+1 = xi +
1

γi
(yi+1 − yi) ,

xi+1 = zi+1 +
θi − 1

θi+1
(zi+1 − zi) +

θi
θi+1

(zi+1 − xi) ,

(OptISTA)

with γi =
2θi
θ2
N

(
θ2N − 2θ2i + θi

)
,

θi =
1+

√
1+4θ2

i−1

2 for i = 1 . . . , N − 1, and θN =
1+

√
1+8θ2

N−1

2 .

Jang, Das Gupta, Ryu, Computer-assisted design of accelerated composite
optimization methods: OptISTA, arXiv, 2023.

Acceleration for composite optimization 19



Exact optimal method: OptISTA

OptISTA improves upon the rate of FISTA by a factor of 2:

Theorem
OptISTA exhibits the rate

f(yN ) + h(yN )− f(x⋆)− h(x⋆) ≤
L∥x0 − x⋆∥2

2(θ2N − 1)
≤ L∥x0 − x⋆∥2

(N + 1)2
,

OptISTA is exactly optimal:

Theorem
Let L > 0, R > 0, N > 0, and d ≥ N + 1. Under an appropriate span
condition, there is an f and h such that

f(xN ) + h(xN )− f(x⋆)− h(x⋆) ≥
L∥x0 − x⋆∥2

2(θ2N − 1)
.

Jang, Das Gupta, Ryu, Computer-assisted design of accelerated composite
optimization methods: OptISTA, arXiv, 2023.
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Making gradients small fast for convex functions

Consider
minimize

x∈Rn
f(x)

where f is L-smooth convex. Let us measure suboptimality by
∥∇f(x)∥2, rather than f(x)− f⋆.

Gradient descent exhibits the rate2

∥∇f(xk)∥2 ≤ O(1/k2)

FGM exhibits the rate3

min
i=1,...,k

∥∇f(xi)∥2 ≤ O(1/k3)

Nemirovsky establishes the lower bound4

min
i=1,...,k

∥∇f(xi)∥2 ≥ Θ(1/k4).

Question) What is the optimal accelerated rate for making
gradients of convex functions small?

2Taylor and Bach, Stochastic first-order methods: non-asymptotic ..., COLT, 2019.
3Shi, Du, Su, and Jordan, Acceleration via symplectic ..., MPA, 2019.
4Nemirovsky, Information-based complexity of linear ..., J. Complexity, 1992.



OGM-G: O((f(x0)− f⋆)/K
2) rate

OGM-G:

xk+1 = x+
k +

(θk − 1)(2θk+1 − 1)

θk(2θk − 1)
(x+

k − x+
k−1) +

2θk+1 − 1

2θk − 1
(x+

k − xk)

where x+ = x− 1
L∇f(x), x+

−1 = x0, θK = 1, and θ2k − θk = θ2k+1.

OGM-G, discovered with the PEP, exhibits the rate

∥∇f(xK)∥2 ≤ O
(
f(x0)− f⋆

K2

)
.

Kim and Fessler, Optimizing the efficiency of first-order methods for decreasing
the gradient of smooth convex functions, JOTA, 2021.
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FGM+OGM-G: O(∥x0 − x⋆∥2/K4) rate

FGM+OGM-G: From x0 run K iterations of FGM. Continue with
OGM-G and run K iterations. Concatenated method exhibits the rate

∥∇f(x2K)∥2 ≤ O(∥x0 − x⋆∥2/K4)

FGM: O(1/K2) rate on
(
∥x0 − x⋆∥2 7→ f(xK)− f(x⋆)

)
.

OGM-G: O(1/K2) rate on
(
f(x0)− f(x⋆) 7→ ∥∇f(xK)∥2

)
.

FGM+OGM-G: O(1/K4) rate on
(
∥x0 − x⋆∥2 7→ ∥∇f(x2K)∥2

)
.

Nesterov, Gasnikov, Guminov, and Dvurechensky, Primal–dual accelerated
gradient methods ..., Optimization Methods and Software, 2020.
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Prox-grad setup

Consider the problem

minimize
x∈Rn

F (x) := f(x) + g(x),

where f : Rn → R is convex L-smooth and g is proximable.

Prox-grad step notation:

x⊕ = argmin
y∈Rn

{
f(x) + ⟨∇f(x), y − x⟩+ g(y) +

L

2
∥y − x∥2

}
.

Acceleration for making gradients small 25



FISTA-G

A novel method, FISTA-G:

xk+1 = x⊕
k +

φk+1 − φk+2

φk − φk+1
(x⊕

k − x⊕
k−1),

where x⊕
−1 := x0, φK+1 = 0, φK = 1, and

φk =
φ2
k+2 − φk+1φk+2 + 2φ2

k+1 + (φk+1 − φk+2)
√
φ2
k+2 + 3φ2

k+1

φk+1 + φk+2
.

Theorem
FISTA-G exhibits the rate

min ∥∂F (x⊕
K)∥2 ≤ 264L(F (x0)− F⋆)

(K + 2)2
.

Lee, Park, and Ryu, A geometric structure of acceleration and its role in making
gradients small fast, NeurIPS, 2021.
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FISTA+FISTA-G: O((∥x0 − x⋆∥2)/K4) rate

Corollary
FISTA+FISTA-G’s final iterate x2K exhibits the rate

min ∥∂F (x⊕
2K)∥2 ≤ O

(
L2∥x0 − x⋆∥2

K4

)
.

Lee, Park, and Ryu, A geometric structure of acceleration and its role in making
gradients small fast, NeurIPS, 2021.
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Super-FISTA-G

Constant factor 264 is improved to 50 by Super-FISTA-G

xk+1 = x⊕,4
k +

(K−k+1)(2K−2k−1)
(K−k+3)(2K−2k+1)

(
x⊕,4
k − x⊕,4

k−1

)
+

(4K−4k−1)(2K−2k−1)
6(K−k+3)(2K−2k+1)

(
x⊕,4
k − xk

)
for k = 0, . . . ,K − 2

xK = x⊕,4
K−1 +

3

10

(
x⊕,4
K−1 − x⊕,4

K−2

)
+

3

40

(
x⊕,4
K−1 − xK−1

)
(SFG)

where we use the α-proximal gradient step

y⊕,α = argmin
z∈Rn

(
f(y) + ⟨∇f(y), z − y⟩+ g(z) +

αL

2
∥z − y∥2

)
= Prox g

αL

(
y −

1

αL
∇f(y)

)

Theorem
SFG exhibits the rate

min
v∈∂F (x⊕,4

K )
∥v∥2 ≤ 50L

(K + 2)(K + 3)
(F (x0)− F⋆) .

Kim, Ozdaglar, Park, and Ryu, Time-reversed dissipation induces duality between
minimizing gradient norm and function value, arXiv, 2023.
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Conclusion

With the aid of the PEP, the field has discovered several new acceleration
mechanisms, exciting developments in convex optimization theory.

Future outlook #1: There are many interesting problems in optimization
theory that the BnB-PEP will finally empower us to tackle.

Future outlook #2: Using the PEP to analyze algorithms outside of
optimization, e.g., numerical analysis and reinforcement learning.

29


	Acceleration for minimax optimization
	Acceleration for fixed-point iterations
	Acceleration for composite optimization
	Acceleration for making gradients small
	

